Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58558
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳紀聖
dc.contributor.authorChi-Hung Liaoen
dc.contributor.author廖啟宏zh_TW
dc.date.accessioned2021-06-16T08:19:51Z-
dc.date.available2014-03-08
dc.date.copyright2014-03-08
dc.date.issued2014
dc.date.submitted2014-02-06
dc.identifier.citation1. S. Solomon, G. K. Plattner, R. Knutti and P. Friedlingstein, Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America, 106 (2009) 1704-1709.
2. R. d. Primio, B. Horsfield and M. A. Guzman-Vega, Determining the temperature of petroleum formation from the kinetic properties of petroleum asphaltenes. Nature, 406 (2000) 173-176.
3. L. Chiari and A. Zecca, Constraints of fossil fuels depletion on global warming projections. Energy Policy, 39 (2011) 5026-5034.
4. F. Dincer, The analysis on wind energy electricity generation status, potential and policies in the world. Renewable & Sustainable Energy Reviews, 15 (2011) 5135-5142.
5. I. Yuksel, Hydropower for sustainable water and energy development. Renewable & Sustainable Energy Reviews, 14 (2010) 462-469.
6. B. Parida, S. Iniyan and R. Goic, A review of solar photovoltaic technologies. Renewable & Sustainable Energy Reviews, 15 (2011) 1625-1636.
7. W. T. Xie, Y. J. Dai, R. Z. Wang and K. Sumathy, Concentrated solar energy applications using Fresnel lenses: A review. Renewable & Sustainable Energy Reviews, 15 (2011) 2588-2606.
8. E. Barbier, Geothermal energy technology and current status: an overview. Renewable & Sustainable Energy Reviews, 6 (2002) 3-65.
9. A. Midilli, M. Ay, I. Dincer and M. A. Rosen, On hydrogen and hydrogen energy strategies I: current status and needs. Renewable & Sustainable Energy Reviews, 9 (2005) 255-271.
10. K. H. Hou and R. Hughes, The kinetics of methane steam reforming over a Ni/alpha-Al2O catalyst. Chemical Engineering Journal, 82 (2001) 311-328.
11. J. Nowotny, C. C. Sorrell, L. R. Sheppard and T. Bak, Solar-hydrogen: Environmentally safe fuel for the future. International Journal of Hydrogen Energy, 30 (2005) 521-544.
12. S. Czernik, R. Evans and R. French, Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil. Catalysis Today, 129 (2007) 265-268.
13. M. Ni, D. Y. C. Leung, M. K. H. Leung and K. Sumathy, An overview of hydrogen production from biomass. Fuel Processing Technology, 87 (2006) 461-472.
14. A. Steinfeld, Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. International Journal of Hydrogen Energy, 27 (2002) 611-619.
15. I. Akkerman, M. Janssen, J. Rocha and R. H. Wijffels, Photobiological hydrogen production: photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy, 27 (2002) 1195-1208.
16. D. Das and T. N. Veziroglu, Advances in biological hydrogen production processes. International Journal of Hydrogen Energy, 33 (2008) 6046-6057.
17. Y. F. Guan, M. C. Deng, X. J. Yu and W. Zhang, Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochemical Engineering Journal, 19 (2004) 69-73.
18. J. N. Armor, Addressing the CO2 dilemma. Catalysis Letters, 114 (2007) 115-121.
19. K. Maeda and K. Domen, New non-oxide photocatalysts designed for overall water splitting under visible light. Journal of Physical Chemistry C, 111 (2007) 7851-7861.
20. S. U. M. Khan, M. Al-Shahry and W. B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 297 (2002) 2243-2245.
21. T. Bak, J. Nowotny, M. Rekas and C. C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. International Journal of Hydrogen Energy, 27 (2002) 991-1022.
22. Z. B. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner and H. N. Dinh, Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. Journal of Materials Research, 25 (2010) 3-16.
23. A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 38 (2009) 253-278.
24. A. Kudo, H. Kato and I. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting. Chemistry Letters, 33 (2004) 1534-1539.
25. Y. X. Li, G. X. Lu and S. B. Li, Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy. Chemosphere, 52 (2003) 843-850.
26. S. G. Lee, S. Lee and H. I. Lee, Photocatalytic production of hydrogen from aqueous solution containing CN- as a hole scavenger. Applied Catalysis a-General, 207 (2001) 173-181.
27. K. Sayama and H. Arakawa, Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt-TiO2 catalyst. Journal of the Chemical Society-Faraday Transactions, 93 (1997) 1647-1654.
28. K. Sayama and H. Arakawa, Photocatalytic decomposition of water and photocatalytic reduction of carbon-dioxide over ZrO2 catalyst. Journal of Physical Chemistry, 97 (1993) 531-533.
29. V. Subramanian, E. E. Wolf and P. V. Kamat, Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. Journal of the American Chemical Society, 126 (2004) 4943-4950.
30. G. R. Bamwenda, S. Tsubota, T. Nakamura and M. Haruta, Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 89 (1995) 177-189.
31. M. Murdoch, G. I. N. Waterhouse, M. A. Nadeem, J. B. Metson, M. A. Keane, R. F. Howe, J. Llorca and H. Idriss, The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nature Chemistry, 3 (2011) 489-492.
32. M. Anpo and M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis, 216 (2003) 505-516.
33. A. Merlen, V. Gadenne, J. Romann, V. Chevallier, L. Patrone and J. C. Valmalette, Surface enhanced Raman spectroscopy of organic molecules deposited on gold sputtered substrates. Nanotechnology, 20 (2009)
34. A. Primo, A. Corma and H. Garcia, Titania supported gold nanoparticles as photocatalyst. Physical Chemistry Chemical Physics, 13 (2011) 886-910.
35. A. Primo, T. Marino, A. Corma, R. Molinari and H. Garcia, Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2 Obtained by a Biopolymer Templating Method (vol 133, pg 6930, 2011). Journal of the American Chemical Society, 134 (2012) 1892-1892.
36. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida and T. Watanabe, A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide. Journal of the American Chemical Society, 130 (2008) 1676-1680.
37. E. Kowalska, R. Abe and B. Ohtani, Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis. Chemical Communications, (2009) 241-243.
38. C. Gomes Silva, R. Juarez, T. Marino, R. Molinari and H. Garcia, Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. Journal of the American Chemical Society, 133 (2011) 595-602.
39. K. Gurunathan, P. Maruthamuthu and M. V. C. Sastri, Photocatalytic hydrogen production by dye-sensitized Pt/SnO2 and Pt/SnO2/RuO2 in aqueous methyl viologen solution. International Journal of Hydrogen Energy, 22 (1997) 57-62.
40. M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews, 11 (2007) 401-425.
41. D. Jing and L. Guo, WS2 sensitized mesoporous TiO2 for efficient photocatalytic hydrogen production from water under visible light irradiation. Catalysis Communications, 8 (2007) 795-799.
42. G. Sauve, M. E. Cass, G. Coia, S. J. Doig, I. Lauermann, K. E. Pomykal and N. S. Lewis, Dye sensitization of nanocrystalline titanium dioxide with osmium and ruthenium polypyridyl complexes. Journal of Physical Chemistry B, 104 (2000) 6821-6836.
43. Y. S. Chen, C. Li, Z. H. Zeng, W. B. Wang, X. S. Wang and B. W. Zhang, Efficient electron injection due to a special adsorbing group's combination of carboxyl and hydroxyl: dye-sensitized solar cells based on new hemicyanine dyes. Journal of Materials Chemistry, 15 (2005) 1654-1661.
44. C. P. Chen, X. Y. Qi and B. M. Zhou, Photosensitization of colloidal TiO2 with a cyanine dye. Journal of Photochemistry and Photobiology a-Chemistry, 109 (1997) 155-158.
45. W. Chu, K. H. Chan, C. T. Jafvert and Y. S. Chan, Removal of phenylurea herbicide monuron via riboflavin-mediated photo sensitization. Chemosphere, 69 (2007) 177-183.
46. Z. L. Jin, X. J. Zhang, Y. X. Li, S. B. Li and G. X. Lu, 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catalysis Communications, 8 (2007) 1267-1273.
47. W. Choi, A. Termin and M. R. Hoffmann, The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. The Journal of Physical Chemistry, 98 (1994) 13669-13679.
48. M. I. Litter, Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 23 (1999) 89-114.
49. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293 (2001) 269-271.
50. R. Abe, T. Takata, H. Sugihara and K. Domen, Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3-/I- shuttle redox mediator. Chemical Communications, (2005) 3829-3831.
51. K. Kobayakawa, Y. Murakami and Y. Sato, Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea. Journal of Photochemistry and Photobiology A: Chemistry, 170 (2005) 177-179.
52. M. Mrowetz, W. Balcerski, A. J. Colussi and M. R. Hoffmann, Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. Journal of Physical Chemistry B, 108 (2004) 17269-17273.
53. G. R. Torres, T. Lindgren, J. Lu, C.-G. Granqvist and S.-E. Lindquist, Photoelectrochemical Study of Nitrogen-Doped Titanium Dioxide for Water Oxidation. The Journal of Physical Chemistry B, 108 (2004) 5995-6003.
54. F. K. Kitano M, Matsuoka M, Ueshima M, Anpo M., Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. J Phys Chem B, 110 (2006) 25266-25272.
55. K. Domen, A. Kudo, T. Onishi, N. Kosugi and H. Kuroda, Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts. The Journal of Physical Chemistry, 90 (1986) 292-295.
56. A. Kudo, H. Kato and S. Nakagawa, Water Splitting into H2 and O2 on New Sr2M2O7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures: Factors Affecting the Photocatalytic Activity. The Journal of Physical Chemistry B, 104 (1999) 571-575.
57. H. Kato and A. Kudo, New tantalate photocatalysts for water decomposition into H-2 and O-2. Chemical Physics Letters, 295 (1998) 487-492.
58. J. Sato, N. Saito, H. Nishiyama and Y. Inoue, Photocatalytic Activity for Water Decomposition of Indates with Octahedrally Coordinated d10 Configuration. I. Influences of Preparation Conditions on Activity. The Journal of Physical Chemistry B, 107 (2003) 7965-7969.
59. K. Sayama, H. Arakawa and K. Domen, Photocatalytic water splitting on nickel intercalated A(4)Ta(x)Nb(6-x)O(17) (A=K, Rb). Catalysis Today, 28 (1996) 175-182.
60. C. J. Chen, C. H. Liao, K. C. Hsu, Y. T. Wu and J. C. S. Wu, P-N junction mechanism on improved NiO/TiO2 photocatalyst. Catalysis Communications, 12 (2011) 1307-1310.
61. J. Nayak, S. N. Sahu, J. Kasuya and S. Nozaki, CdS–ZnO composite nanorods: Synthesis, characterization and application for photocatalytic degradation of 3,4-dihydroxy benzoic acid. Applied Surface Science, 254 (2008) 7215-7218.
62. S. Yamada, A. Y. Nosaka and Y. Nosaka, Fabrication of US photoelectrodes coated with titania nanosheets for water splitting with visible light. Journal of Electroanalytical Chemistry, 585 (2005) 105-112.
63. K. R. Gopidas, M. Bohorquez and P. V. Kamat, Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems. The Journal of Physical Chemistry, 94 (1990) 6435-6440.
64. Y. Sasaki, A. Iwase, H. Kato and A. Kudo, The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation. Journal of Catalysis, 259 (2008) 133-137.
65. K. Fujihara, T. Ohno and M. Matsumura, Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles. Journal of the Chemical Society, Faraday Transactions, 94 (1998) 3705-3709.
66. K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa, A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. Journal of Photochemistry and Photobiology a-Chemistry, 148 (2002) 71-77.
67. M. Higashi, R. Abe, T. Takata and K. Domen, Photocatalytic Overall Water Splitting under Visible Light Using ATaO2N (A = Ca, Sr, Ba) and WO3 in a IO3−/I− Shuttle Redox Mediated System. Chemistry of Materials, 21 (2009) 1543-1549.
68. H. Kato, M. Hori, R. Konta, Y. Shimodaira and A. Kudo, Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation. Chemistry Letters, 33 (2004) 1348-1349.
69. A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238 (1972) 37-38.
70. M. S. Wrighton, A. B. Ellis, P. T. Wolczanski, D. L. Morse, H. B. Abrahamson and D. S. Ginley, Strontium-titanate photoelectrodes- efficient photoassisted electrolysis of water at zero applied potential. Journal of the American Chemical Society, 98 (1976) 2774-2779.
71. H. Y. Ki and H. K. Tae, Photoeffects in undoped and doped SrTiO3 ceramic electrodes. Journal of Solid State Chemistry, 67 (1987) 359-363.
72. M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo and J. M. Thomas, Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production. Catalysis Today, 122 (2007) 51-61.
73. E. Selli, G. L. Chiarello, E. Quartarone, P. Mustarelli, I. Rossetti and L. Forni, A photocatalytic water splitting device for separate hydrogen and oxygen evolution. Chemical Communications, (2007) 5022-5024.
74. M. Kitano, M. Takeuchi, M. Matsuoka, J. A. Thomas and M. Anpo, Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts. Catalysis Today, 120 (2007) 133-138.
75. M. Kitano, K. Tsujimaru and M. Anpo, Decomposition of water in the separate evolution of hydrogen and oxygen using visible light-responsive TiO2 thin film photocatalysts: Effect of the work function of the substrates on the yield of the reaction. Applied Catalysis A: General, 314 (2006) 179-183.
76. R. Tode, A. Ebrahimi, S. Fukumoto, K. Iyatani, M. Takeuchi, M. Matsuoka, C. H. Lee, C. S. Jiang and M. Anpo, Photocatalytic Decomposition of Water on Double-Layered Visible Light-Responsive TiO2 Thin Films Prepared by a Magnetron Sputtering Deposition Method. Catalysis Letters, 135 (2010) 10-15.
77. C. W. Huang, C. H. Liao, J. C. S. Wu, Y. C. Liu, C. L. Chang, C. H. Wu, M. Anpo, M. Matsuoka and M. Takeuchi, Hydrogen generation from photocatalytic water splitting over TiO2 thin film prepared by electron beam-induced deposition. International Journal of Hydrogen Energy, 35 (2010) 12005-12010.
78. Y.-T. Liao, C.-W. Huang, C.-H. Liao, J. C. S. Wu and K. C. W. Wu, Synthesis of mesoporous titania thin films (MTTFs) with two different structures as photocatalysts for generating hydrogen from water splitting. Applied Energy, 100 (2012) 75-80.
79. M. Matsuoka, M. Kitano, S. Fukumoto, K. Iyatani, M. Takeuchi and M. Anpo, The effect of the hydrothermal treatment with aqueous NaOH solution on the photocatalytic and photoelectrochemical properties of visible light-responsive TiO2 thin films. Catalysis Today, 132 (2008) 159-164.
80. C.-C. Lo, C.-W. Huang, C.-H. Liao and J. C. S. Wu, Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting. International Journal of Hydrogen Energy, 35 (2010) 1523-1529.
81. S. C. Yu, C. W. Huang, C. H. Liao, J. C. S. Wu, S. T. Chang and K. H. Chen, A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting. Journal of Membrane Science, 382 (2011) 291-299.
82. G. Prasad, K. S. C. Babu and O. N. Srivastava, Structural and photoelectrochemical studies of In2O3-TiO2 and WSe2 photoelectrodes for photoelectrochemical production of hydrogen. International Journal of Hydrogen Energy, 14 (1989) 537-544.
83. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch, Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting (Reprinted from J. Phys. Chem. B, vol 104, pg 8920-8924, 2000). International Journal of Hydrogen Energy, 26 (2001) 653-659.
84. O. Khaselev and J. A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science, 280 (1998) 425-427.
85. O. Khaselev, A. Bansal and J. A. Turner, High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. International Journal of Hydrogen Energy, 26 (2001) 127-132.
86. E. L. Miller, R. E. Rocheleau and S. Khan, A hybrid multijunction photoelectrode for hydrogen production fabricated with amorphous silicon/germanium and iron oxide thin films. International Journal of Hydrogen Energy, 29 (2004) 907-914.
87. G. Peharz, F. Dimroth and U. Wittstadt, Solar hydrogen production by water splitting with a conversion efficiency of 18%. International Journal of Hydrogen Energy, 32 (2007) 3248-3252.
88. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch, Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. Journal of Physical Chemistry B, 104 (2000) 8920-8924.
89. C.-W. Huang, C.-H. Liao, C.-H. Wu and J. C. S. Wu, Photocatalytic water splitting to produce hydrogen using multi-junction solar cell with different deposited thin films. Solar Energy Materials and Solar Cells, 107 (2012) 322-328.
90. C.-H. Liao, C.-W. Huang and J. C. S. Wu, Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting. Catalysts, 2 (2012) 490-516.
91. C.-H. Liao, C.-W. Huang and J. C. S. Wu, Novel dual-layer photoelectrode prepared by RF magnetron sputtering for photocatalytic water splitting. International Journal of Hydrogen Energy, 37 (2012) 11632-11639.
92. U. Office of Energy Efficiency & Renewable Energy, Hydrogen production-www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/production.pdf.
93. W. W. So, K. J. Kim and S. J. Moon, Photo-production of hydrogen over the CdS-TiO2 nano-composite particulate films treated with TiCl4. International Journal of Hydrogen Energy, 29 (2004) 229-234.
94. H. Kikuchi, M. Kitano, M. Takeuchi, M. Matsuoka, M. Anpo and P. V. Kamat, Extending the Photoresponse of TiO2 to the Visible Light Region:  Photoelectrochemical Behavior of TiO2 Thin Films Prepared by the Radio Frequency Magnetron Sputtering Deposition Method. The Journal of Physical Chemistry B, 110 (2006) 5537-5541.
95. M. Kitano, M. Takeuchi, M. Matsuoka, J. M. Thomas and M. Anpo, Preparation of visible light-responsive TiO2 thin film photocatalysts by an RF magnetron sputtering deposition method and their photocatalytic reactivity. Chemistry Letters, 34 (2005) 616-617.
96. D. Depla, S. Mahieu and J. E. Greene, Chapter 5 - Sputter Deposition Processes, in Handbook of Deposition Technologies for Films and Coatings (Third Edition), M. M. Peter, Editor. 2010, William Andrew Publishing: Boston. 253-296.
97. D. M. Mattox, Chapter 7 - Physical Sputtering and Sputter Deposition (Sputtering), in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition). 2010, William Andrew Publishing: Boston. 237-286.
98. M. Kitano, M. Matsuoka, M. Ueshima and M. Anpo, Recent developments in titanium oxide-based photocatalysts. Applied Catalysis a-General, 325 (2007) 1-14.
99. B. Marsen, E. L. Miller, D. Paluselli and R. E. Rocheleau, Progress in sputtered tungsten trioxide for photoelectrode applications. International Journal of Hydrogen Energy, 32 (2007) 3110-3115.
100. W. C. Shih, T. L. Wang, M. H. Chiang and M. S. Wu, Preparation and characterization of highly c-axis textured MgO buffer layer grown on Si(100) substrate by RF magnetron sputtering for use as growth template of ferroelectric thin film. Journal of Materials Science-Materials in Electronics, 22 (2011) 430-436.
101. Wiki, Stylus Profiler-http://en.wikipedia.org/wiki/Profilometer.
102. B. D. Cullity and S. R. Stock, Elements of x-ray diffraction. 3rd edition, Prentice Hall, New Jersey, 2001.
103. D. A. Skoog, F. J. Holler and S. R. Crouch, Chap. 14: Applications of Ultraviolet/Visible Molecular Absorption Spectrometry-Principles of Instrumental Analysis. 6th edition, Brooks Cole, 2006.
104. S. L. Sarkar, X. Aimin and D. Jana, 7 - Scanning Electron Microscopy, X-Ray Microanalysis of Concretes, in Handbook of Analytical Techniques in Concrete Science and Technology, V. S. Ramachandran and J. B. James, Editors. 2001, William Andrew Publishing: Norwich, NY. 231-274.
105. S. Amelinckx, D. van Dyck, J. van Landuyt and G. van Tendeloo, Scanning Beam Methods, in Electron Microscopy. 2007, Wiley-VCH Verlag GmbH. 305-497.
106. Wiki, Energy-dispersive X-ray spectroscopy-http://en.wikipedia.org/wiki/File: EDX-scheme.svg.
107. B. D. Ratner and D. G. Castner, Electron Spectroscopy for Chemical Analysis, in Surface Analysis – The Principal Techniques. 2009, John Wiley & Sons, Ltd. 47-112.
108. H. Holscher, J. Falter and A. Schirmeisen, Atomic Force Microscopy and Spectroscopy, in Characterization of Materials. 2002, John Wiley & Sons, Inc.
109. Wiki, Atomic Force Microscopy-http://en.wikipedia.org/wiki/Atomic_force_ microscopy.
110. D. A. Skoog, F. J. Holler and S. R. Crouch, Chap. 27: Gas Chromatography-Principles of Instrumental Analysis. 6th edition, Brooks Cole, 2006.
111. Wiki, Wheatstone bridge circuit-http://en.wikipedia.org/wiki/File:Thermal_ Conductivity_Detector_1.svg.
112. R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea and M. F. Lazarescu, Studies of Ohmic contact and Schottky barriers on Au-Ge/GaAs and Au-Ti/GaAs. Journal of Optoelectronics and Advanced Materials, 7 (2005) 3033-3037.
113. A. Sproul, Understanding the p-n junction-http://www.bookshop.unsw.edu.au.
114. T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko and A. Fujishima, Energy storage of TiO2-WO3 photocatalysis systems in the gas phase. Langmuir, 18 (2002) 7777-7779.
115. J. Georgieva, E. Valova, S. Armyanov, N. Philippidis, I. Poulios and S. Sotiropoulos, Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: A short review with emphasis to TiO2-WO3 photoanodes. Journal of Hazardous Materials, 211 (2012) 30-46.
116. R. Abe, M. Higashi and K. Domen, Overall Water Splitting under Visible Light through a Two-Step Photoexcitation between TaON and WO3 in the Presence of an Iodate-Iodide Shuttle Redox Mediator. Chemsuschem, 4 (2011) 228-237.
117. E. Woodard F, K. Hanafey M and N. Reilley C, The mechanism for hydrogen adsorption on platinum electrodes from acidic aqueous media. I: Potential step relaxation theory for several adsorption mechanisms. Journal of electroanalytical chemistry and interfacial electrochemistry, 167 (1984) 43-63.
118. K. A. Sarkar Shahjahan, M. Machniewski Piotr and M. Evans Geoffrey, Modelling and Measurement of Bubble Formation and Growth in Electroflotation Processes. Chemical and Process Engineering, 34 (2013) 327-336.
119. Wiki, Hydrogen-http://en.wikipedia.org/wiki/Hydrogen.
120. H. S. Jung, J. K. Lee, M. Nastasi, S. W. Lee, J. Y. Kim, J. S. Park, K. S. Hong and H. Shin, Preparation of nanoporous MgO-Coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells. Langmuir, 21 (2005) 10332-10335.
121. H. S. Jung, J. K. Lee, M. Nastasi, J. R. Kim, S. W. Lee, J. Y. Kim, J. S. Park, K. S. Hong and H. Shin, Enhancing photocatalytic activity by using TiO2-MgO core-shell-structured nanoparticles. Applied Physics Letters, 88 (2006) 013107
122. H. S. Jung, J. K. Lee, K. S. Hong and H. J. Youn, Ion-induced secondary electron emission behavior of sol-gel-derived MgO thin films used for protective layers in alternating current plasma display panels. Journal of Applied Physics, 92 (2002) 2855-2860.
123. M. Kitano, R. Mitsui, D. Eddy, Z. A. El-Bahy, M. Matsuoka, M. Ueshima and M. Anpo, Synthesis of Nanowire TiO2 Thin Films by Hydrothermal Treatment and their Photoelectrochemical Properties. Catalysis Letters, 119 (2007) 217-221.
124. M. G. Buonomenna and G. Golemme, Advanced Materials for Membrane Preparation. Betham eBooks, 2013.
125. R. Ramachandran, V. Mani, S.-M. Chen, R. Saraswathi and B.-S. Lou, Recent Trends in Graphene based Electrode Materials for Energy Storage Devices and Sensors Applications. Int. J. Electrochem. Sci., 8 (2013) 11680-11694.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58558-
dc.description.abstract氫氣是未來地球上具發展淺力的能源之一,因為它有潔淨、高燃燒效率、元素蘊藏量豐富等特性。由於利用太陽光催化進行水分解反應之產氫技術具有低成本及對環境友善等優勢,該技術近年來逐漸受到各國研發單位的重視。以H-type反應器系統進行光催化水分解反應是提升產氫效率的方式之一,因為該系統可以達到氫氧分離的目的,避免水分解逆反應的發生。H-type反應器系統主要包含反應器、光電極及質子交換膜,本研究以射頻磁控濺鍍法在高溫下製備具可見光吸收之二氧化鈦(TiO2)及三氧化鎢(WO3)光觸媒薄膜,並將該薄膜作為光電極材料,應用於光催化水分解反應,接著利用X射線繞射儀(XRD)、場發射掃描電子顯微鏡(FESEM)、原子力顯微鏡(AFM)、能量散佈分析儀(EDS)、X射線光電子能譜儀(XPS)、紫外光-可見光吸收能譜儀(UV-Vis)等設備來探討光觸媒薄膜製備後之物理及化學特性,包括晶相、表面形態、化學組成、光吸收特性等。其中,光觸媒薄膜之可見光吸收現象主要來自於高溫濺鍍過程中產生之氧空缺,進而改變了薄膜之光吸收能隙。為了進一步提升光電極之光吸收範圍,本研究另提出一新型雙層光觸媒(Dual-Layer Photocatalyst)薄膜結構,由具可見光吸收之二氧化鈦及三氧化鎢光觸媒薄膜組成,並透過電流電壓量測儀與光催化水分解反應實驗了解單層及雙層光觸媒薄膜之光電化學性質與光催化活性,由實驗結果證實,光催化水分解反應之氫氣及氧氣產率趨勢與光觸媒薄膜之光電效率趨勢吻合,雙層光觸媒薄膜之活性高於單層光觸媒薄膜,相較於單層光觸媒薄膜,我們認為雙層光觸媒薄膜結構可以有效分離光激發觸媒材料後所產生之電子與電洞,增加其還原與氧化能力。另外,本研究也探討了氧化鎂(MgO)材料修飾雙層光觸媒薄膜表面之影響,由光電流量測結果發現,以少量的氧化鎂修飾TiO2表面有利於提升TiO2的光催化活性。最後,本研究嘗試將氧化鎂改質後的雙層光觸媒薄膜製備成光電極,並搭配H-type光反應器系統進行光催化水分解反應實驗。實驗結果證明,氧化鎂的確可以有效地增加雙層光觸媒電極的產氫及產氧效率,我們認為效率的提升主要是來自於氧化鎂親水特性,因此,以該材料修飾雙層光觸媒薄膜可提升其表面與水分子之作用能力,即提升水分子傳送至觸媒材料表面之能力,進而增加水分子被觸媒材料氧化及還原之效率,除此之外,氧化鎂也可以有效的抑制光電極的漏電現象。zh_TW
dc.description.abstractHydrogen is the ideal fuel for the future because it is clean, energy efficient and abundant in nature. Recently, solar hydrogen via photocatalytic water splitting has attracted tremendous attention due to its great potential for low-cost and clean hydrogen production. One of the technologies for improving the efficiency of photocatalytic water splitting is the adoption of an H-type reactor system that allows separate evolution of hydrogen and oxygen during the reaction, preventing the backward reaction to form water. The key components of an H-type reactor system are reactor, photoelectrode and proton exchange membrane. In this study, visible light-absorbing TiO2 (vis-TiO2) and WO3 (vis-WO3) thin films as the photoelectrode materials were prepared by radio-frequency magnetron sputtering at high temperature and used to carry out photocatalytic water splitting in an H-type reactor system. Instrumental analyses such as XRD, FESEM, AFM, EDS, XPS, and UV-Vis were performed to reveal the crystallinity, surface morphology, chemical composition, and light absorption of the prepared photocatalytic thin films. It is believed that the shift of the absorption spectra towards the visible-light region for the prepared thin films is resulted from the increase of their metal-to-oxygen ratio due to high-temperature sputtering. To further extend the light absorption spectrum of the photoelectrode, a dual-layer photocatalyst (DLP) that consists of both vis-TiO2 and vis-WO3 was prepared. The photoactivities of single-layer and dual-layer photocatalysts were examined first by photovoltammetry followed by conducting water-splitting reactions in an H-type reactor under both UV and visible-light irradiations. It was demonstrated that H2 and O2 yields obtained from water-splitting reaction are consistent with the photocurrent results (from photovoltammetry); showing that DLP is more active than single-layer photocatalyst. The enhanced performance of DLP comparing with single-layer photocatalyst is mainly attributed to the improved charge separation of the dual-layer structure. Later on, the effect of adding a thin layer of MgO on TiO2 was investigated. From the photocurrent measurement results, it was found that coating a very thin layer of MgO on TiO2 may have the benefit to improve TiO2’s photoactivity. Finally, MgO modified DLP was prepared and its photoactivity was demonstrated by carrying out water-splitting reaction in the H-type reactor system under visible-light irradiation. Comparing with DLP, the MgO modified DLP show improved H2 and O2 yield. It is believed that the improvement is resulted from the hygroscopic nature of MgO, which can increase the concentration of water molecules on the photocatalyst surface to perform water oxidation, consequently, reducing the probability of electron-hole recombination. Moreover, the inclusion of MgO may also suppress current leakage of the photoelectrode by preventing electrons from diffusing toward the TiO2-water interface.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:19:51Z (GMT). No. of bitstreams: 1
ntu-103-D98524012-1.pdf: 6739162 bytes, checksum: 7497cfa1094f223930f006f09d3b88c4 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要 i
Abstract ii
Table of Contents iv
List of Tables v
List of Figures vi
1. Preface 1
2. Introduction 3
2.1 Fossil fuel 3
2.2 Alternative energy 4
2.3 Hydrogen energy 5
2.4 Photocatalytic water splitting 11
2.5 Objective of this study 62
3. Experiment 65
3.1 Chemicals, equipment and instrument 65
3.2 Preparation of thin films 67
3.3 Characterization of prepared thin films 73
3.4 Photoactivity assessment of prepared thin films 87
4. Results and Discussion 103
4.1 Preparation and characterization of visible-light TiO2 103
4.2 Preparation and characterization of visible-light WO3 109
4.3 Preparation and characterization of dual-layer photocatalyst (DLP) 115
4.4 Water-splitting results for single-layer TiO2 and DLP 126
4.5 Preparation and characterization of MgO modified TiO2 137
4.6 Water-splitting results for DLP and MgO modified DLP 144
4.7 Summary 150
5. Conclusions 156
6. References 159
個人小傳 170
dc.language.isoen
dc.title以濺鍍法製備具可見光吸收之雙層光電極並應用於光催化水分解產氫zh_TW
dc.titlePreparation of Visible Light-Active Dual-Layer Photoelectrode by Sputtering and Its Application in Hydrogen Production via Photocatalytic Water Splittingen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.oralexamcommittee萬本儒,吳嘉文,徐振哲,鄧熙聖,黃慶村
dc.subject.keyword光催化,水分解,氫氣,zh_TW
dc.subject.keywordPhotocatalysis,Water Splitting,Hydrogen,en
dc.relation.page174
dc.rights.note有償授權
dc.date.accepted2014-02-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
6.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved