Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58544
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張哲政(Che-Chen Chang)
dc.contributor.authorShih-Yao Linen
dc.contributor.author林士堯zh_TW
dc.date.accessioned2021-06-16T08:19:17Z-
dc.date.available2017-03-08
dc.date.copyright2014-03-08
dc.date.issued2014
dc.date.submitted2014-02-07
dc.identifier.citationch1:
[1] Dang S. S., Siglinda P. and Gabriele C. Nanocarbons for the Development of Advanced Catalysts. Chem. Rev., 2013, 113 , 5782–5816
[2] Christina B., Chantal P., Martin C., Gianluigi A.B. and Barry R.M.Size-Selected Synthesis of PtRu Nano-Catalysts:  Reaction and Size Control Mechanism.J. Am. Chem. Soc., 2004, 126, 8028–8037
[3] Susut C., Nguyen T., Chapman G., Tong Y., Shape and size stability of Pt nanoparticles for MeOH electro-oxidation. Electrochim. Acta. 2008, 53, 6135
[4] John L.H., Kristin M.S., Richard I.M., Effects of Addition of Antimony, Tin, and Lead of Palladium Catalyst Formulations for the Direct Formic Acid Fuel Cell. J. Phys. Chem. C 2010, 114, 11665-11672.
[5] Rafael V.N., Erico T., Guilherme S.B., Hugo B.S., Formic Acid Oxidation at Pd, Pt and PbOx-based Catalysts and Calculation of their Approximate Electrochemical Active Area. Int. J. Electrochem. Sci. 2010, 5, 344-354
[6] Young K.H., Hanchul K., Geunseop L., Wondong K., Jong I. P., Jinwoo C., Ja Y. K.,Controlled two-dimensional distribution of nanoparticles by spin-coating method. Appl. Phys. Lett. 2002, 80, 844
[7] Vigier F., Coutanceau C., Hanhn F., Belgsir E.M., Lamy C.. On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ Ir reflectance spectroscopy studies. J. Electroanal. Chem., 2004, 563, 81.
[8] Shin H., Kim K. K., Benayad A., Yoon S., Park H., Jung I., Jin M. H. , Jeong H., Kim J. M., Choil J., Lee Y. H.,Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance, 2009, 19, 1987-1992
[9] Hui H., Yingchun N, Vedrana M., Robert C.H., Vladimir P., Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth. Nano Lett., 2004, 4, 507-511
[10] Sasha S. Dmitriy A.D., Geoffrey H.B.D., Kevin M. K., Eric J.Z., Eric A.S., Richard D.P., SonBinh T.N., Rodney S.R. Graphene-based composite materials. 2006, 442, 20
[11] Claudio B., Pei K.S., Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells. Chem Rev. 2009, 109, 4183-4206.
[12] Fujiwara N., Friedrich K.A., Stimming U., Ethanol oxitation on PtRu electrodes studied by differential electrochemical mass spectrometry. J. Electroanal. Chem., 1999, 472, 120-125
[13] Argile C., Rhead G.E., Adsorbed Layer and Thin Film Grwoth Modes Monitored by Auger Electron Spectroscopy ,Surf. Sci. Rep., 1989, 10, 277-356
[14] Zhenyu Z., Max G.L.,Atomistic Processes in the Early Stages of Thin-Film Growth, Science, 1997, 276, 377
[15] P. Marcus, C. Hinnen, XPS study of the early stages of deposition of Ni, Cu and Pt on HOPG. Surf. Sci. 1997, 392, 134-142
[16] Takanori F., Atsuko K., Yoji I., Takashi Y., Toshikazu T., Noriyuki I., Takuzo A.,Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes. Science, 2003, 300, 2072-2074
[17] Bellayer S., Gilman J. W., Eidelman N., Bourbigot S., Flambard X., Fox D. M., De Long H. C., Trulove P.C. Preparation of Homogeneously Dispersed Multiwalled Carbon Nanotube/Polystyrene Nanocomposites via Melt Extrusion Using Trialkyl Imidazolium Compatibilizer, Adv. Funct. Mater., 2005, 15, 910-916.
[18]Mazumder V., Sun S., Oleylamine-Mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation. J. Am. Chem. Soc. 2009, 131, 4588-4589
[19] Du B., Tong Y., A Coverage-Dependent Study of Pt Spontaneously Deposited onto Au and Ru Surface: Direct Experimental Evidence of Ensemble Effect for Methanol Electro-Oxidation on Pt. J. Phys. Chem. B, 2005, 109, 17775-17780.
[20] Wang D., Xu C., Cheng F., Jiang S., Pd nanowire arrays as electrocatalysts for ethanol electrooxidation. Electrochem. Commun. 2007, 9, 1212-1216
ch2:
[1]: Z. Klusek, Scanning tunneling microscopy and spectroscopy of the thermally
oxidized (0001) basal plane of highly oriented pyrolitic graphite, Applied Surface Science, 125, 1998, 339-350
[2] Allen, J. B.; Larry, R.F. Electrochemical Methods Fundamentals and Applications, second edition, John Wiley & Sons, Inc. (2001)
[3] Douglas, A. S.; F. James, H.; Stanley, R. C. Principles of Instrumental Analysis, sixth edition, Thomson Brooks/Cole (2007).
[4] Williams, D. B.;Carter, C. B. Transmission Electron Microscopy, second edition, Springer (2009).
[5] Goldstein, J. A. Scanning Electron Microscopy and X-ray Microanalysis, Plenum Publishing Corp. (1981).
ch3:
[1]: Bernard R., Henriette E., Anne-Lise T. and Pascal B., Stable C atom displacements on HOPG surface under plasma low energy argon ion bombardment. Appl. Phys. A, 2003, 77, 3-4, 591-597
[2]: ANDREW P., PETER M.A.S., X-Ray Photoelectron Spectroscopic Studies Of Carbon Fibre Surfaces. I. Carbon Fibre Spectra And The Effects Of Heat Treatment.J. Electron Spectrosc. Relat. Phenom. 1982, 27, 39-56.
[3]: Yang D., Sacher E.,Carbon 1s X-ray Photoemission Line Shape Analysis of Highly Oriented Pyrolytic Graphite: The Influence of Structural Damage on Peak Asymmetry, Langmuir, 2006, 22, 860-862
[4]: Ignacio J.V., Emily F.S., Alasdair W.T., Fulian Q., Kevin R.J.L.,Robert G.J. and Peter L.,Charging of ionic liquid surfaces under X-ray irradiation: the measurement of absolute binding energies by XPS. Phys. Chem. Chem. Phys., 2011, 13, 2797-2808.
[5]: Dang S.S, Siglinda P. and Gabriele C.,Nanocarbons for the Development of Advanced Catalysts, Chem. Rev. 2013, 113, 5782?5816
[6]: Vasilios G., Michal O., Athanasios B.B., Vimlesh C., Namdong K.,K. Christian K.,Pavel H., Radek Z. and Kwang S.K., Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012, 112, 6156 - 6214
[7]: Robert D.D., Olgica B., Todd F.D., Greb H., Sidney R.N. and Thomas A.W.,Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997, 389, 827-829
[8]:Ale? P., Libor K., Robert P., Milan K., Renata V., Nad??da P., Virender K.S., Tatjana N.,? and Radek Z.,Silver Colloid Nanoparticles:? Synthesis, Characterization, and Their Antibacterial Activity/J. Phys. Chem. B, 2006, 110, 16248-16253
[9]:T. Teranishi and M. Miyake,Size Control of Palladium Nanoparticles and Their Crystal Structures, Chem. Mater., 1998, 10 (2), pp 594-600
[10]: Yadong Y., Yu L., Byron G., and Younan X.,Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures. J. Am. Chem. Soc. 2001, 123, 8718-8729.
[11]: Safavi A., Maleki N.,Tajabadi F., Farjam E.,High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode. Electrochem commun.,2007,9, 1963-1968
[12]: LovicJ.D., Tripkovic A.V.,Gojkovic S., Popovic K., D.V. Tripkovic, Olszewski P., Kowal A., Kinetic study of formic acid oxidation on carbon-supported
platinum electrocatalyst. J. Electroanal. Chem. 2005, 581, 294-302

[13]: Ibarguen C.A., Mosquera A., Parra R., Castro M.S., Rodr?guez-P?ez J.E., Synthesis of SnO2 nanoparticles through the controlled precipitation route, Materials Chemistry and Physics, 2007, 101, 433-440
[15]: Lin A., Armstrong N., Kuwana T., X-ray Photoelectron/Auger Electron Spectroscopic Studies of Tin and Indium Metal Foils and Oxides, Anal. Chem, 1977, 49, 8
[16]: Evans D.Sodium Borohydride Reduction and Polarographic Determination of Tin, Anal. Chem. 1964, 36, 2435
[17]: Montilla F., Morallon E., Battisti A., Barison S., Daolio S., Vazquez J., Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. 3. XPS and SIMS Characterization,J. Phys. Chem. B, 108, 2004
[18]: Gao L., Yue W., Tao S., Fan L., Novel Strategy for Preparation of Graphene-Pd, Pt Composite, and Its Enhanced Electrocatalytic Activity for Alcohol Oxidation, Langmuir, 2013, 29, 957-964
[19]: Arana J., Piscina P., Llorca J., Sale J., Homs N., Bimetallic Silica-Supported Catalysts Based on Ni-Sn, Pd-Sn, and Pt-Sn as Materials in the CO Oxidation Reaction, Chem. Mater.1998,10,1333-1342
[20]:Cabot A., Arbiol J., Morante J., Weimar U., Barsan N., Gopel W., Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO sol-gel nanocrystals for gas sensors. Sensors and Actuators B, 2000, 70, 87-100
[21]:Gurvich L.V.,Thermodynamic Properties Of Individual Substances: Elements And compounds,CRC press, 1990.
[22]:Panacek A., Kvitek L., Prucek R., Kolar M., Vecerova R., Pizurova N., Sharma V., Nevecna T., Zboril R., Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity, J. Phys. Chem. B, Vol. 110, No. 33, 2006
[23]:Wu S., Chen D.,Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions.J. COLLOID. INTERF. SCI., 2004, 273, 165-169
[24]: Nenad M., Philip N.R.,The effect of specific adsorption of ions and underpotential deposition of copper on the electro-oxidation of methanol on platinum single-crystal surfaces. J. Electroanal. Chem. 1992, 330, 449-520.
[25]: F.Vigier, C.Coutanceau, F.Hahn, E.M. Belgsir, C.Lamy. On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J. Electroanal. Chem. 2004, 563, 81-89.
[26]: Allen, J. B.; Larry, R.F. Electrochemical Methods Fundamentals and Applications, second edition, John Wiley & Sons, Inc. (2001)
[27]: Susut C., Nguyen T., Chapman G., Tong Y., Shape and size stability of Pt nanoparticles for MeOH electro-oxidation. Electrochem. Acta. 2008, 53, 6135

[28]:Wasmus S., Kuver A.,Methanol oxidation and direct methanol fuel cells: a selective review, J. Electroanal. Chem. 1999, 461, 14-31.
[29]: Jusys Z., Behm R.J., Methanol Oxidation on a Carbon-Supported Pt Fuel Cell CatalystsA Kinetic and Mechanistic Study by Differential Electrochemical Mass Spectrometry, J. Phys. Chem. B., 2001, 105, 10874-10883
[30]: Chen Y., Miki A., Ye S., Sakai H., Osawa M.,Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode, J. Am. Chem. Soc. 2003,125, 3680-3681.
[31]: Choi J., Jeong K., Dong Y., Han J., Lim T., Lee J., Sung Y.,Electro-oxidation of methanol and formic acid on PtRu and PtAu
for direct liquid fuel cells,J. Power Sources, 2006, 163, 71-75
[32]: Feliu J.M., Herrero E.,Handbook of Fuel Cells - Fundamentals, Technology and Applications. John Wiley & Sons. 2010
[33]: Vidakovic T., Christov M., Sundmacher K.,The use of CO stripping for in situ fuel cell catalyst characterization, Electrochem. Acta. 2007, 52, 5606-5613
[34]: Funtikov A., Stimming U., Vogel .,Anion adsorption from sulfuric acid solutions on Pt(111) single crystal electrodes. J. Electroanal. Chem. 1997, 428, 147-153
[35]: Bjorling A., Herrero E., Feliu J., Electrochemical Oxidation of Pt(1 1 1) Vicinal Surfaces: Effects of Surface Structure and Specific Anion Adsorption. J. Phys. Chem. C. 2011, 115, 15509-15515
[36]: Neurock M., Janik M., Wieckowski A., A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt.Faraday Discuss. 2008, 140, 363-378
[37]: Ishikawa Y., Liao M., Cabrera C., Oxidation of methanol on platinum, ruthenium and mixed Pt-M metals (M=Ru, Sn): a theoretical study. Surf. Sci. 2000, 463, 66-80
[38]: Gao W., Keith J., Anton J., Jacob T., Theoretical Elucidation of the Competitive Electro-oxidation Mechanisms of Formic Acid on Pt(111). J. AM. CHEM. SOC. 2010, 132, 18377-18385
[39]: Wang H., Liu Z., Comprehensive Mechanism and Structure-Sensitivity of Ethanol Oxidation on Platinum: New Transition-State Searching Method for Resolving the Complex Reaction Network., J. AM. CHEM. SOC. 2008, 130, 10996-11004.
[40]: Kowal A., Li M., Shao M., Sasaki K., Vukmirovic M., Zhang J., Marinkovic N., Liu P., Frenkel A., Adzic R.,T ernary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2., Nat. Mater. 2009, 8, 325-329
[41]: Hoshi N., Kida K., Nakamura M., Nakada M., Osada K., Structural Effects of Electrochemical Oxidation of Formic Acid on Single Crystal Electrodes of Palladium. J. Phys. Chem. B 2006, 110, 12480-12484.

[42]:Zhou W., Lewera A., Larsen R., Masel R., Bagus P., Wieckowski A.,Size Effects in Electronic and Catalytic Properties of Unsupported Palladium Nanoparticles in Electrooxidation of Formic Acid.J. Phys. Chem. B 2006, 110, 13393-13398
[43]:Pourbaix M., Muylder J., Zoubov, Electrochemical Properties of the Platinum Metals A NEW APPROACH TO STUDIES OF CORROSION RESISTANCE AND CATHODIC PROTECTION, Platinum Metals Rev., 1959, 3, (2), 47-53
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58544-
dc.description.abstract對醇類或羧酸類之氧化反應的催化劑製備過程中,通常為了避免使用貴重金屬鉑,乃將其它或多種元素製成不同形狀或大小的奈米材料,以提升催化效能。本研究選用鈀、鉑及錫等元素,將其合成為奈米粒子,作為氧化甲醇、乙醇及甲酸的催化劑,並用高定向熱解石墨為基材,以避免因基材過小而須再組裝成電極時,可能消耗已製得的催化劑。
合成奈米粒子時,利用前趨物吸附與反應作為合成步驟,並以二烷基咪唑鹽為奈米粒子前趨物。利用咪唑陽離子對石墨基材的作用力及烷基在非極性環境下的穩定性,使生成的奈米粒子可以散佈在基材表面。
本研究所製得之奈米材料經由表面分析,確認其奈米粒子具有較佳的表面分散性及大小分布。此外,研究結果顯示,藉由修飾基材表面與增修合成步驟,可調整奈米粒子的大小與密度或生成多元素之奈米粒子。上述氧化反應利用循環伏安法與計時安培法之測定,發現,以咪唑陽離子為前趨物所製作的產物對催化反應有較佳的效果。
由於目前碳基材已被廣範應用於各個領域,此法可望使用於生成不同奈米粒子在於其它碳材上。除了能生成較小且分散之奈米粒子,亦能同時達到以少量反應物來進行大尺寸材料製備的效果。
zh_TW
dc.description.abstractTo avoid taking noble metal (ex: Platinum) as catalyst to oxidize alcohol or carboxylic acid, people use other element to produce different structure or size to enhance catalyst activity. In our research, we synthesized the nanoparticles from palladium, platinum and tin on highly oriented pyrolytic graphite (HOPG) to be the catalyst for oxidation of methanol, alcohol and formic acid. Using highly oriented pyrolytic graphite (HOPG) as substrate due to it didn’t need to restructure to suitable size for the electrode and the product of catalyst might be consumed in this procedure.
We used adsorption and reaction steps to synthesize the nanoparticles on the HOPG from dialkylimidazolium precursor. The nanoparticles would be dispersed on the HOPG by the interaction between graphitic substrate and imidazolium and by the stability of alkyl group in inert condition.
The nanomaterials was confirmed the enhancement of dispersion and size distribution by the surface analysis in this study. Furthermore, we could adjust the size and density of nanoparticles and produce bimetal nanoparticles by substrate treatment and modification of synthesis of nanoparticles. The performance of catalytic oxidation reaction was detected by cyclic voltammetry and chronoamperometry. The product made from imidazolium precursor got better performance of catalytic oxidation than normal precursor.
Due to carbon substrates were applied in different fields popularly, our method might produce different nanoparticles on other carbon substrates. Besides producing small and dispersed nanoparticles, out method could synthesize nanoparticles on the large area substrate and low consumption of precursor simultaneously.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:19:17Z (GMT). No. of bitstreams: 1
ntu-103-R00223185-1.pdf: 2216551 bytes, checksum: 53bdf9a43939aff26bd1a1ba8e6ea645 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents謝誌:i
摘要:ii
Abstract:iii
Table of contents:v
List of Figures:vii
List of tables:xiii
Chapter 1 Introduction:1
1.1 Introduction:1
1.2 Reference:6
Chapter 2 Experimental section:8
Materials:8
2.1 Preparation of electrode:8
2.1.1 Synthesis of metal precursor:8
2.1.2 Preparation of metal on the HOPG:10
2.2 Electrochemical Technology:12
2.2.1 Cyclic Voltammetry (CV):13
2.2.2 Chronoamperometry (CA):16
2.3 Surface Analysis:17
2.3.1 X-ray Photoelectron Spectroscopy (XPS):17
2.4 Electron Microscopy:21
2.4.1 Transmission Electron Microscopy (TEM):21
2.4.2 Scanning Electron Microscopy (SEM):23
2.5 References:25
Chapter 3 Results and discussion:26
3.1 XPS calibration:26
3.1.1 XPS calibration:26
3.2 Characterization of precursor and substrate:30
3.2.1 1-methyl-3-butylimidazolium tetrachloropalladate:30
3.2.2 Thermal Passivation of HOPG edge in Oxygen:35
3.3 Characterization of electrode:40
3.3.1 Palladium on HOPG film (Pd/HOPG):40
3.3.2 Platinum on HOPG film (Pt/HOPG):57
3.3.3 Tin on HOPG film (Sn/HOPG):61
3.4 Electrocatalytic oxidation:69
3.4.1 Behavior of electrocatalytic oxidation by commercial platinum working electrode:69
3.4.2 Behavior of HOPG and tHOPG:85
3.4.3 Formic acid oxidation:88
3.4.4 Methanol oxidation:98
3.4.5 Ethanol oxidation:99
3.5 References:100
Chapter 4 Conclusions:104
dc.language.isoen
dc.title二烷基咪唑陽離子前趨物在石墨基材生成金屬奈米粒子及其性質與電催化應用之研究zh_TW
dc.titleStudies on the production of metal nanoparticles from the dialkylimidazolium precursor on the graphitic substrate and on their properties and electrocatalytic applicationsen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林金福(King-Fu Lin),陳生明(Shen-Ming Chen)
dc.subject.keyword電化學,電催化,甲酸,鈀,奈米粒子,咪唑,石墨基材,zh_TW
dc.subject.keywordelectrochemical,electrocatalytical,formic acid,palladium,nanoparticle,imidazolium,HOPG,en
dc.relation.page104
dc.rights.note有償授權
dc.date.accepted2014-02-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
2.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved