請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58593完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭淑芬 | |
| dc.contributor.author | Yu-Chieh Cheng | en |
| dc.contributor.author | 鄭妤潔 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:21:19Z | - |
| dc.date.available | 2014-03-08 | |
| dc.date.copyright | 2014-03-08 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2014-01-27 | |
| dc.identifier.citation | [1] 大紀元, http://www.epochtimes.com/b5/6/12/4/n1544048.htm 2006.
[2] 陳振源, 科學發展 2005, 391. [3] 黃鎮江, 燃料電池, 全華出版社, 台灣, 2003. [4] Sakurambo, Own work, based on w:Image:Fcell_diagram_sofc.gif (public domain) 2007. [5] D. J. Brett, A. Atkinson, N. P. Brandon, S. J. Skinner, Chemical Society reviews 2008, 37, 1568-1578. [6] J. W. Fergus, Journal of Power Sources 2006, 162, 30-40. [7] aS. Kuharuangrong, Journal of Power Sources 2007, 171, 506-510; bY.-P. Fu, S.-H. Chen, J.-J. Huang, Int. J. Hydrogen Energy 2010, 35, 745-752. [8] S. Ramesh, K. C. James Raju, Int. J. Hydrogen Energy 2012, 37, 10311-10317. [9] Z. P. Li, T. Mori, J. Zou, J. Drennan, Physical chemistry chemical physics : PCCP 2012, 14, 8369-8375. [10] Y. Liu, X. Tan, K. Li, Catalysis Reviews 2006, 48, 145-198. [11] a; bJ. W. Stevenson, T. R. Armstrong, L. R. Pederson, J. Li, C. A. Lewinsohn, S. Baskaran, Solid State Ionics 1998, 113–115, 571–583. [12] C. Sun, R. Hui, J. Roller, Journal of Solid State Electrochemistry 2009, 14, 1125-1144. [13] L. Nie, M. Liu, Y. Zhang, M. Liu, Journal of Power Sources 2010, 195, 4704-4708. [14] S. P. Jiang, Solid State Ionics 2002, 146, 1-22. [15] Z. Jiang, C. Xia, F. Chen, Electrochimica Acta 2010, 55, 3595-3605. [16] M. Zhi, S. Lee, N. Miller, N. H. Menzler, N. Wu, Energy & Environmental Science 2012, 5, 7066. [17] E. Zhao, Z. Jia, L. Zhao, Y. Xiong, C. Sun, M. E. Brito, Journal of Power Sources 2012, 219, 133-139. [18] J. Choi, B. Kim, D. Shin, Journal of the European Ceramic Society 2013, 33, 2269-2273. [19] M. D. Gross, J. M. Vohs, R. J. Gorte, Journal of The Electrochemical Society 2007, 154, B694. [20] Z. L. Zhan, S. A. Barnett, Science 2005, 308, 844-847. [21] B. A.Boukamp, Nature materials 2003, 2. [22] S. Zha, C. Xia, G. Meng, Journal of Power Sources 2003, 115, 44-48. [23] 陳美如, 2006. [24] F.-Y. Wang, S. Chen, S. Cheng, Electrochemistry Communications 2004, 6, 743-746. [25] P. P. Dholabhai, J. B. Adams, P. A. Crozier, R. Sharma, Journal of Materials Chemistry 2011, 21, 18991. [26] I. Ruiz de Larramendi, N. Ortiz-Vitoriano, B. Acebedo, D. Jimenez de Aberasturi, I. Gil de Muro, A. Arango, E. Rodríguez-Castellón, J. I. Ruiz de Larramendi, T. Rojo, Int. J. Hydrogen Energy 2011, 36, 10981-10990; bK. Schmale, M. Grünebaum, M. Janssen, S. Baumann, F. Schulze-Küppers, H.-D. Wiemhöfer, physica status solidi (b) 2011, 248, 314-322. [27] Y. V. F. H.Borchert, V. A. Sadykov, Journal of Physical Chemistry B 2005, 109. [28] T. S. Zhang, J. Ma, L. B. Kong, P. Hing, Y. J. Leng, S. H. Chan, J. A. Kilner, Journal of Power Sources 2003, 124, 26-33. [29] P. S. S. Dikmen , M. Greenblatt , H. Gocmez, Solid State Sciences 2002, 4, 585. [30] T. Yu, J. Joo, Y. I. Park, T. Hyeon, Angewandte Chemie 2005, 117, 7577-7580. [31] C. X. R. Peng, Q. Fu, G. Meng, D. Peng, Materials Letters 2002, 56. [32] D. P. Fagg, D. Pérez-Coll, P. Núñez, J. R. Frade, A. L. Shaula, A. A. Yaremchenko, V. V. Kharton, Solid State Ionics 2009, 180, 896-899. [33] M. Naeem, S. K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby, S. I. Shah, Nanotechnology 2006, 17, 2675-2680. [34] S.-F. Wang, C.-T. Yeh, Y.-R. Wang, Y.-F. Hsu, Journal of Power Sources 2012, 201, 18-25. [35] Y. D. Zhen, A. I. Y. Tok, S. P. Jiang, F. Y. C. Boey, Journal of Power Sources 2008, 178, 69-74. [36] K. L. Duncan, K.-T. Lee, E. D. Wachsman, Journal of Power Sources 2011, 196, 2445-2451; bC. Ding, H. Lin, K. Sato, K. Amezawa, T. Kawada, J. Mizusaki, T. Hashida, Journal of Power Sources 2010, 195, 5487-5492. [37] M. J. S. E. Perry Murray, S.A. Barnett, Solid State Ionics 2002, 148, 27; T. T. Erica Perry Murray, Scott A. Barnett, Solid State Ionics 1998, 110, 235. [38] N. T. Hieu, J. Park, B. Tae, Materials Science and Engineering: B 2012, 177, 205-209; bE. Zhao, C. Ma, W. Yang, Y. Xiong, J. Li, C. Sun, Int. J. Hydrogen Energy 2013, 38, 6821-6829. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58593 | - |
| dc.description.abstract | 本研究以Pechini法製備鐠、釓共摻雜的氧化鈰粉末,其化學式為Ce0.8Gd0.2-XPrXO2-δ(X=0.01-0.05) 作為中溫固態氧化物燃料電池(ITSOFC)的電解質。對所得粉末進行一系列性質探討,由粉末繞射儀結果說明,經煆燒700℃共摻镨、釓的氧化鈰有純相螢石結構和較釓摻雜氧化鈰(Ce0.8Gd0.2O2-δ)大的晶格常數。由Scherrer公式計算出的粒徑與從穿透式電子顯微鏡圖量測的粒徑大小一致。由掃描式電子顯微鏡圖和電解質相對密度計算可以說明镨摻雜有提高電解質密度的效果。镨、釓共摻雜的電解質材料的氧離子導電性與電解質相對密度和X射線光電子能譜O 1s譜圖中氧空位/晶格氧的的面積比率趨勢大致一致。其中Ce0.8Gd0.18Pr0.02O2-δ在700℃下有最高的氧離子導電性6.15 S/m 。以厚度20 μm的Ce0.8Gd0.18Pr0.02O2-δ作為電解質,La0.6Sr0.4Co0.2Fe0.8作為陰極,60%NiO - 40%Ce0.8Gd0.2O2-δ為陽極,利用共壓法製成陽極支撐的電池在700℃以160 mL/min的氫氣作為燃料和160 mL/min的氧氣作為氧化劑時,開路電壓為0.82 V,能量密度為0.739 W/cm2,其表現較以Ce0.8Gd0.2O2-δ為電解質的能量密度高 。 | zh_TW |
| dc.description.abstract | The Pr, Gd co-doped CeO2 powders with the chemical formula Ce0.8Gd0.2-XPrXO2 (X=0.01-0.05) were prepared by Pechini method and used as electrolyte material for intermediate temperature solid oxide fuel cell (ITSOFC). The XRD results showed that Pr, Gd co-doped CeO2 calcined at 700℃ had pure fluorite structure and slightly larger lattice parameters than Gd-doped CeO2 (Ce0.8Gd0.2O2-δ). The particle sizes calculated by Scherrer equation were in good agreement with those obtained from TEM images. The oxide ion conductivities of the co-doped materials were found to be directly proportional to the ratios of oxygen vacancies/lattice oxygen determined by the area ratios of O 1s XPS spectra. Among these co-doped materials, Ce0.8Gd0.18Pr0.02O2 gave the highest oxide ion conductivity (6.15 S/m at 700℃). The anode-supported single cell, fabricated by a simple co-pressing method using Ce0.8Gd0.18Pr0.02O2 of thickness of 20 μm as the electrolyte, La0.6Sr0.4Co0.2Fe0.8 as cathode, and 60%NiO-40%Ce0.8Gd0.2O2-δ as anode, gave a high power density of 0.739 W/cm2 and OCV of 0.82 V at 700℃ using 160 mL/min hydrogen as the fuel and 160 mL/min oxygen as the oxidant, and the single cell gave higher power density than that withCe0.8Gd0.2O2-δ as the electrolyte. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:21:19Z (GMT). No. of bitstreams: 1 ntu-102-R00223138-1.pdf: 6387514 bytes, checksum: 388669b482c3c80a3fdbc24d25525831 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 謝誌 2
中文摘要 I Abstract II 目錄 III 表目錄 V 圖目錄 VI 第一章 緒論 1 1-1燃料電池 1 1-2固態氧化物燃料電池 3 1–2–1 發電原理 3 1–2–2 SOFC電解質材料 4 1–2–3 SOFC陰極材料 10 1–2–4 電紡絲法(Electrocspinning)製備SOFC陰極 14 1–2–5 SOFC陽極材料 19 1–3 研究目標 20 第二章 實驗部分 22 2–1 化學藥品 22 2–2 實驗步驟 23 2–2–1 Citric Acid-PEG (C.P.)溶液配製 23 2–2–2 電解質粉體製備 23 2–2–3 單電池製備 23 2–2–4 電紡絲法製備陰極 24 2–3 電池材料的鑑定 25 第三章 Pr, Gd共摻雜CeO2 做為SOFC電解質材料 28 3-1 Powder X-ray diffraction analysis 28 3-2 TEM & SEM images 31 3-3 Laser Scattering Particle Size Distribution Analyzer 39 3-4 Conductivity 41 3-5 XPS study 44 3-5 X-ray absorption near-edge structure analysis 48 3-6 Effect of Electrolyte thickness of Ce0.8Gd0.18Pr0.02O2-δ on single cell performance 53 3-6 Single cell performance with Ce0.8Gd0.18Pr0.02O2-δ electrolytes 58 3-7 Single cell performance of Ce0.8Gd0.18Pr0.02O2-δ electrolytes compared with CGO electrolytes 62 第四章 電紡絲法製備LSCF固態氧化物燃料電池陰極 69 第五章 結論 78 第六章 參考文獻 80 | |
| dc.language.iso | zh-TW | |
| dc.subject | 釓 | zh_TW |
| dc.subject | 鐠 | zh_TW |
| dc.subject | 氧化鈰 | zh_TW |
| dc.subject | 電解質 | zh_TW |
| dc.subject | 固態氧化物燃料電池 | zh_TW |
| dc.subject | 導電度 | zh_TW |
| dc.subject | conductivity | en |
| dc.subject | electrolyte | en |
| dc.subject | ceria | en |
| dc.subject | Pr | en |
| dc.subject | Gd | en |
| dc.subject | SOFC | en |
| dc.title | 鐠、釓共摻雜之氧化鈰電解質於中溫固態氧化物燃料電池之研究 | zh_TW |
| dc.title | Pr, Gd Co-doped Ceria Based Materials in IT-SOFC | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王錫福,劉如熹 | |
| dc.subject.keyword | 固態氧化物燃料電池,電解質,氧化鈰,鐠,釓,導電度, | zh_TW |
| dc.subject.keyword | SOFC,electrolyte,ceria,Pr,Gd,conductivity, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-01-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
