請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58591
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江宏仁(Hong-Ren Jiang) | |
dc.contributor.author | Tzu-Chung Lin | en |
dc.contributor.author | 林子鈞 | zh_TW |
dc.date.accessioned | 2021-06-16T08:21:14Z | - |
dc.date.available | 2014-03-09 | |
dc.date.copyright | 2014-03-09 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-01-28 | |
dc.identifier.citation | 1. Jianzhong Xi, Jacob J. Schmidt & Carlo D. Montemagno. (2005). Self-assembled
microdevices driven by muscle. Nature Materials, 4(2), 180. 2. C. Casagrande, P. Fabre, E. Raphael and M. Veyssie. (1989). Water/Oil Interfaces. Europhysics Letters, 9(3), 251. 3. A Walther, AHE Muller . (2008). Janus particles. Soft Matter, 4(4), 663. 4. H Ke, S Ye, RL Carroll, K Showalter. (2010). Motion Analysis of Self-Propelled Pt− Silica Particles in Hydrogen Peroxide Solutions. Journal of Physical Chemistry, The, 114(17), 5462. 5. JG Gibbs, YP Zhao. (2009). Autonomously motile catalytic nanomotors by bubble propulsion. Applied Physics Letters, 94(16), 163104. 6. WF Paxton, KC Kistler, CC Olmeda. (2004). Catalytic nanomotors: Autonomous movement of striped nanorods. Journal of the American Chemical Society, 126(41), 13424. 7. JM Catchmark, S Subramanian, A Sen. (2005). Directed rotational motion of microscale objects using interfacial tension gradients continually generated via catalytic reactions. Small, 1(2), 202 8. R Golestanian, TB Liverpool, A Ajdari. (2005). Propulsion of a molecular machine by asymmetric distribution of reaction products. Physical Review Letters, 94(22), 220801. 9. WF Paxton, A Sen, TE Mallouk. (2005). Motility of catalytic nanoparticles through self‐generated forces. Chemistry - A European Journal, 11(22), 6462. 10. JR Howse, RAL Jones, AJ Ryan. (2007). Self-motile colloidal particles: from directed propulsion to random walk. Physical Review Letters, 99(4), 048102. 11. S Seiler, J Kirchner, C Horn, A Kallipolitou. (2000). Cargo binding and regulatory sites in the tail of fungal conventional kinesin. Nature Cell Biology, 2(6), 333. 12. Perro, A., Reculusa, S., Ravaine, S., Bourgeat-Lami, E., & Duguet, E. (2005). Design and synthesis of Janus micro-and nanoparticles. Journal of materials chemistry, 15(35-36), 3745-3760. 13. Perro, A., Meunier, F., Schmitt, V., & Ravaine, S. (2009). Production of large quantities of “Janus” nanoparticles using wax-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 332(1), 57-62. 14. KH Roh, DC Martin, J Lahann. (2005). Biphasic Janus particles with nanoscale anisotropy. Nature Materials, 4(10), 759. 15. Einstein, A. (1905). The theory of the brownian movement. Ann. der Physik, 17, 549. 16. Cappelezzo, M., Capellari, C., Pezzin, S., & Coelho, L. (2007). Stokes-Einstein relation for pure simple fluids. The Journal of chemical physics, 126, 224516. 17. G Gregoire, H Chate, Y Tu . (2001). Active and passive particles: Modeling beads in a bacterial bath. Physical Review, 64(1), 011902. 18. XL Wu, A Libchaber. (2000). Particle diffusion in a quasi-two-dimensional bacterial bath. Physical Review Letters, 84(13), 3017. 19. C Dombrowski, L Cisneros, S Chatkaew. (2004). Self-concentration and large-scale coherence in bacterial dynamics. Physical Review Letters, 93(9), 098103. 20. Sokolov, A. (2007). Concentration dependence of the collective dynamics of swimming bacteria. Physical Review Letters, 98(15), 158102. 21. Kralchevsky, P. A., & Denkov, N. D. (2001). Capillary forces and structuring in layers of colloid particles. Current Opinion in Colloid & Interface Science, 6(4), 383-401. 22. HR Jiang, N Yoshinaga, M Sano. (2010). Active motion of a Janus particles by self-thermophoresis in a defocused laser beam. Physical Review Letters, 105(26), 268302. 23. B Lin, J Yu, SA Rice. (2000). Direct measurements of constrained Brownian motion of an isolated sphere between two walls. Physical Review, 62(3), 3909. 24. C Cheung, YH Hwang, XL Wu, HJ Cho. (1996). Diffusion of particles in free-standing liquid films. Physical Review Letters, 76(14), 2531. 25. TY Hou, R Li. (2006). Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations. Journal of Nonlinear Science, 16(6), 639. 26. G Boffetta, RE Ecke. (2012). Two-dimensional turbulence. Annual Review of Fluid Mechanics, 44, 427. 27. Kraichnan, R. H. (1967). Inertial ranges in two‐dimensional turbulence. Physics of Fluids, 10, 1417. 28. J Paret, P Tabeling. (1997). Experimental observation of the two-dimensional inverse energy cascade. Physical Review Letters, 79(21), 4162. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58591 | - |
dc.description.abstract | 近年來,主動粒子的研究越來越多,其原因不外乎希望可以藉由控制主動粒子的運動,以達到其他的功能如輸送藥物或自組裝。在過去主動粒子的相關研究裡,大部分都在探討不同材料的主動粒子其運動的特性以及機制,主要的重點還是在討論單顆粒子在本體溶液中的運動行為,並沒有在二維系統中有太多的討論,我們希望可以藉由觀察主動粒子在二維膜上的運動特性,能使主動粒子在不同層面上有更多的應用。
在這個實驗中,我們設立了一個二維流體的系統,並將大量的3μm聚苯乙烯粒子以及非對稱粒子分別放入不同尺寸的肥皂膜中,利用不同的方式對粒子輸入能量(包含不同的雙氧水濃度以及雷射加熱強度),並利用PIV的方式來分析粒子所形成的流場,希望可以藉由此實驗,能將微觀尺度下粒子的單一運動與巨觀尺度粒子的聯合運動做一個連結。 我們觀察到非對稱粒子所形成的主動流場,除了在流場速度不同之外,流場形式也會由絮亂而變的較具整體性,我們藉著觀察單顆粒子在二維膜上的運動試圖解釋此現象,發現粒子在二維膜上的擾動會比在本體溶液中來的大,此擾動的能量將會儲存在流體中使得主動粒子會有聯合運動的產生,另外我們也發現在特定的條件之下,主動粒子所形成的二維流場會有逆向分支的情況發生,在部分線段會滿足k^(-5/3)定律。 | zh_TW |
dc.description.abstract | In recent years, research of active particles has been widely developed , but most of research is focus on the motion of single particle in bulk solution, we hope we can improve applications of active particles by observing the motion of particles on two dimensional film.
In this experiment, we construct a two-dimensional flow model. We use square soap film with different sizes, put both 3μm PS (polystyrene) particles and 3μm PS-Pt Janus particles into the soap film and inject energy into the system by different ways (including different hydrogen peroxide concentration and laser power). We use the PIV (Particle image velocimetry ) method to calculated the flow field .Hope we can establish a relation between macroscale and microscale behavior of Janus particles. For Janus particles in hydrogen peroxide soap film, the average velocity magnitude of the active flow are more higher than passive flow, the pattern of active flow will change from irregular to regular. We try to find a possible explanation from observe the motion of single Janus particles on the soap film, and we found that the fluctuation of Janus particles son soap film is much bigger than the fluctuation in bulk solution, and the fluctuation will cause the collective motion of Janus particles. We also calculate the power spectra compare with the inverse-cascade theory , and inverse-cascade spectra has be found in some situation which satisfy the k^(-5/3) law. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:21:14Z (GMT). No. of bitstreams: 1 ntu-103-R99543059-1.pdf: 6915628 bytes, checksum: 84b74c545966fe0f1556c572939f26a7 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES viii 第一章 Introduction 1 1.1 前言 1 1.2 人造主動粒子 2 1.2.1 非對稱粒子的特性 3 1.2.2 自然界中的主動粒子 4 1.2.3 非對稱粒子的製備方法 6 1.3 粒子在水溶液中的運動 8 1.3.1 布朗運動 8 1.3.2 Stokes-Einstein relation 9 1.3.3 均方位移 11 1.4 細菌在二維膜上的運動 12 1.4.1 聚苯乙烯粒子在大腸桿菌中的擴散 12 1.4.2 枯草芽孢桿菌在二維膜上的聯合運動 15 1.5 研究動機 17 第二章 實驗步驟與實驗架設 18 2.1 非對稱粒子的製作 18 2.1.1 聚苯乙烯的粒子單層製作 18 2.1.2 以濺鍍機將白金鍍於粒子單層上 19 2.1.3 非對稱粒子的取得與保存 21 2.2 肥皂膜溶液的配置 22 2.2.1 雙氧水 22 2.2.2 介面活性劑 23 2.2.3 甘油 24 2.2.4 混合比例 24 2.3 分析粒子在二維膜上的巨觀運動 25 2.3.1 二維系統的製作 25 2.3.2 實驗系統架設 25 2.3.3 實驗方法 28 2.3.4 分析方法 29 2.4 觀察粒子在本體溶液中的運動情形 29 2.4.1 實驗方法 29 2.4.2 影片處理及軌跡追蹤 30 2.5 分析粒子在二維膜上的微觀運動 30 2.5.1 實驗觀測槽的製作 30 2.5.2 實驗步驟及後續處理 31 第三章 實驗結果 32 3.1 粒子在二維膜上的巨觀流場 32 3.1.1 不同肥皂膜尺寸下的流場平均速率 33 3.1.2 不同肥皂膜尺寸下的流場形式 35 3.1.3 雷射加熱功率下的流場平均速率 42 3.1.4 雷射加熱功率下的流場形式 45 3.2 粒子在本體溶液中的運動 48 3.2.1 聚苯乙烯粒子在本體溶液中的運動 48 3.2.2 非對稱粒子在本體溶液中的運動 51 3.3 粒子在二維膜上的微觀運動行為 57 3.3.1 肥皂膜性質的觀測 57 3.3.2 非對稱粒子在二維膜上造成的背景流場 58 3.3.3 非對稱粒子在二維膜上的相對運動 59 3.3.4 非對稱粒子之自體擾動 60 3.3.5 聚苯乙烯粒子與非對稱粒子在肥皂膜上的運動行為比較 65 第四章 結果討論 67 4.1 二維流體以及二維流體的能量頻譜 67 4.1.1 二維流體的基本定義 67 4.1.2 紊流系統 68 4.1.3 二維紊流系統的能量頻譜 68 4.2 二維紊流系統的雙向分支(double-cascade) 71 4.3 不同雙氧水濃度及肥皂膜尺寸的能量頻譜 74 4.4 粒子在不同雷射加熱強度的能量頻譜 78 4.5 結論 82 參考資料 83 | |
dc.language.iso | zh-TW | |
dc.title | 主動非對稱粒子在二維膜上的運動 | zh_TW |
dc.title | Motion of Active Swimmer in Two-Dimensional Film | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周逸儒(Yi-Ju Chou),李雨(U Lei) | |
dc.subject.keyword | 主動粒子,二維肥皂膜,逆向分支, | zh_TW |
dc.subject.keyword | Janus particles,two dimensional soap film,inverse cascade, | en |
dc.relation.page | 85 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-01-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 6.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。