請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58559
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳乃立 | |
dc.contributor.author | Chia-Nan Lin | en |
dc.contributor.author | 林嘉男 | zh_TW |
dc.date.accessioned | 2021-06-16T08:19:53Z | - |
dc.date.available | 2019-03-18 | |
dc.date.copyright | 2014-03-18 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-02-06 | |
dc.identifier.citation | [1] M. Barghamadi, A. kapoor, and C. Wen, 'A review on Li-S batteries as a high efficiency rechargeable lithium battery,' Journal of The Electrochemical Society, 160, A1256-A1263 (2013).
[2] M. K. Song, S. Park, F. M. Alamgir, J. Cho, and M. Liu, 'Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives,' Materials Science and Engineering: R: Reports, 72, 203-252 (2011). [3] J. S. Lee, S. T. Kim, R. Cao, N. S. Choi, M. Liu, K. T. Lee, and J. Cho, 'Metal-air batteries with high energy density: Li-air versus Zn-air,' Advanced Energy Materials, 1, 34-50 (2011). [4] J. Nelson, S. Misra, Y. Yang, A. Jackson, Y. Liu, H. Wang, H. Dai, J. C. Andrews, Y. Cui, and M. F. Toney, 'In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries,' Journal of The American Chemical Society,134, 6337-6343 (2012). [5] Ohiostandard, Transferred from en.wikipedia, (2007). [6] K. E. Aifantis, S. A. Hackney, and R. V. Kumar, High energy density lithium batteries, Baker & Taylor Books, (2010). [7] D. Linden, and T. B. Reddy, Handbook of batteries, 3rd ed., McGraw-Hill, Inc., (2002). [8] B. Scrosati, 'Lithium rocking chair batteries: An old concept,' Journal of The Electrochemical Society, 139, 2776-2781 (1992). [9] G. A. Nazri and G. Pistoia, Lithium batteries-Science and technology, Kluwer Academic Publishers, Boston (2004). [10] J. M. Tarascon, and M. Armand, 'Issues and challenges facing rechargeable lithium batteries,' Nature, 414, 359-367 (2001). [11] M. S. Whittingham, 'Electrical energy storage and intercalation chemistry,' Science, 192, 1126-1127 (1976). [12] D. W. Murphy, J. Broadhead, and B. C. H. Steele, Materials for advanced batteries, New York, p. Plenum Press (1980). [13] D. W. Murphy, F. J. Disalvo, J. N. Carides, and J. V. Waszczak, 'Topochemical reactions of rutile related structures with lithium,' Materials Research Bulletin, 13, 1395-1402 (1978). [14] M. Lazzari, and B. Scrosati, 'Cyclable lithium organic electrolyte cell based on two intercalation electrodes,' Journal of The Electrochemical Society, 127, 773-774 (1980). [15] T. Nagaura and K. Tozawa, 'Lithium ion rechargeable battery,' Progress in batteries and solar cells, 9, 209 (1990). [16] P. Vashishta, J. N. Mundy, and G. K. Shenoy, Fast ion transport in solid: electrodes, and electrolytes - Conference proceedings, North Holland, New York, p. 131-136 (1979). [17] I. E. Kelly, J. R. Owen, and B. C. H. Steele, 'Poly(ethylene oxide) electrolytes for operation at near room-temperature,' Journal of Power Sources, 14, 13-21 (1985). [18] J. M. Tarascon, A. S. Gozdz, C. Schmutz, F. Shokoohi, and P. C. Warren, 'Performance of Bellcore's plastic rechargeable Li-ion batteries,' Solid State Ionics, 86-8, 49-54 (1996). [19] J. B. Goodenough and Y. Kim, 'Challenges for rechargeable Li batteries,' Chemistry of Materials, 22, 587-603 (2010). [20] M. Ogasa, 'Energy saving and environmental measures in railway technologies: example with hybrid electric railway vehicles,' IEEJ Transactions on Electrical and Electronic Engineering, 3, 15-20 (2008). [21] R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, 'A review of advanced and practical lithium battery materials,' Journal of Materials Chemistry, 21, 9938-9954 (2011). [22] P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, 'Li-O2 and Li-S batteries with high energy storage,' Nature Materials, 11, 19-29 (2012). [23] C. Daniel and J. O. Besenhard, Handbook of battery materials, 2nd ed., John Wiley & Sons, Inc., (2011). [24] http://www.nissanusa.com/leaf-electric-car/specs-features/index#/leaf-electric-car/specs-features/index. [25] Y. Mikhaylik, I. Kovalev, J. Xu, and R. Schock, 'Rechargeable Li-S battery with specific energy 350 Wh/kg and specific power 3000 W/kg,' Transactions of the Electrochemical Society, 13, 53-59 (2008). [26] Y. Mikhaylik, I. Kovalev, R. Schock, K. Kumaresan, J. Xu, and J. Affinito, 'High energy rechargeable Li-S cells for EV application: Status, remaining problems, and solutions,' Transactions of the Electrochemical Society, 25, 23-34 (2010). [27] N. N. Greenwood and A. Earnshaw, Chemistry of the elements, 2nd ed., ButterwortheHeinemann, Oxford, UK, (1997). [28] R. F. Bacon and R. Fanelli, 'The viscosity of sulfur,' Journal of the American Chemical Society, 65, 639-648 (1943). [29] R. Steudel and B. Eckert, Solid sulfur allotropes, in: R. Steudel (Ed.), elemental sulfur and sulfur-rich compounds I, Springer, Verlag Berlin Heidelberg, Germany, (2003). [30] D. C. Hwang, Y. S. Choi, S. S. Choi, J. W. Lee, Y. J. Jung, and J. S. Kim, U.S. Patent 6852450 (2005). [31] R. D. Rauh, F. S. Shuker, J. M. Marston, and S. B. Brummer, 'Formation of lithium polysulfides in aprotic media,' Journal of Inorganic and Nuclear Chemistry, 39, 1761-1766 (1977). [32] A. Kamyshny, J. Gun, D. Rizkov, T. Voitsekovski, and O. Lev, 'Equilibrium distribution of polysulfide ions in aqueous solutions at different temperatures by rapid single phase derivatization,' Environmental Science & Technology, 41, 2395-2400 (2007). [33] S. S. Zhang, 'Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions,' Journal of Power Sources, 231, 153-162 (2013). [34] C. Barchasz, F. Molton, C. Duboc, J. C. Lepretre, S. Patoux, and F. Alloin, 'Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification,' Analytical Chemistry, 84, 3973-3980 (2012). [35] C. Barchasz, J. C. Lepretre, F. Alloin, and S. Patoux, 'New insights into the limiting parameters of the Li/S rechargeable cell,' Journal of Power Sources, 199, 322-330 (2012). [36] Y. Diao, K. Xie, S. Xiong, and X. Hong, 'Shuttle phenomenon-The irreversible oxidation mechanism of sulfur active material in Li-S battery,' Journal of Power Sources, 235, 181-186 (2013). [37] W. Li, G. Zheng, Y. Yang, Z. W. Seh, N. Liu, and Y. Cui, 'High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach,' Proceedings of the National Academy of Sciences, 110, 7148-7153 (2013). [38] S. S. Zhang, 'Binder based on polyelectrolyte for high capacity density lithium/sulfur battery,' Journal of The Electrochemical Society, 159, A1226-A1229 (2012). [39] J. Gao, M. A. Lowe, Y. Kiya, and H. D. Abruña, 'Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies,' The Journal of Physical Chemistry C, 115, 25132-25137 (2011). [40] Y. V. Mikhaylik, I. Kovalev, R. Schock, K. Kumaresan, J. Xu, and J. Affinito, 'High energy rechargeable Li-S cells for EV application. Status, Remaining Problems and Solutions,' ECS Transactions, 25, 23-34 (2010). [41] Y. Aihara, T. Bando, H. Nakagawa, H. Yoshida, K. Hayamizu, E. Akiba, and W. S. Price, 'Ion transport properties of six lithium salts dissolved in γ-butyrolactone studied by self-diffusion and ionic conductivity measurements,' Journal of The Electrochemical Society, 151, A119-A122 (2004). [42] X. Ji, K. T. Lee, and L. F. Nazar, 'A highly ordered nanostructured carbon-sulfur cathode for lithium-sulfur batteries,' Nature Materials, 8, 500-506 (2009). [43] H. Wang, J. T. Robinson, G. Diankov, and H. Dai, 'Nanocrystal growth on graphene with various degrees of oxidation,' Journal of the American Chemical Society, 132, 3270-3271 (2010). [44] H. Wang, L. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Liang, Y. Cui, and H. Dai, 'Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries,' Journal of the American Chemical Society, 132, 13978-13980 (2010). [45] J. Z. Wang, L. Lu, M. Choucair, J. A. Stride, X. Xu, and H. K. Liu, 'Sulfur-graphene composite for rechargeable lithium batteries,' Journal of Power Sources, 196, 7030-7034 (2011). [46] H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, and H. Dai, 'Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability,' Nano Letters, 11, 2644-2647 (2011). [47] G. He, X. Ji, and L. F. Nazar, 'High “C” rate Li-S cathodes: sulfur imbibed bimodal porous carbons,' Energy and Environmental Science, 4, 2878-2883 (2011). [48] N. Li, M. Zheng, H. Lu, Z. Hu, C. Shen, X. Chang, G. Ji, J. Cao, and Y. Shi, 'High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating,' Chemical Communications, 48, 4106-4108 (2012). [49] A. Manthiram, Y. Fu, and Y. S. Su, 'Challenges and prospects of lithium-sulfur batterie,' Accounts of Chemical Research, 46, 1125-1134 (2013). [50] B. Zhang, X. Qin, G. R. Li, and X. P. Gao, 'Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres,' Energy and Environmental Science, 3, 1531-1537 (2010). [51] J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, and L. F. Nazar, 'Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries,' Angewandte Chemie International Edition, 51, 3591-3595 (2012). [52] N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, and L. A. Archer, 'Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries,' Angewandte Chemie International Edition, 50, 5904-5908 (2011). [53] L. Ji, M. Rao, S. Aloni, L. Wang, E. J. Cairns, and Y. Zhang, 'Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells,' Energy and Environmental Science, 4, 5053-5059 (2011). [54] J. Guo, Y. Xu, and C. Wang, 'Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries,' Nano Letters, 11, 4288-4294 (2011). [55] S. C. Zhang, L. Zhang, W. K. Wang, and W. J. Xue, 'A novel cathode material based on polyaniline used for lithium/sulfur secondary battery,' Synthetic Metals, 160, 2041-2044 (2010). [56] L. F. Xiao, Y. L. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. M. Nie, G. J. Exarhos, and J. Liu, 'A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life,' Advanced Materials, 24, 1176-1181 (2012). [57] L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, and J. Liu, 'Molecular structures of polymer/sulfur composites for lithium-sulfur batteries with long cycle life,' Journal of Materials Chemistry A, 1, 9517-9526 (2013). [58] J. Wang, J. Chen, K. Konstantinov, L. Zhao, S. H. Ng, G. X. Wang, Z. P. Guo, and H. K. Liu, 'Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries,' Electrochimica Acta, 51, 4634-4638 (2006). [59] X. Liang, Y. Liu, Z. Wen, L. Huang, X. Wang, and H. Zhang, 'A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries,' Journal of Power Sources, 196, 6951-6955 (2011). [60] X. Liang, Z. Wen, Y. Liu, X. Wang, H. Zhang, M. Wu, and L. Huang, 'Preparation and characterization of sulfur-polypyrrole composites with controlled morphology as high capacity cathode for lithium batteries,' Solid State Ionics, 192, 347-350 (2011). [61] Y. Zhang, Z. Bakenov, Y. Zhao, A. Konarov, T. N. L. Doan, M. Malik, T. Paron, and P. Chen, 'One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries,' Journal of Power Sources, 208, 1-8 (2012). [62] L. Qiu, S. Zhang, L. Zhang, M. Sun, and W. Wang, 'Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries,' Electrochimica Acta, 55, 4632-4636 (2010). [63] F. Wu, S. Wu, R. Chen, J. Chen, and S. Chen, 'Sulfur-polythiophene composite cathode materials for rechargeable lithium batteries,' Electrochemical and Solid-State Letters, 13, A29-A31 (2010). [64] F. Wu, J. Chen, R. Chen, S. Wu, L. Li. S. Chen, and T. Zhao, 'Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries,' The Journal of Physical Chemistry C, 115, 6057-6063 (2011). [65] Y. Fu, Y. S. Su, and A. Manthiram, 'Sulfur-carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium-sulfur batteries,' ACS Applied Materials & Interfaces, 4, 6046-6052 (2012). [66] Y. Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. Bao, and Y. Cui, 'Improving the performance of lithium-sulfur batteries by conductive polymer coating,' ACS Nano, 11, 9187-9193 (2011). [67] G. G. Chen, G. S. Luo, J. H. Xu, and J. D. Wang, 'Membrane dispersion precipitation method to prepare nanopartials,' Powder Technology, 139, 180-185 (2004). [68] H. Chen, W. Dong, J. Ge, C. Wang, X. Wu, W. Lu, and L. Chen, 'Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries,' Scientific Reports, 3, 1910-1915 (2013). [69] L. Duan, J. Lu, W. Liu, P. Huang, W. Wang, and Z. Liu, 'Fabrication of conductive polymer-coated sulfur composite cathode materials based on layer-by-layer assembly for rechargeable lithium-sulfur batteries,' Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414, 98-103 (2012). [70] A. Gorkovenko, T. A. Skotheim, Z. S. Xu, L. I. Boguslavsky, Z. Deng, and S. P. Mukherjee, 'Cathodes comprising electroactive sulfur materials and secondary batteries using same,' US Patent, US6210831 (2001). [71] W. Zheng, X. G. Hu, and C. F. Zhang, 'Electrochemical properties of rechargeable lithium batteries with sulfur-containing composite cathode materials,' Electrochemical and Solid-State Letters, 9, A364-A367 (2006). [72] Y. J. Choi, B. S. Jung, D. J. Lee, J. H. Jeong, K. W. Kim, H. J. Ahn, K. K. Cho, and H. B. Gu, 'Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell,' Physica Scripta, T129, 62-65 (2007). [73] Y. Zhang, Z. Bakenov, Y. Zhao, A. Konarov, T. N. L. Doan, K. E. K. Sun, A. Yermukhambetova, and P. Chen, 'Effect of nanosized Mg0.6Ni0.4O prepared by self-propagating high temperature synthesis on sulfur cathode performance in Li/S batteries,' Powder Technology, 235, 248-255 (2013). [74] M. S. Song, S. C. Han, H. S. Kim, J. H. Kim, K. T. Kim, Y. M. Kang, H. J. Ahn, S. X. Dou, and J. Y. Lee, 'Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries,' Journal of The Electrochemical Society, 151, A791-A795 (2004). [75] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, 'Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores,' Science, 279, 548-552 (1998). [76] X. Ji, S. Evers, R. Black, and L. F. Nazar, 'Stabilizing lithium-sulphur cathodes using polysulphide reservoirs,' Nature Communications, 2, 325-332 (2011). [77] S. Evers, T. Yim, and L. F. Nazar, 'Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery,' The Journal of Physical Chemistry C, 116, 19653-19658 (2012). [78] Z. W. She, W. Li, J. J. Cha, G. Zhang, Y. Yang, M. T. McDowell, P. C. Hsu, and Y. Cui, 'Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries,' Nature Communications, 4, 1311-1317 (2013). [79] C. H. Wirguin, 'Recent advances in perfluorinated ionomer membranes: structure, properties and applications,' Journal of Membrane Science, 120, 1-33 (1996). [80] Z. Jin, K. Xie, X. Hong, Z. Hu, and X. Liu, 'Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells,' Journal of Power Sources, 218, 163-167 (2012). [81] Q. Tang, Z. Shan, L. Wang, X. Qin, K. Zhu, J. Tian, and X. Liu, 'Nafion coated sulfur-carbon electrode for high performance lithium-sulfur batteries,' Journal of Power Sources, 246, 253-259 (2014). [82] X. Ji, and L.F. Nazar, 'Advances in Li-S batteries,' Journal of Material Chemstry, 20, 9821-9826, (2010). [83] Y. V. Mikhaylik, 'Electrolytes for lithium sulfur cells,' US Patent, US 20080187840 A1 (2008). [84] D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C. S. Kelley, and J. Affinito, 'On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries,' Journal of The Electrochemical Society, 156, A694-A702 (2009). [85] X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin, H. Zhang, and X. Wu, 'Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte,' Journal of Power Sources, 196, 9839-9843 (2011). [86] S. S. Zhang, and J. A. Read, 'A new direction for the performance improvement of rechargeable lithium/sulfur batteries,' Journal of Power Sources, 200, 77-82 (2012). [87] S. S. Zhang, 'Role of LiNO3 in rechargeable lithium/sulfur battery,' Electrochemica Acta, 70, 344-348 (2012). [88] C. Barchasz, J. C. Lepretre, F. Alloin, and S. Patoux, 'New insights into the limiting parameters of the Li/S rechargeable cell,' Journal of Power Sources, 199, 322-330 (2012). [89] S. Seki, Y. Ohno, Y. Kobayashi, H. Miyashiro, A. Usami, Y. Mita, H. Tokuda, M. Watanabe, K. Hayamizu, S. Tsuzuki, M. Hattori, and N. Terada, 'Imidazolium-based room-temperature ionic liquid for lithium secondary batteries-effects of lithium salt concentration,' Journal of The Electrochemical Society, 154, A173-A177 (2007). [90] E. S. Shin, K. Kim, S. H. Oh, and W. I. Cho, 'Polysulfide dissolution control: the common ion effect,' Chemical Communications, 49, 2004-2006 (2013). [91] L. Suo, Y. S. Hu, H. Li, M. Armand, and L. Chen, 'A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries,' Nature Communications, 4, 1481-1489 (2013). [92] D. Aurbach, and Y. Cohen, 'The application of atomic force microscopy for the study of Li deposition processes,' Journal of The Electrochemical Society, 143, 3525-3532 (1996). [93] D. Aurbach, E. Zinigrad, Y. Cohen, and H. Teller, 'A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions,' Solid State Ionics, 148, 405-416 (2002). [94] Y. S. Nimon, M. Y. Chu, and S. J. Visco, 'Coated lithium electrodes,' US Patent, US6537701 B1 (2003). [95] B. Duan, W. Wang, H. Zhao, A. Wang, M. Wang, K. Yuan, Z. Yu, and Y. Yang, 'Li-B alloy as anode material for lithium/sulfur battery,' ECS Electrochemistry Letters, 2, A47-A51 (2013). [96] M. S. Zheng, J. J. Chen, and Q. F. Dong, 'The enhanced electrochemical performance of lithium/sulfur battery with protected lithium anode,' Advanced Materials Research, 476-478, 676-680 (2012). [97] S. S. Zhang, and D. T. Tran, 'A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density,' Journal of Power Sources, 211, 169-172 (2012). [98] Y. S. Su, and A. Manthiram, 'Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer,' Nature Communications, 3, 1166-1171 (2012). [99] N. A. Cañas, S. Wolf, N. Wagner, and K. A. Friedrich, 'In-situ X-ray diffraction studies of lithium-sulfur batteries,' Journal of Power Sources, 226, 313-319, (2013). [100] M. U. Patel, R. Drmir-Cakan, M. Morcrette, J. M. Tarascon, M. Gaberscek, and R. Dominko, 'Li-S battery analyzed by UV/Vis in operando mode,' ChemSusChem, 6, 1177-1181 (2013). [101] B. S. Kim, and S. M. Park, 'In situ spectroelectrochemical studies on the reduction of sulfur in dimethyl sulfoxide solutions,' Journal of The Electrochemical Society, 140, 115-122 (1993). [102] D. H. Han, B. S. Kim, S. J. Choi, Y. Jung, J. Kwak, and S. M. Park, 'Time-resolved in situ spectroelectrochemical study on reduction of sulfur in N,N’-dimethylformamide,' Journal of The Electrochemical Society, 151, E283-E290 (2004). [103] R. Dominko, R. Demir-Cakan, M. Morcrette, and J. M. Tarascon, 'Analytical detection of soluble polysulphides in a modified Swagelok cell,' Electrochemistry Communications, 13, 117-120 (2011). [104] R. D. Rauh, F. S. Shuker, J. M. Marston, and S. B. Brummer, 'Formation of lithium polysulfides in aprotic media,' Journal of Inorganic and Nuclear Chemistry, 39, 1761-1766 (1977). [105] Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, 'Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution,' Applied Physics Letters, 92 (2008). [106] Y. Liu, J. C. Andrews, J. Wang, F. Meirer, P. Zhu, Z. Wu, and P. Pianetta, 'Phase retrieval using polychromatic illumination for transmission x-ray microscopy,' Opt. Express, 19, 540-545 (2011). [107] S. C. Chao, Y. C. Yen, Y. F. Song, Y. M. Chen, H. C. Wu, and N. L. Wu, 'A study on the interior microstructures of working Sn particle electrode of Li-ion batteries by in situ X-ray transmission microscopy,' Electrochem. Commun., 12, 234-237 (2010). [108] S. C. Chao, Y. F. Song, C. C. Wang, H. S. Sheu, H. C. Wu, and N. L. Wu, 'Study on microstructural deformation of working Sn and SnSb anode particles for Li-Ion batteries by in situ transmission X-ray microscopy,' The Journal of Physical Chemistry C, 115, 22040-22047 (2011). [109] J. Wang, Y. K. Chen-Wiegart, and J. Wang, 'In situ chemical mapping of a lithium-ion battery using full-field hard X-ray spectroscopic imaging,' Chemical Communications, 49, 6480-6482 (2013). [110] W. C. Chen, Y. F. Song, C. C. Wang, Y. Liu, D. T. Morris, P. A. Pianetta, J. C. Andrews, H. C. Wu, and N. L. Wu, 'Study on synthesis-microstructure-performance relation of layered Li-excess nickel-manganese oxide as Li-ion battery cathode prepared by high-temperature calcination,' Journal of Materials Chemistry A, 1, 10847-10856 (2013). [111] M. Winter, and J. O. Besenhard, 'Electrochemical lithiation of tin and tin-based intermetallics and composites,' Electrochimica Acta, 45, 31-50 (1999). [112] H. Yamin, A. Gorenshtein, J. Penciner, Y. Sternberg, and E. Peled, 'Lithium sulfur battery oxidation/reduction mechanisms of polysulfides in THF solutions, ' Journal of The Electrochemical Society, 135, 1045-1048 (1988). [113] S. C. Chao, 'Study on microstructural deformation of working Sn-containing anode particles for lithium-ion batteries by in-situ transmission X-ray microscopy,' Ph. D. thesis, National Taiwan University (2012). [114] H. Yamin, J. Penciner, A. Gorenshtein, M. Elam, and E. Peled, 'The electrochemical behavior of polysulfides in tetrahydrofuran,' Journal of Power Sources, 14, 129-134 (1985). [115] J. K. Akridge, Y. V. Mikhaylik, and N. White, 'Li/S fundamental chemistry and application to high-performance rechargeable batteries,' Solid State Ionics, 175, 243-245 (2004). [116] Y. Diao, K. Xie, S. Xiong, X. Hong, 'Analysis of polysulfide dissolved in electrolyte in discharge-charge process of Li-S battery,' Journal of The Electrochemical Society, 159, A421-A425 (2012). [117] J. O. Besenhard, J. Yang, and M. Winter, 'Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?' Journal of Power Sources, 68, 87-90 (1997). [118] W. R. Liu, N. L. Wu, D. T. Shieh, H. C. Wu, M. H. Yang, C. Korepp, J. O. Besenhard, and M. Winter, 'Synthesis and characterization of nanoporous NiSi-Si composite anode for lithium-ion batteries,' Journal of The Electrochemical Society, 154, A97-A102 (2007). [119] S. K. Dishari, and M. A. Hickner, 'Confinement and proton transfer in NAFION thin films,' Macromolecules, 46, 413-421 (2013). [120] L. Peter, and J. Arai, 'Anodic dissolution of aluminium in organic electrolytes containing perfluoroalkylsulfonyl imides,' Journal of Applied Electrochemistry, 29, 1053-1061 (1999). [121] L. J. Krause, W. Lamanna, J. Summerfield, M. Engle, G. Korba, R. Loch, and R. Atanasoski, 'Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells,' Journal of Power Sources, 68, 320-325 (1997). [122] H. Yang, K. Kwon, T. M. Devine, and J. W. Evans, 'Aluminum corrosion in lithium batteries an investigation using the electrochemical quartz crystal microbalance,' Journal of The Electrochemical Society, 147, 4399-4407 (2000). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58559 | - |
dc.description.abstract | 在二十一世紀社會中,電能的貯存是生活必需之一。鋰離子電池已經成功地證明可應用在大規模能量貯存。因此,尋求下一代可提供高能密度且便宜之新系統電池顯得更為重要。鋰硫電池極有潛力作為高能蓄電池的電化學系統之一。在這個研究計畫中探討鋰硫電池中硫電極之型態變化、電極材料之修飾及電解液對電池效能之影響。
首先,透過臨場穿透式X光顯微技術觀察鋰硫電池在整個電化學充/放電過程中,其中間產物-多硫化鋰之溶解與再沉積現象並以定量之模式進行研究。由實驗結果中發現多硫化鋰在碳-硫複合物上的溶解與再沉積造就了各式各樣的硫形態,這同時也使得活物密度的變化不定,且絕大多數的硫顆粒變成Li2S4後均溶解消失。從溶解和再沉積的動力學結果顯示溶解速率常數與顆粒大小、電位及電化學操作模式息息相關。在鋰遷出過程中,硫或多硫化鋰的再沉積受到在碳表面成核之限制,導致硫顆粒在再成長過程中的凝聚與聚集。因此從這些觀察中討論設計一高循環穩定性的鋰硫電池。 再者,利用液相混合法將Nafion高分子均勻批覆於S-pearl奈米複合物表面,將此複合體當做鋰硫電池之正極材料。經過50圈不同充/放電速率測試,最後在0.2C rate下仍保有930 mAh g-1之可逆電容量,且在1C rate較高充/放電速率下還保有80%之電容量,此複合材料改善了鋰硫電池之循環性能及庫倫效率。利用臨場穿透式X光顯微技術觀察電極中純硫顆粒和經Nafion高分子批覆之硫顆粒在鋰嵌入過程中形態變化。由結果發現經Nafion高分子批覆之硫顆粒形成一核-殼之結構,不但允許鋰離子之傳送且抑制了多硫化鋰在電解液中之傳遞。從臨場穿透式X光顯微技術結果顯示Nafion高分子層能有效地減少多硫化鋰在正負極間的穿梭且提升了電極之穩定性和可逆性。 最後,本研究亦注重鋰硫電池中電解液之鋰鹽濃度影響,因為液態電解液在鋰離子電池中扮演極重要之角色。在吾人研究中利用2.5M較高濃度鋰鹽當做電解液,由實驗結果證實經過50圈充/放電循環測試,仍保有1000 mAh g-1之電容量,與第一圈相比約具有80%之可逆電容量可供使用。另外,透過多硫化鋰在不同鋰鹽濃度電解液中之擴散實驗,驗證高濃度鋰鹽電解液有抑制多硫化鋰擴散之能力,減緩多硫化鋰在正負極間之穿梭。同時在臨場穿透式X光顯微技術下也觀察到在高濃度鋰鹽電解液中硫/多硫化鋰有較慢之溶解現象發生。所以使用高濃度鋰鹽電解液在鋰硫電池中,不但抑制多硫化鋰之溶解且改善多硫化鋰之穿梭現象發生。因此得到具有高循環壽命且保有100%庫倫效率之鋰硫電池。 | zh_TW |
dc.description.abstract | Electrical energy storage is one of the most critical needs of 21st century society. Li-ion batteries have proven successful in large-scale energy storage. Therefore, new systems are being sought for the next-generation batteries to provide much higher energy density, and reduce cost factors. The lithium-sulfur (Li-S) battery is a promising electrochemical system as a high-energy secondary battery. This study aims at significantly raising the process efficiency from the viewpoints of morphology changing, decoration of the electrode material and influence of electrolyte in Li-S battery.
First, the dynamics of lithium polysulfide dissolution and re-deposition during electrochemical charge/discharge of the Li-S cell has for the first time been revealed in a quantitative manner based on in-operando transmission X-ray microscopy (TXM) analysis. Extensive dimensional variations of S particles have been observed on an S-carbon composite electrode to mainly result from polysulfide dissolution/re-deposition, which obscures the effect of lithiation-induced density change. Essential all S particles dissolve when turning into Li2S4. The kinetics of both dissolution and re-deposition are shown to follow classical dissolution theory with the rate constants exhibiting strong dependence on particle size, potential and electrochemical operation mode. S/polysulfide re-deposition upon de-lithiation is found to be nucleation-limited on carbon surface, leading to considerable particle growth and aggregation of the S-containing active mass. The implications of these observations on the designing of Li-S cell with enhanced cycling stability are discussed. Moreover, a novel composite consisting of sulfur-pearl (S-P) nanocomposite particles coating with a Nafion polymer film was prepared via a liquid mixing method as a cathode material for Li-S batteries. The reversible capacity of 930 mAh g-1 at 0.2C rate after being continuously cycled for 50 cycles at various rates, compared with higher rate of 1C, which also contents 80 % capacity retention. It also improves the cycle performance and Coulombic efficiency of Li-S cell. The dynamics of S and Nafion-coated S during electrochemical lithiation of Li-S cell have for the first time been revealed by in-operando TXM analysis. The Nafion polymer coated exhibits a containing core-shell interior structure that not only allows penetration of lithium ions transmission but also effectively prevents polysulfide anions transporting in the electrolyte. It is demonstrated from an in-operando measurements that the Nafion layer is quite effective in reducing shuttle effect and enhancing the stability and the reversibility of the electrode. Finally, the lithium salt concentration in liquid electrolyte of Li-S battery also researched, because liquid electrolyte plays an important role in commercial lithium-ion batteries to allow conduction of lithium-ion between cathode and anode. Using 2.5 M lithium salt concentration electrolyte in our research, it maintains a reversible capacity of 1000 mAh g-1 with capacity retention of 80 % after 50 cycles. From diffusion experiment, it shows the lithium polysulfide diffusion rate in high salt concentration electrolyte slower than in low one. The S/polysulfide dissolution also restrain in high salt concentration electrolyte. The advantage of high salt concentration electrolyte is further demonstrated that lithium polysulfide dissolution is inhibited, thus overcoming the polysulfide shuttle phenomenon. Consequently, a Coulombic efficiency nearing 100% and long cycling stability are achieved. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:19:53Z (GMT). No. of bitstreams: 1 ntu-103-D98524016-1.pdf: 9414010 bytes, checksum: 1e653d33ac3392fffd6f1dfc8d5c318c (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 致謝 I
摘要 III Abstract V Table of Contents VII List of Tables XI List of Figures XIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and Objectives 2 Chapter 2 Theory and Literature Review 5 2.1 Lithium-ion Batteries 5 2.1.1 Basic Concepts of Lithium-ion Batteries 5 2.1.2 Historical Developments of Lithium-ion Batteries 8 2.2 Lithium-Sulfur Batteries 11 2.2.1 Introduction to Li-S Batteries 11 2.2.2 Fundamental Chemistry of Li-S Batteries 14 2.2.3 Problems for Li-S Battery’s Materials 21 2.3 Advances in Li-S Batteries 25 2.3.1 Sulfur-Carbon Composite Cathodes 25 2.3.2 Sulfur-Conducting Polymer Composites 33 2.3.3 Metal Oxide Used for Trapping 35 2.3.4 Cation Exchange Film 39 2.3.5 Electrolyte Modification 41 2.3.6 Protection of Lithium Anode 45 2.3.7 Double-layer Structural Cathode 46 2.4 Introduction to In-operando Analytical in Li-S Batteries 48 2.4.1 In-operando X-ray Diffraction 49 2.4.2 In-operando UV/Vis Spectroscopy 52 2.4.3 In-operando Transmission X-ray Microscopy 55 Chapter 3 Experimental 59 3.1 Instruments 59 3.2 Materials and Chemicals 61 3.3 Preparation of Cathode Materials 63 3.3.1 Synthesis of Sulfur-Pearl Nanocomposite 63 3.3.2 Synthesis of Nafion-Coated Active Materials 63 3.4 Preparation of Electrolyte 67 3.4.1 Synthesis of General Electrolyte 67 3.4.2 Synthesis of Lithium Polysulfide Solution 67 3.5 Analyses and Characterizations 69 3.5.1 Thermo-Gravimetric Analyze 69 3.5.2 Scanning Electron Microscopy 69 3.5.3 Transmission Electron Microscopy 69 3.5.4 High-Performance Liquid Chromatography 70 3.5.5 Surface Area and Pore Structure Analyses 70 3.5.6 Elemental Analysis 71 3.6 Electrochemical Characterizations 73 3.6.1 Preparation of Electrodes 73 3.6.2 Preparation of Electrodes for Synchrotron Analyses 73 3.6.3 Electrochemical Tests 74 3.6.4 Electrochemical Tests for Synchrotron Analyses 74 3.7 In-operando Transmission X-ray Microscopy Analysis 77 Chapter 4 Understanding Dynamics of Polysulfide Dissolution and Re-deposition in Working Li-S Battery by In-Operando Transmission X-Ray Microscopy 79 4.1 Introduction 79 4.2 Control Studies for TXM 81 4.3 Dynamics of the Dissolution Process 83 4.4 Dynamics of the Re-deposition Process 88 4.5 Summary 94 Chapter 5 Nafion-Coated Active Materials Prepared for Use in Li-S Batteries 95 5.1 Introduction 95 5.2 Nafion Coating on Separators 97 5.3 Nafion Coating on S-P Nanocomposites 101 5.4 Microstructure of S and Nafion-coated S Particles in Working Electrodes 112 5.5 Kinetics of S/PS Dissolution 118 5.6 Summary 121 Chapter 6 Shuttle Inhibitor Effect of Lithium-Salt Concentration in Li-S Batteries 123 6.1 Introduction 123 6.2 Electrochemical Performance of Various Electrolytes 125 6.3 Lithium Polysulfide Behavior in Electrolytes Containing Lithium Salt at Various Concentrations 132 6.4 Dynamics of Lithium Polysulfide Dissolution in Electrolytes Containing Various Concentrations of Lithium Salt 135 6.5 Summary 141 Chapter 7 Effect of the Current Collector 143 7.1 Introduction 143 7.2 Electrochemical Performance of Li-S Batteries Featuring Carbon-TiO2 Composite Multilayer Electrodes 145 7.3 Summary 150 Chapter 8 Conclusions 151 References 153 Appendix A 169 Publication List 177 | |
dc.language.iso | en | |
dc.title | 高性能鋰硫電池之製備與分析 | zh_TW |
dc.title | Synthesis and Characterization of High Performance Lithium Sulfur Batteries | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 顏溪成,徐振哲,宋艷芳,蔡麗端,方家振 | |
dc.subject.keyword | 鋰硫電池,臨場分析,穿透式X光顯微技術,Nafion高分子,電解液, | zh_TW |
dc.subject.keyword | Li-S batteries,In-operando analysis,Transmission X-ray microscopy,Nafion,Electrolyte, | en |
dc.relation.page | 179 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-02-07 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 9.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。