請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58532完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊安綏(An-Suei Yang) | |
| dc.contributor.author | Hung-Ju Chang | en |
| dc.contributor.author | 張弘儒 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:18:46Z | - |
| dc.date.available | 2014-03-08 | |
| dc.date.copyright | 2014-03-08 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-09 | |
| dc.identifier.citation | Adkar, B.V., Tripathi, A., Sahoo, A., Bajaj, K., Goswami, D., Chakrabarti, P., Swarnkar, M.K., Gokhale, R.S., and Varadarajan, R. (2012). Protein model discrimination using mutational sensitivity derived from deep sequencing. Structure 20, 371-381.
Ahmad, S., Kumar, V., Ramanand, K.B., and Rao, N.M. (2012a). Probing protein stability and proteolytic resistance by loop scanning: a comprehensive mutational analysis. Protein Sci 21, 433-446. Ahmad, Z.A., Yeap, S.K., Ali, A.M., Ho, W.Y., Alitheen, N.B., and Hamid, M. (2012b). scFv antibody: principles and clinical application. Clin Dev Immunol 2012, 980250. Araya, C.L., and Fowler, D.M. (2011). Deep mutational scanning: assessing protein function on a massive scale. Trends Biotechnol 29, 435-442. Araya, C.L., Fowler, D.M., Chen, W., Muniez, I., Kelly, J.W., and Fields, S. (2012). A fundamental protein property, thermodynamic stability, revealed solely from large-scale measurements of protein function. Proc Natl Acad Sci U S A 109, 16858-16863. Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N., and Tawfik, D.S. (2006). Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929-932. Billings, K.S., Best, R.B., Rutherford, T.J., and Clarke, J. (2008). Crosstalk between the protein surface and hydrophobic core in a core-swapped fibronectin type III domain. J Mol Biol 375, 560-571. Chowdhury, P.S., and Vasmatzis, G. (2003). Engineering scFvs for improved stability. Methods Mol Biol 207, 237-254. Colombo, M., Ricagno, S., Barbiroli, A., Santambrogio, C., Giorgetti, S., Raimondi, S., Bonomi, F., Grandori, R., Bellotti, V., and Bolognesi, M. (2011). The effects of an ideal beta-turn on beta-2 microglobulin fold stability. J Biochem 150, 39-47. Dalby, P.A. (2003). Optimising enzyme function by directed evolution. Curr Opin Struct Biol 13, 500-505. Eigenbrot, C., Randal, M., Presta, L., Carter, P., and Kossiakoff, A.A. (1993). X-ray structures of the antigen-binding domains from three variants of humanized anti-p185HER2 antibody 4D5 and comparison with molecular modeling. J Mol Biol 229, 969-995. Ewert, S., Honegger, A., and Pluckthun, A. (2003a). Structure-based improvement of the biophysical properties of immunoglobulin VH domains with a generalizable approach. Biochemistry 42, 1517-1528. Ewert, S., Huber, T., Honegger, A., and Pluckthun, A. (2003b). Biophysical properties of human antibody variable domains. J Mol Biol 325, 531-553. Fowler, D.M., Araya, C.L., Fleishman, S.J., Kellogg, E.H., Stephany, J.J., Baker, D., and Fields, S. (2010). High-resolution mapping of protein sequence-function relationships. Nat Methods 7, 741-746. Fuchs, P.F., and Alix, A.J. (2005). High accuracy prediction of beta-turns and their types using propensities and multiple alignments. Proteins 59, 828-839. Fuh, G., Wu, P., Liang, W.C., Ultsch, M., Lee, C.V., Moffat, B., and Wiesmann, C. (2006). Structure-function studies of two synthetic anti-vascular endothelial growth factor Fabs and comparison with the Avastin Fab. J Biol Chem 281, 6625-6631. Hietpas, R.T., Jensen, J.D., and Bolon, D.N. (2011). Experimental illumination of a fitness landscape. Proc Natl Acad Sci U S A 108, 7896-7901. Honegger, A. (2008). Engineering antibodies for stability and efficient folding. Handb Exp Pharmacol, 47-68. Hsu, H.J., Chang, H.J., Peng, H.P., Huang, S.S., Lin, M.Y., and Yang, A.S. (2006). Assessing computational amino acid beta-turn propensities with a phage-displayed combinatorial library and directed evolution. Structure 14, 1499-1510. Huang, Y.J., Chen, I.C., Yu, C.M., Lee, Y.C., Hsu, H.J., Ching, A.T., Chang, H.J., and Yang, A.S. (2010). Engineering anti-vascular endothelial growth factor single chain disulfide-stabilized antibody variable fragments (sc-dsFv) with phage-displayed sc-dsFv libraries. J Biol Chem 285, 7880-7891. Huston, J.S., McCartney, J., Tai, M.S., Mottola-Hartshorn, C., Jin, D., Warren, F., Keck, P., and Oppermann, H. (1993). Medical applications of single-chain antibodies. Int Rev Immunol 10, 195-217. Jager, M., Deechongkit, S., Koepf, E.K., Nguyen, H., Gao, J., Powers, E.T., Gruebele, M., and Kelly, J.W. (2008). Understanding the mechanism of beta-sheet folding from a chemical and biological perspective. Biopolymers 90, 751-758. Jakob, R.P., Zierer, B.K., Weininger, U., Hofmann, S.D., Lorenz, S.H., Balbach, J., Dobbek, H., and Schmid, F.X. (2010). Elimination of a cis-proline-containing loop and turn optimization stabilizes a protein and accelerates its folding. J Mol Biol 399, 331-346. Jermutus, L., Honegger, A., Schwesinger, F., Hanes, J., and Pluckthun, A. (2001). Tailoring in vitro evolution for protein affinity or stability. Proc Natl Acad Sci U S A 98, 75-80. Jespers, L., Schon, O., Famm, K., and Winter, G. (2004). Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol 22, 1161-1165. Jung, S., and Pluckthun, A. (1997). Improving in vivo folding and stability of a single-chain Fv antibody fragment by loop grafting. Protein Eng 10, 959-966. Kazlauskas, R.J., and Bornscheuer, U.T. (2009). Finding better protein engineering strategies. Nat Chem Biol 5, 526-529. Knappik, A., and Pluckthun, A. (1995). Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng 8, 81-89. Kunkel, T.A. (1985). Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A 82, 488-492. Lin, Y.H. (2009). The Role of SIK2 in Aggresome Processing. Institute of Molecular Medicine College of Medicine, National Taiwan University Master Thesis. Lunzer, M., Miller, S.P., Felsheim, R., and Dean, A.M. (2005). The biochemical architecture of an ancient adaptive landscape. Science 310, 499-501. Marcelino, A.M., and Gierasch, L.M. (2008). Roles of beta-turns in protein folding: from peptide models to protein engineering. Biopolymers 89, 380-391. Miller, B.R., Demarest, S.J., Lugovskoy, A., Huang, F., Wu, X., Snyder, W.B., Croner, L.J., Wang, N., Amatucci, A., Michaelson, J.S., and Glaser, S.M. (2010). Stability engineering of scFvs for the development of bispecific and multivalent antibodies. Protein Eng Des Sel 23, 549-557. Monsellier, E., and Bedouelle, H. (2006). Improving the stability of an antibody variable fragment by a combination of knowledge-based approaches: validation and mechanisms. J Mol Biol 362, 580-593. Moses, A.M., and Davidson, A.R. (2011). In vitro evolution goes deep. Proc Natl Acad Sci U S A 108, 8071-8072. Nagi, A.D., Anderson, K.S., and Regan, L. (1999). Using loop length variants to dissect the folding pathway of a four-helix-bundle protein. J Mol Biol 286, 257-265. Nemazee, D. (2006). Receptor editing in lymphocyte development and central tolerance. Nat Rev Immunol 6, 728-740. Peterson, E., Owens, S.M., and Henry, R.L. (2006). Monoclonal antibody form and function: manufacturing the right antibodies for treating drug abuse. AAPS J 8, E383-390. Poelwijk, F.J., Kiviet, D.J., Weinreich, D.M., and Tans, S.J. (2007). Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383-386. Pozzi, N., Chen, R., Chen, Z., Bah, A., and Di Cera, E. (2011). Rigidification of the autolysis loop enhances Na(+) binding to thrombin. Biophys Chem 159, 6-13. Reetz, M.T., and Carballeira, J.D. (2007). Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2, 891-903. Rose, G.D., Gierasch, L.M., and Smith, J.A. (1985). Turns in peptides and proteins. Adv Protein Chem 37, 1-109. Rose, G.D., Young, W.B., and Gierasch, L.M. (1983). Interior turns in globular proteins. Nature 304, 654-657. Rotondi, K.S., and Gierasch, L.M. (2003). Role of local sequence in the folding of cellular retinoic abinding protein I: structural propensities of reverse turns. Biochemistry 42, 7976-7985. Schlinkmann, K.M., Honegger, A., Tureci, E., Robison, K.E., Lipovsek, D., and Pluckthun, A. (2012). Critical features for biosynthesis, stability, and functionality of a G protein-coupled receptor uncovered by all-versus-all mutations. Proc Natl Acad Sci U S A 109, 9810-9815. Simpson, E.R., Meldrum, J.K., and Searle, M.S. (2006). Engineering diverse changes in beta-turn propensities in the N-terminal beta-hairpin of ubiquitin reveals significant effects on stability and kinetics but a robust folding transition state. Biochemistry 45, 4220-4230. Smith, J.A., and Pease, L.G. (1980). Reverse turns in peptides and proteins. CRC Crit Rev Biochem 8, 315-399. Steipe, B. (2004). Consensus-based engineering of protein stability: from intrabodies to thermostable enzymes. Methods Enzymol 388, 176-186. Stemmer, W.P. (1994). Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389-391. Tada, M., Kobashigawa, Y., Mizuguchi, M., Miura, K., Kouno, T., Kumaki, Y., Demura, M., Nitta, K., and Kawano, K. (2002). Stabilization of protein by replacement of a fluctuating loop: structural analysis of a chimera of bovine alpha-lactalbumin and equine lysozyme. Biochemistry 41, 13807-13813. Trevino, S.R., Schaefer, S., Scholtz, J.M., and Pace, C.N. (2007). Increasing protein conformational stability by optimizing beta-turn sequence. J Mol Biol 373, 211-218. Wang, N., Smith, W.F., Miller, B.R., Aivazian, D., Lugovskoy, A.A., Reff, M.E., Glaser, S.M., Croner, L.J., and Demarest, S.J. (2009). Conserved amino acid networks involved in antibody variable domain interactions. Proteins 76, 99-114. Worn, A., and Pluckthun, A. (1998). Mutual stabilization of VL and VH in single-chain antibody fragments, investigated with mutants engineered for stability. Biochemistry 37, 13120-13127. Worn, A., and Pluckthun, A. (1999). Different equilibrium stability behavior of ScFv fragments: identification, classification, and improvement by protein engineering. Biochemistry 38, 8739-8750. Worn, A., and Pluckthun, A. (2001). Stability engineering of antibody single-chain Fv fragments. J Mol Biol 305, 989-1010. Yang, A.S., Hitz, B., and Honig, B. (1996). Free energy determinants of secondary structure formation: III. beta-turns and their role in protein folding. J Mol Biol 259, 873-882. Yu, C.M., Peng, H.P., Chen, I.C., Lee, Y.C., Chen, J.B., Tsai, K.C., Chen, C.T., Chang, J.Y., Yang, E.W., Hsu, P.C., et al. (2012). Rationalization and design of the complementarity determining region sequences in an antibody-antigen recognition interface. PLoS One 7, e33340. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58532 | - |
| dc.description.abstract | 儘管相關研究已證實環狀區對於蛋白質摺疊過程的重要性,但是環狀區本身序列之多變性,對於憑藉資料庫中有限結構資訊的傳統研究方式來說依舊是一大挑戰,特別是在於如何找出環狀區中對於結構穩定性有決定性影響的序列這一方面。因此,我們希望能透過結合全面性突變 (comprehensive mutagenesis)、次世代定序以及高通量功能性分析的策略來解決這個難題。由此策略所取得的大量資訊可以幫助我們有效地去進一步探討蛋白質目標區域中有關序列-結構-功能之間的關係。本研究以一個經過抗體共通性序列 (consensus sequence) 設計過的單鏈多變域片段抗體 (single chain variable fragment, scFv) 上的十數個環狀區作為我們研究的目標。與先前針對蛋白質上每一個序列位置做單點飽和突變之策略不同的是,本實驗採用同時對蛋白質上目標環狀區突變六到七個胺基酸的全面性突變方式來建構噬菌體呈現資料庫。在早期的研究當中,認為在環狀區裡重要的是其共通性序列或者是偏好形成轉折 (turn) 的胺基酸序列,但在本研究結果當中發現真正重要的應該是與形成蛋白質三級結構相關的序列。我們同時藉由電腦計算以及實驗的方式去分析各種不同的突變株群,它們其中大多數都比原生株有更好的熱穩定性與表現量。總結來說,本研究提供了一種新的策略去探索在自然界當中尚未被發現的序列與功能相關性。 | zh_TW |
| dc.description.abstract | Despite growing evidence indicates the importance of loop in protein folding process, the hyper variety of loop sequence composition is still the major challenge for the traditional studies which are based on limited structural information to determine the functional key residues within the loop region. This conundrum can be resolved by a new strategy based on the combination of comprehensive mutational analysis, next generation sequencing (NGS), and high throughput functional assay. The tremendous data resulting from this strategy will be able to help us exploring the sequence-structure-function relationships in local protein regions effectively. The 6 CDRs and 10 non-CDR loops in variable domains of a model single chain variable fragment (scFv) which have been optimized with consensus sequence approach are used as our study platform. Different from previous studies based on numerous sets of single site saturated mutagenesis, we have constructed the scFv synthetic libraries with 6-7 amino acids mutated within the target loop region simultaneously. The results indicate that the essential sequences within the loop regions are dictated by the residues involving tertiary interactions, rather than the consensus sequences or the sequences with high turn propensities. Groups of variants with different sequence features from the wild type sequence are characterized by computational or experimental methods, and they reveal significant improvement in thermal stability and expression level. This study elaborates a new strategy for exploring the protein fitness landscape and possible sequence-function relationship unseen in nature. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:18:46Z (GMT). No. of bitstreams: 1 ntu-103-D96b46016-1.pdf: 4681186 bytes, checksum: f58f1458ca215076eb6713eaf41661cf (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書 ............................................ i
誌謝......................................................ii 中文摘要 ................................................. iv ABSTRACT.................................................. v Highlights .............................................. vi Chapter 1 Introduction ...................................... 1 1.1 The trends of protein engineering ............ 1 1.1.0 Overview of protein engineering ....... 1 1.1.1 Rational design .................. 1 1.1.2 Directed evolution ...................... 2 1.1.3 Next generation sequencing and protein fitness landscape ............................................. 4 1.2 Experimental model ............... 6 1.2.1 Single chain variable fragment (scFv) .... 6 1.2.2 Loops and turns in scFv .............. 8 1.3 Experimental design ....................... 9 Chapter2 Result and Discussion........ 13 2.1 Selection of functional scFv variants from 24 Phage – Displayed libraries by VEGF and Protein A panning ....... 13 2.2 Thermal Stability Assessment of Functional scFv Variants with HTTI experiments................ 14 2.3 Amino Acid Sequence Preferences of the Loops in Functional scFvs ....................... 17 2.4 Comparison of Sequence and Structural Features among the corresponding loops in the VH and VL domain ............. 19 2.4.1 Similar sequence and structural features shared by the corresponding loops in the VH and VL domain ...... 20 2.4.2 Difference between corresponding loops in the VH and VL domain ........... 21 2.5 The comparison of Loop-Sequence features from NGS, Sanger Sequencing, and Antibody Consensus Sequence in the non-CDR loop regions ......... 23 2.6 Thermal Stability Measurements of VEGF-Binding scFv Variants with HTTI ................ 25 2.7 The un-interchangeable hydrogen bonding network connected by polar loop residues which cap the bottom of the lower hydrophobic core .................. 28 2.8 The CDR regions affect the scFv folding and stability ................ 29 2.9 The Structural Differences in scFv variants and their correlation with stability enhancements ..... 31 2.10 The sequence features of another model scFv CR6261 .............. 34 2.11 The stability enhancement Ile-H15 is a deleterious mutation for the wild type scFv Av1.2 .............. 37 2.12 Difference between the Protein fitness landscapes of template scFv Av1.2 and VHL1 thermal stable scFv variant ALKQSI .... 40 Chapter 3 Conclusion .................. 43 References ................ 46 Material and methods ....... 52 Phage scFv library construction...................... 52 b. Functional scFv selection ........................... 52 c. 454 deep sequencing of scFv variants ............. 53 d. Information content from sequence profiles ...... 54 e. High throughput thermal inactivation (HTTI) measurement ....... 55 f. Expression level and thermal inactivation measurements of secreted soluble scFv from a CDR library culture ..... 56 g. Expression and purification scFv protein ............. 57 h. Consensus sequences alignment of huVH3 family .........57 i. Differential Scanning Calorimetry measurements ......................... 57 j. Relative phage expression ratios for phage-displayed libraries .... 58 k. Sequence LOGO generation .............. 59 FIGURES .................... 60 Figure 1. Concise description for the experimental procedure ......... 60 Figure 2. Composite structure for the template scFv Av1.2 binding Protein L. Protein A, and VEGF ........... 61 Figure 3. Comparisons of Phage-Display Selections for Protein A Binding and VEGF Binding ............ 62 FIgure4. Thermal inactivation measurements for scFv-VEGF binding and for scFv-protein A binding ...... 63 Figure 5. Sequence determinants in Av1.2 scFv loop regions ........... 65 Figure 6. Superimposed VH and VL domains of the Av1.2 scFv ....... 67 Figure 7. Comparisons of NGS profiles, Sanger sequence profiles and consensus sequence profiles from natural sequence database ...... 68 Figure 8. Thermal stability measurements of the functional scFv variants selected from each of non-CDR loop libraries ..... 70 Figure 9. Sequence preferences for the hydrogen-bonded networks capping the lower hydrophobic core of the variable domains ......... 72 Figure 10. Expression levels of the soluble scFv libraries and thermal inactivation measurements of the scFvs from the CDR libraries ............ 73 Figure 11. Prism analysis for the key residues which is important for the backbone conformation of Av1.2 non-CDR loop regions ............................ 75 Figure12. Optimization of CR6261 non-CDR loop regions .............. 76 Figure 13. The stability enhancement Ile-H15 is a deleterious mutation to the template scFv Av1.2 ................................. 78 Figure 14. Sequence features of template scFv Av1.2 and VHL1 thermal stable variant ALKQSI ......... 79 APPENDIX 1 ........................................... 81 Figure A1. The template Av1.2 scFv and the locations of the diversified sequence segments in the phage-displayed libraries ...... 82 Figure A2. Panning results of Av1.2 phage-displayed non-CDR loop libraries against VEGF binding ............ 83 Figure A3. Panning results of Av1.2 phage-displayed CDR libraries against Protein A binding .... 84 Figure A4. Relative phage expression ratios of Av1.2 phage-displayed CDR and non-CDR loop libraries ....... 85 Figure A5. The sequence of control model scFv CR6261 and the locations of the diversified sequence segments in the phage-displayed libraries ................... 86 FigureA6. Phylogenesis analysis of VHL1 NGS data ........................ 87 Table A1. Statistics of neucleotide distribution in synthetic NNK sequences........ 88 Table A2. Complexities of Av1.2 phage-displayed CDR and non-CDR loop libraries ................................... 89 Table A3. The number of reads from the NGS data ...... 90 Table A4. Number of sequences for the CDR sequence preferences 91 Table A5. HTTI measurements of scFv variants ........... 92 Table A6. Stability enhancements emerged from HTTI-filtered scFv variants and their correlated q(j,i) values............... 104 Table A7. Low or rare consensus sequences in scFv CR6261 ......... 105 Table A8. The number of structural fragments collected from database...... 106 | |
| dc.language.iso | zh-TW | |
| dc.subject | 次世代定序 | zh_TW |
| dc.subject | 噬菌體呈現 | zh_TW |
| dc.subject | 高通量功能性分析技術 | zh_TW |
| dc.subject | 單鏈多變域片段抗體 | zh_TW |
| dc.subject | Phage display | en |
| dc.subject | Next generation sequencing | en |
| dc.subject | High throughput functional assay | en |
| dc.subject | Single chain variable fragments | en |
| dc.title | 抗體多變域中環狀區的序列特徵與其穩定性決定因子 | zh_TW |
| dc.title | Loop sequence features and stability determinants in antibody variable domains | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 何孟樵(Meng-Chiao Ho) | |
| dc.contributor.oralexamcommittee | 邱國平(Kuo Ping Chiu),李宗璘(Tsung-Lin Li),馬徹(Che Alex Ma) | |
| dc.subject.keyword | 噬菌體呈現,次世代定序,高通量功能性分析技術,單鏈多變域片段抗體, | zh_TW |
| dc.subject.keyword | Phage display,Next generation sequencing,High throughput functional assay,Single chain variable fragments, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-02-10 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
