Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58537
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡
dc.contributor.authorCheng-kai Changen
dc.contributor.author張政凱zh_TW
dc.date.accessioned2021-06-16T08:18:59Z-
dc.date.available2019-03-08
dc.date.copyright2014-03-08
dc.date.issued2014
dc.date.submitted2014-02-10
dc.identifier.citationChapter 1
1. The rise and rise of graphene. Nat Nanotechnol 2010, 5 (11), 755-755.
2. Ubbelohde AR, L. L., Graphite and its crystal compounds. London: Oxford University Press 1960.
3. Peierls, R. E., Quelques proprietes typiques des corpses solides. Ann. I. H. Poincare 1935, 5, 177-222.
4. Landau, L. D., Zur Th eorie der phasenumwandlungen II. Phys. Z. Sowjetunion 1937, 11 (26-35).
5. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5296), 666-669.
6. Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K., Room-temperature quantum hall effect in graphene. Science 2007, 315 (5817), 1379-1379.
7. Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 2004, 108 (52), 19912-19916.
8. Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324 (5932), 1312-1314.
9. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
10. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater 2007, 6 (3), 183-191.
11. Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K., A roadmap for graphene. Nature 2012, 490 (7419), 192-200.
12. Hwang, J. Y.; Kuo, C. C.; Chen, L. C.; Chen, K. H., Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density. Nanotechnology 2010, 21 (46).
Chapter 2
1. Geim, A. K.; Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R., Fine structure constant defines visual transparency of graphene. Science 2008, 320 (5881), 1308-1308.
2. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Commun 2008, 146 (9-10), 351-355.
3. Sutter, P. W.; Flege, J. I.; Sutter, E. A., Epitaxial graphene on ruthenium. Nat Mater 2008, 7 (5), 406-411.
4. Hong, B. H.; Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457 (7230), 706-710.
5. Colombo, L.; Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324 (5932), 1312-1314.
6. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y. J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 2010, 5 (8), 574-578.
7. Juang, Z. Y.; Wu, C. Y.; Lu, A. Y.; Su, C. Y.; Leou, K. C.; Chen, F. R.; Tsai, C. H., Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon 2010, 48 (11), 3169-3174.
8. Mattevi, C.; Kim, H.; Chhowalla, M., A review of chemical vapour deposition of graphene on copper. J Mater Chem 2011, 21 (10), 3324-3334.
9. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
10. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (30), 10451-10453.
11. Dreyer, D. R.; Ruoff, R. S.; Bielawski, C. W., From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future. Angew Chem Int Edit 2010, 49 (49), 9336-9344.
12. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J Am Chem Soc 1958, 80 (6), 1339-1339.
13. Szabo, T.; Berkesi, O.; Forgo, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dekany, I., Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 2006, 18 (11), 2740-2749.
14. Stankovich, S.; Piner, R. D.; Chen, X. Q.; Wu, N. Q.; Nguyen, S. T.; Ruoff, R. S., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 2006, 16 (2), 155-158.
15. Fasolino, A.; Los, J. H.; Katsnelson, M. I., Intrinsic ripples in graphene. Nat Mater 2007, 6 (11), 858-861.
16. Wu, Y. H.; Yu, T.; Shen, Z. X., Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J Appl Phys 2010, 108 (7).
17. Chen, J. H.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 2008, 3 (4), 206-209.
18. Zomer, P. J.; Dash, S. P.; Tombros, N.; van Wees, B. J., A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl Phys Lett 2011, 99 (23).
19. Shin, S. Y.; Kim, N. D.; Kim, J. G.; Kim, K. S.; Noh, D. Y.; Kim, K. S.; Chung, J. W., Control of the pi plasmon in a single layer graphene by charge doping. Appl Phys Lett 2011, 99 (8).
20. Cancado, L. G.; Pimenta, M. A.; Saito, R.; Jorio, A.; Ladeira, L. O.; Grueneis, A.; Souza, A. G.; Dresselhaus, G.; Dresselhaus, M. S., Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Phys Rev B 2002, 66 (3).
21. Ferralis, N., Probing mechanical properties of graphene with Raman spectroscopy. J Mater Sci 2010, 45 (19), 5135-5149.
22. Casiraghi, C.; Pisana, S.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C., Raman fingerprint of charged impurities in graphene. Appl Phys Lett 2007, 91 (23).
23. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 2008, 3 (4), 210-215.
24. Wang, Y.; Alsmeyer, D. C.; Mccreery, R. L., Raman-Spectroscopy of Carbon Materials - Structural Basis of Observed Spectra. Chem Mater 1990, 2 (5), 557-563.
25. Yan, J.; Zhang, Y. B.; Kim, P.; Pinczuk, A., Electric field effect tuning of electron-phonon coupling in graphene. Physical review letters 2007, 98 (16).
26. Ando, T., Anomaly of optical phonon in monolayer graphene. J Phys Soc Jpn 2006, 75 (12).
27. Berciaud, S.; Ryu, S.; Brus, L. E.; Heinz, T. F., Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers. Nano Lett 2009, 9 (1), 346-352.
28. Ferrari, A. C.; Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Sood, A. K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 2008, 3 (4), 210-215.
29. Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N., Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett 2007, 7 (9), 2645-2649.
30. Postmus, C.; Ferraro, J. R., Pressure Dependence of Infrared Eigenfrequencies of Kcl and Kbr. Phys Rev 1968, 174 (3), 983-&.
31. Tan, P. H.; Deng, Y. M.; Zhao, Q.; Cheng, W. C., The intrinsic temperature effect of the Raman spectra of graphite. Appl Phys Lett 1999, 74 (13), 1818-1820.
32. Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S., Raman spectroscopy in graphene. Phys Rep 2009, 473 (5-6), 51-87.
33. Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F., Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat Mater 2007, 6 (3), 198-201.
34. Li, L. J.; Shi, Y. M.; Kim, K. K.; Reina, A.; Hofmann, M.; Kong, J., Work Function Engineering of Graphene Electrode via Chemical Doping. Acs Nano 2010, 4 (5), 2689-2694.
35. Jeong, H. K.; Kim, K. J.; Kim, S. M.; Lee, Y. H., Modification of the electronic structures of graphene by viologen. Chem Phys Lett 2010, 498 (1-3), 168-171.
36. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nat Mater 2007, 6 (9), 652-655.
37. Jo, G.; Na, S. I.; Oh, S. H.; Lee, S.; Kim, T. S.; Wang, G.; Choe, M.; Park, W.; Yoon, J.; Kim, D. Y.; Kahng, Y. H.; Lee, T., Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure. Appl Phys Lett 2010, 97 (21).
38. Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K., Chaotic dirac billiard in graphene quantum dots. Science 2008, 320 (5874), 356-358.
39. Lee, S. H.; Chung, H. J.; Heo, J.; Yang, H.; Shin, J.; Chung, U. I.; Seo, S., Band Gap Opening by Two-Dimensional Manifestation of Peierls Instability in Graphene. Acs Nano 2011, 5 (4), 2964-2969.
40. Zhang, Y. B.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F., Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459 (7248), 820-823.
41. Lu, Y.; Guo, J., Band Gap of Strained Graphene Nanoribbons. Nano Res 2010, 3 (3), 189-199.
42. Yan, J. A.; Xian, L. D.; Chou, M. Y., Structural and Electronic Properties of Oxidized Graphene. Physical review letters 2009, 103 (8).
43. Lebegue, S.; Klintenberg, M.; Eriksson, O.; Katsnelson, M. I., Accurate electronic band gap of pure and functionalized graphane from GW calculations. Phys Rev B 2009, 79 (24).
44. Casolo, S.; Martinazzo, R.; Tantardini, G. F., Band Engineering in Graphene with Superlattices of Substitutional Defects. J Phys Chem C 2011, 115 (8), 3250-3256.
45. Martins, J. D.; Chacham, H., Disorder and Segregation in B-C-N Graphene-Type Layers and Nanotubes: Tuning the Band Gap. Acs Nano 2011, 5 (1), 385-393.
46. Tachikawa, H.; Iyama, T.; Azumi, K., Density Functional Theory Study of Boron- and Nitrogen-Atom-Doped Graphene Chips. Jpn J Appl Phys 2011, 50 (1).
47. Xu, B.; Lu, Y. H.; Feng, Y. P.; Lin, J. Y., Density functional theory study of BN-doped graphene superlattice: Role of geometrical shape and size. J Appl Phys 2010, 108 (7).
48. Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. N.; Juang, Z. Y.; Dresselhaus, M. S.; Li, L. J.; Kong, J., Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition. Nano Lett 2010, 10 (10), 4134-4139.
49. Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I.; Ajayan, P. M., Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Lett 2010, 10 (8), 3209-3215.
50. Ci, L.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L.; Liu, F.; Ajayan, P. M., Atomic layers of hybridized boron nitride and graphene domains. Nat Mater 2010, 9 (5), 430-435.
Chapter 4
1. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457 (7230), 706-710.
2. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y. J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 2010, 5 (8), 574-578.
3. Colombo, L.; Li, X. S.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Ruoff, R. S., Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. J Am Chem Soc 2011, 133 (9), 2816-2819.
4. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Jing, K., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 2009, 9 (1), 30-35.
5. Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T., Structural coherency of graphene on Ir(111). Nano Lett 2008, 8 (2), 565-570.
6. Sutter, P. W.; Flege, J. I.; Sutter, E. A., Epitaxial graphene on ruthenium. Nat Mater 2008, 7 (5), 406-411.
7. Sutter, P.; Sadowski, J. T.; Sutter, E., Graphene on Pt(111): Growth and substrate interaction. Phys Rev B 2009, 80 (24).
8. Mattevi, C. M., C.; Kim, H.; Chhowalla, M., A review of chemical vapour deposition of graphene on copper. J Mater Chem 2011, 21 (10), 3324-3334.
9. Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 2004, 108 (52), 19912-19916.
10. Ni, Z. H.; Chen, W.; Fan, X. F.; Kuo, J. L.; Yu, T.; Wee, A. T. S.; Shen, Z. X., Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys Rev B 2008, 77 (11).
11. Riedl, C.; Coletti, C.; Starke, U., Structural and electronic properties of epitaxial graphene on SiC(0001): a review of growth, characterization, transfer doping and hydrogen intercalation. J Phys D Appl Phys 2010, 43 (37).
12. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman spectrum of graphene and graphene layers. Physical review letters 2006, 97 (18).
13. Dresselhaus, M. S.; Jorio, A.; Saito, R., Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy. Annu Rev Conden Ma P 2010, 1, 89-108.
14. Doorn, S. K.; Zheng, L. X.; O'Connell, M. J.; Zhu, Y. T.; Huang, S. M.; Liu, J., Raman spectroscopy and imaging of ultralong carbon nanotubes. J Phys Chem B 2005, 109 (9), 3751-3758.
15. Herchen, H.; Cappelli, M. A., 1st-Order Raman-Spectrum of Diamond at High-Temperatures. Phys Rev B 1991, 43 (14), 11740-11744.
16. Zouboulis, E. S.; Grimsditch, M., Raman-Scattering in Diamond up to 1900-K. Phys Rev B 1991, 43 (15), 12490-12493.
17. Ferrari, A. C.; Robertson, J., Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 2000, 61 (20), 14095-14107.
18. Ferrari, A. C.; Robertson, J., Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B 2001, 64 (7).
19. Park, J. S.; Reina, A.; Saito, R.; Kong, J.; Dresselhaus, G.; Dresselhaus, M. S., G ' band Raman spectra of single, double and triple layer graphene. Carbon 2009, 47 (5), 1303-1310.
20. Ferrari, A. C.; Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Sood, A. K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 2008, 3 (4), 210-215.
21. Kim, P., GRAPHENE Across the border. Nat Mater 2010, 9 (10), 792-793.
22. Yazyev, O. V.; Louie, S. G., Electronic transport in polycrystalline graphene. Nat Mater 2010, 9 (10), 806-809.
23. An, J. H.; Voelkl, E.; Suk, J. W.; Li, X. S.; Magnuson, C. W.; Fu, L. F.; Tiemeijer, P.; Bischoff, M.; Freitag, B.; Popova, E.; Ruoff, R. S., Domain (Grain) Boundaries and Evidence of 'Twinlike' Structures in Chemically Vapor Deposited Grown Graphene. Acs Nano 2011, 5 (4), 2433-2439.
24. Gao, L.; Guest, J. R.; Guisinger, N. P., Epitaxial Graphene on Cu(111). Nano Lett 2010, 10 (9), 3512-3516.
25. Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J. H.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W.; Fu, L. F.; Vogel, E. M.; Voelkl, E.; Colombo, L.; Ruoff, R. S., Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. Nano Lett 2010, 10 (11), 4328-4334.
26. Chen, L. C.; Hwang, J. Y.; Kuo, C. C.; Chen, K. H., Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density. Nanotechnology 2010, 21 (46).
27. Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R., Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 2007, 9 (11), 1276-1291.
28. Ferrari, A. C., Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 2007, 143 (1-2), 47-57.
29. Chen, K. H.; Lai, Y. L.; Chen, L. C.; Wu, J. Y.; Kao, F. J., High-temperature Raman study in CVD diamond. Thin Solid Films 1995, 270 (1-2), 143-147.
30. Duke, C. B.; Meyer, R. J.; Mark, P., Trends in Surface Atomic Geometries of Compound Semiconductors. J Vac Sci Technol 1980, 17 (5), 971-977.
31. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Rev Mod Phys 2009, 81 (1), 109-162.
32. Casiraghi, C.; Pisana, S.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C., Raman fingerprint of charged impurities in graphene. Appl Phys Lett 2007, 91 (23).
33. Ci, L. J.; Zhou, Z. P.; Song, L.; Yan, X. Q.; Liu, D. F.; Yuan, H. J.; Gao, Y.; Wang, J. X.; Liu, L. F.; Zhou, W. Y.; Wang, G.; Xie, S. S., Temperature dependence of resonant Raman scattering in double-wall carbon nanotubes. Appl Phys Lett 2003, 82 (18), 3098-3100.
34. Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N., Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett 2007, 7 (9), 2645-2649.
35. Tan, P. H.; Deng, Y. M.; Zhao, Q.; Cheng, W. C., The intrinsic temperature effect of the Raman spectra of graphite. Appl Phys Lett 1999, 74 (13), 1818-1820.
36. Gao, K.; Dai, R.; Zhang, Z.; Ding, Z., Anharmonic effects in single-walled carbon nanotubes. J Phys-Condens Mat 2007, 19 (48).
37. Bonini, N.; Lazzeri, M.; Marzari, N.; Mauri, F., Phonon anharmonicities in graphite and graphene. Physical review letters 2007, 99 (17).
Chapter 5
1. Li, L. J.; Shi, Y. M.; Kim, K. K.; Reina, A.; Hofmann, M.; Kong, J., Work Function Engineering of Graphene Electrode via Chemical Doping. Acs Nano 2010, 4 (5), 2689-2694.
2. Tulevski, G. S.; Kasry, A.; Kuroda, M. A.; Martyna, G. J.; Bol, A. A., Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent, Conducting Electrodes. Acs Nano 2010, 4 (7), 3839-3844.
3. Zhu, Y.; Sun, Z.; Yan, Z.; Jin, Z.; Tour, J. M., Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes. Acs Nano 2011.
4. Chang, C. K.; Kataria, S.; Kuo, C. C.; Ganguly, A.; Wang, B. Y.; Hwang, J. Y.; Huang, K. J.; Yang, W. H.; Wang, S. B.; Chuang, C. H.; Chen, M.; Huang, C. I.; Pong, W. F.; Song, K. J.; Chang, S. J.; Guo, J. H.; Tai, Y.; Tsujimoto, M.; Isoda, S.; Chen, C. W.; Chen, L. C.; Chen, K. H., Band Gap Engineering of Chemical Vapor Deposited Graphene by in Situ BN Doping. Acs Nano 2013, 7 (2), 1333-1341.
5. Maser, W. K.; Valles, C.; Jimenez, P.; Munoz, E.; Benito, A. M., Simultaneous Reduction of Graphene Oxide and Polyaniline: Doping-Assisted Formation of a Solid-State Charge-Transfer Complex. J Phys Chem C 2011, 115 (21), 10468-10474.
6. Domingues, S. H.; Salvatierra, R. V.; Oliveira, M. M.; Zarbin, A. J., Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization. Chem Commun (Camb) 2011, 47 (9), 2592-4.
7. Chen, L. C.; Hwang, J. Y.; Kuo, C. C.; Chen, K. H., Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density. Nanotechnology 2010, 21 (46).
8. Kaner, R. B.; Huang, J. X., Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angew Chem Int Edit 2004, 43 (43), 5817-5821.
9. Kang, J.; Shin, D.; Bae, S.; Hong, B. H., Graphene transfer: key for applications. Nanoscale 2012, 4 (18), 5527-5537.
10. Colombo, L.; Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Ruoff, R. S., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett 2009, 9 (12), 4359-4363.
11. Horng, Y. Y.; Hsu, Y. K.; Ganguly, A.; Chen, C. C.; Chen, L. C.; Chen, K. H., Direct-growth of polyaniline nanowires for enzyme-immobilization and glucose detection. Electrochem Commun 2009, 11 (4), 850-853.
12. Paluszkiewicz, C.; Hasik, M.; Drelinkiewicz, A.; Wenda, E.; Quillard, S., FTIR spectroscopic investigations of polyaniline derivatives-palladium systems. J Mol Struct 2001, 596, 89-99.
13. Chen, H. Y.; Wu, I. W.; Chen, C. T.; Liu, S. W.; Wu, C. I., Self-assembled monolayer modification of silver source-drain electrodes for high-performance pentacene organic field-effect transistors. Org Electron 2012, 13 (4), 593-598.
14. Ferrari, A. C.; Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Sood, A. K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 2008, 3 (4), 210-215.
15. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman spectrum of graphene and graphene layers. Physical review letters 2006, 97 (18).
16. Hu, G. X.; Tang, B.; Gao, H. Y., Raman Spectroscopic Characterization of Graphene. Appl Spectrosc Rev 2010, 45 (5), 369-407.

Chapter 6
1. Shi, Y.; Kim, K. K.; Reina, A.; Hofmann, M.; Li, L. J.; Kong, J., Work function engineering of graphene electrode via chemical doping. Acs Nano 2010, 4 (5), 2689-94.
2. Usachov, D.; Vilkov, O.; Gruneis, A.; Haberer, D.; Fedorov, A.; Adamchuk, V. K.; Preobrajenski, A. B.; Dudin, P.; Barinov, A.; Oehzelt, M.; Laubschat, C.; Vyalikh, D. V., Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties. Nano Lett 2011, 11 (12), 5401-5407.
3. Shinde, P. P.; Kumar, V., Direct band gap opening in graphene by BN doping: Ab initio calculations. Phys Rev B 2011, 84 (12).
4. Martins, J. D.; Chacham, H., Disorder and Segregation in B-C-N Graphene-Type Layers and Nanotubes: Tuning the Band Gap. Acs Nano 2011, 5 (1), 385-393.
5. Tachikawa, H.; Iyama, T.; Azumi, K., Density Functional Theory Study of Boron- and Nitrogen-Atom-Doped Graphene Chips. Jpn J Appl Phys 2011, 50 (1).
6. Xu, B.; Lu, Y. H.; Feng, Y. P.; Lin, J. Y., Density functional theory study of BN-doped graphene superlattice: Role of geometrical shape and size. J Appl Phys 2010, 108 (7).
7. Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I.; Ajayan, P. M., Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Lett 2010, 10 (8), 3209-3215.
8. Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. N.; Juang, Z. Y.; Dresselhaus, M. S.; Li, L. J.; Kong, J., Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition. Nano Lett 2010, 10 (10), 4134-4139.
9. Ci, L.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L.; Liu, F.; Ajayan, P. M., Atomic layers of hybridized boron nitride and graphene domains. Nat Mater 2010, 9 (5), 430-435.
10. Chen, L. C.; Hwang, J. Y.; Kuo, C. C.; Chen, K. H., Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density. Nanotechnology 2010, 21 (46).
11. Lei, W.; Portehault, D.; Dimova, R.; Antoniettit, M., Boron Carbon Nitride Nanostructures from Salt Melts: Tunable Water-Soluble Phosphors. J Am Chem Soc 2011, 133 (18), 7121-7127.
12. Kawaguchi, M., B/C/N materials based on the graphite network. Advanced Materials 1997, 9 (8), 615-625.
13. Ozaki, J.; Kimura, N.; Anahara, T.; Oya, A., Preparation and oxygen reduction activity of BN-doped carbons. Carbon 2007, 45 (9), 1847-1853.
14. Ismach, A.; Chou, H.; Ferrer, D. A.; Wu, Y. P.; McDonnell, S.; Floresca, H. C.; Covacevich, A.; Pope, C.; Piner, R.; Kim, M. J.; Wallace, R. M.; Colombo, L.; Ruoff, R. S., Toward the Controlled Synthesis of Hexagonal Boron Nitride Films. Acs Nano 2012, 6 (7), 6378-6385.
15. Moulder, J.; Stickle, W.; Sobol, P.; Bomben, K., Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics, Inc.: Eden Prairie, Minnesota, USA, 1995.
16. Ferrari, A. C., Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 2007, 143 (1-2), 47-57.
17. Cancado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C., Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett 2011, 11 (8), 3190-3196.
18. Ni, Z. H.; Ponomarenko, L. A.; Nair, R. R.; Yang, R.; Anissimova, S.; Grigorieva, I. V.; Schedin, F.; Blake, P.; Shen, Z. X.; Hill, E. H.; Novoselov, K. S.; Geim, A. K., On Resonant Scatterers As a Factor Limiting Carrier Mobility in Graphene. Nano Lett 2010, 10 (10), 3868-3872.
19. Frueh, S.; Kellett, R.; Mallery, C.; Molter, T.; Willis, W. S.; King'ondu, C.; Suib, S. L., Pyrolytic Decomposition of Ammonia Borane to Boron Nitride. Inorganic chemistry 2011, 50 (3), 783-792.
20. Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. S.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T.; Kong, J., Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition. Nano Lett 2012, 12 (1), 161-166.
21. Brito, W. H.; Kagimura, R.; Miwa, R. H., B and N doping in graphene ruled by grain boundary defects. Phys Rev B 2012, 85 (3).
22. Sutter, P.; Cortes, R.; Lahiri, J.; Sutter, E., Interface Formation in Monolayer Graphene-Boron Nitride Heterostructures. Nano Lett 2012, 12 (9), 4869-4874.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58537-
dc.description.abstractDefects in the CVD-derived graphene have been demonstrated to have great impacts on its optical and electrical properties. In this study, we engineered the defects in graphene by the process control in the thermal chemical vapor deposition (CVD) and by doping in both substitutional and chemical approaches.
First of all, a series of graphene with different degrees of structure disorder were produced by changing the growth conditions in the CVD process. Two stages, nanocrystallization and amorphization, of amorphization trajectory for CVD-graphene were introduced and the corresponding evolution of Raman line position, line width and intensity were monitored. At the stage of nanocrystallization, grain boundaries increase and both G and 2D peaks show blue-shift. 2D peak has much larger variation than G peak, which implies the change in the paths of phonon scattering due to the variation of the electronic structure. The high I2D/IG ratio indicates the hexagonal structure of graphene is still maintained. At the stage of amorphization, the broadened D and G peaks, dramatic drop of 2D intensity, and the great upshift in G peak position indicate the localized collapse of graphitized structure due to the incorporation of amorphous phases.
Secondly, the conducting polymer, PANI, was physically doped on the graphene by a self-assemble method. The PANI-modified graphene shows a dramatic decrease in its sheet resistance from ~2500 Ω/sq to ~550 Ω/sq, while maintaining its transmittance at 96%. The work function of PANI-modified graphene is comparable to that of graphite. The recovery of the sheet resistance was also observed in defected graphene. The PANI-modified process is simple, green, and scalable. It is highly appropriate for the transparent conductivity film (TCF) application.
Thirdly, band gap opening and engineering is one of the high priority goal in the development of graphene electronics. To create a band gap, we co-doped B and N in large-scaled graphene films (BNG) by low-pressure chemical vapor deposition. TEM images and EELS results indicate that the segregated BN domains appeared when the concentration was over 8%. Below this concentration, BN will disperse uniformly in the graphene lattice. Based on the synchrotron-radiation XAS-XES measurements, a significant band gap (600 meV) was observed in low-BN-doped graphene which is attributed to the opening of band gap of graphene. The results of field effect transistor measurements also confirmed that the semiconductor behavior in BN-doped graphene.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:18:59Z (GMT). No. of bitstreams: 1
ntu-103-D98549001-1.pdf: 4567961 bytes, checksum: 30421c6001598e5b08e736d38e6e7c5f (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsTable of Contents
誌謝 I
摘要 II
Abstract IV
Chapter 1 History of graphene 1
1.1 Preface 1
1.2 Roadmap of graphene 4
1.3 Scope of the thesis 5
1.4 Reference 6
Chapter 2 Graphene related synthesis, theories and mechanisms 8
2.1 Synthesis of graphene 9
2.1.1 Mechanically cleaved graphene 9
2.1.2 CVD-graphene 9
2.1.3 Reduced graphene oxide 10
2.2 Properties of graphene 11
2.2.1 Electrical property 11
2.2.2 Optical property 13
2.3 Raman characterization 15
2.3.1 D band of graphene 15
2.3.2 G band of graphene 16
2.3.2.1 Peak position and FWHM as a function of doping level 17
2.3.2.2 Temperature dependence 20
2.3.3 2D band of graphene 22
2.4 Doping effect 24
2.4.1 Chemical doping 24
2.4.2 Substitutional doping 26
2.5 Reference 29
Chapter 3 Experimental 37
3.1 Material sources 37
3.2 Preparation procedure for graphene 38
3.2.1 Furnace 38
3.2.2 Transfer process 39
3.3 Characterization of composites 40
3.3.1 Absorption spectroscopy 40
3.3.2 Raman spectroscopy 40
3.3.3 X-ray photoelectron spectroscopy (XPS) 41
3.3.4 Ultraviolet photoelectron spectroscopy (UPS) 41
3.3.5 X-ray absorption (XAS) and emission (XES) spectra 41
3.3.6 Fouier transform infrared (FTIR) 42
3.3.7 Auger electron spectroscopy (AES) 42
3.3.8 Hall measurement 42
3.3.9 Field effect transistor (FET) 43
3.4 Morphology 44
3.4.1Transmission electron microscopy (TEM) 44
3.4.2 Atomic force microscopy (AFM) 44
3.5 Computer simulations 45
Chapter 4 Correlating defect density in CVD-graphene by Raman study 46
4.1 Characterization of CVD graphene with different defect density 46
4.2 Copper analysis by Auger electron spectroscopy (AES) 50
4.3 Morphology of CVD-graphene on copper 53
4.4 Different defect density of graphene 55
4.5 Temperature-dependent Raman spectra 67
4.6 Remark 72
4.7 Reference 73
Chapter 5 Chemical doping: self-assembly of polyaniline on CVD-graphene: a scalable production of transparent conducting films with enhanced electrical property 79
5.1 Introduction of chemical doping 79
5.2 PANI-modified graphene preparation 81
5.3 Identification PANI-modified graphene by optical analysis 83
5.4 Charge distribution calculation 87
5.5 Raman characterization of PANI-modified with difference modification time 90
5.6 Electronic property measurement 93
5.7 Transmittance and sheet resistance measurement on PANI/grapheme with different defect density 94
5.8 Remark 96
5.9 Reference 97
Chapter 6 Substituent doping: B and N co-doped graphene for band gap engineering 100
6.1 Introduction 100
6.2 Experimental process 102
6.2.1 Temperature control of precursor 103
6.2.1 Flow rate control of methane at the same temperature of the precursor 104
6.3 Results and Discussion 105
6.3.1 Identification of BN quantity 105
6.3.2 Raman characterization of graphene & BNG 109
6.3.3 Optical band gap analysis 113
6.3.4 Transmission electron microscopy analysis 115
6.3.5 Map the band gap by XES & XAS 121
6.3.5 Electrical characterization by the field effect device 123
6.4 Remark 127
6.5 Reference 128
Chapter 7 Conclusion 132

Figures
Figure 1.1 Related material of graphene 2
Figure 1.2 Number of publication on graphene as a function of years 3
Figure 1.3 Graphene applications as a function of year 4
Figure 2.1 Electrical properties of graphene (a-d) and conventional two dimensional systems (e–i) 13
Figure 2.2 Plot of the transmittance with monolayer and bilayer graphene 14
Figure 2.3 Plot of the transmittance as a function of wavelength with number of layers 14
Figure 2.4 D band inelastic scattering process 16
Figure 2.5 Phonon dispersion curves of simulation (lines) and experimental (points) 17
Figure 2.6 (a) The diagram of the experiment. The black dotted on graphene (blue stripe), which is the polymer electrolyte (PEO t LiClO4). The left image shows the optical image of a single-layer graphene and drain gold electrodes. Scale bar: 5 mm. The right cartoon is the illustration of the top gating, with Li+ (magenta) and ClO4 - (cyan) ions and the Debye layers. (b) Position of the G band, (c) FWHM of G band, (d) 2D/G ratio as a function of the electron concentration 19
Figure 2.7 (a) Optical image of th exfoliated graphene on the SiO2. (b) Raman spectra of the monolayer graphene sample of (a), the suspended graphene (red solid line) and supported graphene (blue dashed line). (c) Defect reign of graphene on Raman spectra. (d) Detailed comparison of the G mode, both for suspend and support graphene. The red open circles and blue open squares, for suspended and supported graphene, are the experiment data, respectively. On the side, the solid lines are fit with Voigt profiles. 20
Figure 2.8 Temperature dependence as a function of the G band for the single- (a) and bilayer (b) graphene. The insets show G band 21
Figure 2.9 Double resonance process of 2D band 23
Figure 2.10 Gases sensitivity of graphene 26
Figure 3.1 Schematic diagram of the experimental setup 38
Figure 3.2 Methodology used for the deposition of graphene 39
Figure 3.3 Transfer process of graphene 39
Figure 4.1 AES spectra of Cu foil obtained at different temperatures 51
Figure 4.2 AES spectra of Cu foil depicting the evolution of (a) S, (b) C, (c) N and (d) O regions with temperature 51
Figure 4.3 AES spectra of Cu foil after annealing at 1000 C for two days 52
Figure 4.4 The (a,b) SEM and (c) AFM images of CVD-graphene showing wrinkled structure. The scale bar for SEM images is 300 nm and the AFM image is 5 × 5m 54
Figure 4.5 (a,b) AFM images of CVD-graphene on Cu foil (before transfer). (c) Schematic showing the possible mechanism how wrinkled structure formed after transfer process. (d) Cross-sessional analysis of the graphene/Cu along the white line in (b). The AFM images are (a) 10 × 10 um and (b) 3 × 3 um, respectively. 54
Figure 4.6 A series of Raman spectra proving the amorphization trajectory, ranging from single crystal graphene (MCG) to amorphous graphene. 55
Figure 4.7 Illustration of amorphization trajectory for CVD-graphene. The nanocrystallization stage describes the single-crystal graphene (MCG) evolves into multi-crystal graphene (LDG and HDG); the amorphization stage depicts the process of incorporation of large amount of amorphous phase 59
Figure 4.8 Optical images along with Raman contour plots of MCG (upper row), LDG (middle row), and HDG (bottom row), respectively. The Raman images were plotted using fitted parameters of ID/IG ratio, I2D/IG ratio, and width(2D), as noted at the corner of each plots. The red arrows in MCG image indicate multilayer areas and the black arrows in CVD-graphene suggest the wrinkled structures formed during transfer process 62
Figure 4.9 Plots of (a,d), position(2D) (b,e), width(G), and (c,f) I2D/IG ratio as a function of position(G). The left-hand parts used fitted parameters from spatial mapping of four samples, and the right-hand parts compared the data of different produced samples 66
Figure 4.10 Temperature dependence of the G peak position for (■) MCG, (○) LDG, and (◇) LAG. The lines are the linear fitting of data of each group and the fitted slopes were extracted as the temperature coefficient 69
Figure 5.1 Schematic diagram of the PANI synthesizing process 81
Figure 5.2 Schematic illustration of the graphene transferring process and the subsequent modification of PANI 82
Figure 5.3 The FTIR spectra of pristine PANI and PANI-graphene. The pristine PANI was powder prepared by chemical polymerization 84
Figure 5.4 XPS spectra of (a) C1s and (b) N1s core levels for PANI-graphene. The black lines are raw data and red lines are fitting spectra 85
Figure 5.5 UPS spectra of graphene and PANI-graphene 86
Figure 5.6 The electronic structure and the charge redistribution diagram of pristine PANI/graphene system 88
Figure 5.7 The amount of the charge transfer from graphene against PANI doping level represented by the number of chlorine ions (Cl-) per unit cell 89
Figure 5.8 (a) Raman spectra of pristine graphene, pristine PANI and PANI-graphene with different modification time. The evolution of Raman parameters of (b) G peak position, (c) 2D peak position, and (d) 2D/G intensity ration 92
Figure 5.9 The sheet resistance as a function of PANI modification time 93
Figure 5.10 Transmittance measurement of graphene films in visible region. Inset figure shows Raman spectrum of graphene with different defect density (a) lower quality (b) high quality 95
Figure 6.1 (a) Schematic diagram of the experimental set up used in the present study. (b) Methodology used for the deposition of BNG films 102
Figure 6.2 BN concentration versus precursor temperature 103
Figure 6.3 BN concentration versus methane flow rate 104
Figure 6.4 Typical XPS spectra of (a) C 1s, (b) N 1s and (c) B 1s core levels for 8BNG film. The empty circles are raw data and solid lines are the fitted spectra. (d) N 1s spectra for different BNG films as a function of increasing BN concentration. Dashed lines are guide to eyes 108
Figure 6.5 Typical AES spectra for 2BNG sample 109
Figure 6.6 (a) Raman spectra of BNG films acquired using 633 nm wavelength laser. Raman area mapping of ID/IG ratio for (b) 2BNG and (c) 6BNG films 112
Figure 6.7 UV-Raman spectra of 27BNG films 113
Figure 6.8 UV-vis spectra for different BNG films depicting the evolution of h-BN phase 114
Figure 6.9 Tauc's plot for pristine graphene and BNG films 115
Figure 6.10 EELS analysis of (a) 2BNG and (b) 8 BNG film 117
Figure 6.11 (a) High-resolution TEM image of a BNG film showing the layer number, and the inset represents the electron diffraction pattern taken at the corresponding region. (b) High resolution TEM image of 2BNG sample with Fast-Fourier Transform (FFT) in the inset showing only graphene crystalline structure (c) High resolution TEM image of 8BNG sample depicting the distribution of h-BN domains (encircled regions) in graphene. The inset is FFT of the image indicating the presence of crystalline domains of both graphene and h-BN. (Scale Bar is 5 nm). (d) Schematic diagram depicting the structural evolution in BNG films with increase in BN concentration. Carbon, nitrogen and boron atoms are represented by black, red and blue circles, respectively 118
Figure 6.12 EELS mapping for C, B and N in 8BNG sample 119
Figure 6.13 (a) XPS spectra of N1s peak and (b) Raman spectra of BNG smaples grown at different flow rates of CH4 120
Figure 6.14 XES and XAS spectra of HOPG, pristine graphene and BNG films. A band gap of around 600 meV is observed for 6BNG sample 123
Figure 6.15 (a) Resistance versus temperature curve for pristine graphene and 2BNG film. Plot of Ids as a function of Vg at Vds = 1 V for back gated FET device for (b) pristine graphene and (c) 2BNG sample at different temperatures. All measurements were carried out in a vacuum of the order of 10-4 mbar 125

Tables
Table 4-1 The fitted Raman parameters of MCG and CVD-graphene with different degree of disorder showing the structural evolution stages. The average and standard deviation were given from fitted parameters of Raman spectra obtained from different regions and different produced samples 70
Table 4-2 Temperature coefficient for CVD-graphene and other carbon materials 71
Table 5-1 The sheet resistance and transmittance of pristine graphene and PANI-graphene with both defect density 95
Table 6- 1 Defect density and crystallite size in BNG films calculated using ID/IG ratio obtained from Raman spectra 126
dc.language.isoen
dc.title化學氣相沉積石墨烯之缺陷調控:製程控制與摻雜效應zh_TW
dc.titleDefect Engineering of CVD-graphene: Process Control and Doping Effectsen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.coadvisor陳貴賢,林麗瓊(chenlc@ntu.edu.tw)
dc.contributor.oralexamcommittee陳俊維(chunwei@ntu.edu.tw),陳瑞山,黃智賢
dc.subject.keyword石墨烯,拉曼,摻雜效應,導電薄膜,半導體,zh_TW
dc.subject.keywordgraphene,Raman,doping effect,transparent conductivity film,semiconductor,en
dc.relation.page133
dc.rights.note有償授權
dc.date.accepted2014-02-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
4.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved