請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5852
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林達德 | |
dc.contributor.author | Kai-Chiang Chuang | en |
dc.contributor.author | 莊凱強 | zh_TW |
dc.date.accessioned | 2021-05-16T16:17:48Z | - |
dc.date.available | 2013-08-25 | |
dc.date.available | 2021-05-16T16:17:48Z | - |
dc.date.copyright | 2013-08-25 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-16 | |
dc.identifier.citation | 徐嘉鴻。2011。大尺度虛擬實境場景接合與修補演算法之研究。碩士論文。臺北:國立臺灣大學生物產業機電工程所。
賴宗誠。2012。應用多組雙眼攝影機系統進行車前三維環境模型重建。碩士論文。臺北:國立臺灣大學生物產業機電工程所。 Andrews, J. R. and N. Hogan. 1983. Impedance control as a framework for implementing obstacle avoidance in a manipulator. Control of Manufacturing Processes and Robotic Systems. 243-251. Barth, A. and U. Frank. 2009. Estimating the driving state of oncoming vehicles from a moving platform using stereo vision. IEEE Transactions on Intelligent Transportation Systems. 10(4): 560-571. Barth, A. and U. Frank. 2010. Tracking oncoming and turning vehicles at intersections. International IEEE Conference on Intelligent Transportation Systems (ITSC). 861-868. Bay, H., T. Tuytelaars and L. Van Gool. 2006. Surf: Speeded up robust features. In 9th European Conference on Computer Vision. 404-417 Boykov, Y. Y. and M. P. Jolly. 2001. Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images. Proceedings of Internation Conference on Computer Vision. 105-112. Bradski, G. and A. Kaehler. 2008. Learning OpenCV: Computer vision with the OpenCV library. America: O'Reilly Media. Billingsley, J. 2005. Vision Application in Agriculture. The 9thInternational Conference on Mechatronics Technology. 1-6. Chang, C. C. and C. J. Lin, LIBSVM:a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm Chapron, M. 1993. Visualization of Corn Acquired From Stereovision. Conference Proceedings of Systems Engineering in the Service of Humans. 334-338. Cohn, J. F., A. J. Zlochower, J. J. Lien and T. Kanade. 1998. Feature-Point Tracking by Optical Flow Discriminates Subtle Differences in Facial Expression. International Conference on Face and Gesture Recognition. 396-399. Comaniciu, D. and P. Meer. 2002. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence. 24 (5): 603–619. Diaz Alonso, J., E. Ros Vidal, A. Rotter and M. Muhlenberg. 2008. Lane-change decision aid system based on motion-driven vehicle tracking. IEEE Transactions on Vehicular Technology. 57(5): 2736-2746. Dijkstra, E. W. 1959. A note on two problems in connection with graphs. Numerische Mathematik 1: 269-271. Elfes, A. 1987. Sonar-Based Real-World Mapping and Navigation. IEEE Journal of Robotics and Automation. 3(3): 249-265. Ferguson, D., M. Likhacchev and A. Stentz. 2005. A guide to heuristic-based path planning. Proceedings of the international workshop on planning under uncertainty for autonomous systems, international conference on automated planning and scheduling (ICAPS). 9-18. Fischler, M. A. and R. C. Bolles. 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM. 24(6): 381-395. Franke, U., C. Rabe, H. Badino and S. Gehrig. 2005. 6d-vision: Fusion of stereo and motion for robust environment perception. Springer Berlin Heidelberg In Pattern Recognition. 216-223. Freund, Y. and R. E. Schapire. 1995. A decision-theoretic generalization of on-line learning and an application to boosting. Computational learning theory. Springer Berlin Heidelberg. 23-37. Garcia, F., P. Cerri, A. Broggi, J. M. Armingo and A. D. Escalera. 2009. Vehicle Detection Based on Laser Radar. EUROCAST. 391-397. Guivant, J., E. Nebot and S. Baiker. 2000. Autonomous Navigation and Map building Using Laser Range Sensors in Outdoor Applications. Journal of Robotics Systems. 17(10): 565-583. Harris, C. and M. Stephens. 1988. A Combined Corner and Edge Detector. Proceedings of the 4th Alvey Vision Conference. 147-151 Hartley, I. R. 1997. Self-calibration of stationary cameras. International Journal of Computer Vision. 22(1): 5-23. Hirschmuller, H. 2008. Stereo processing by semiglobal matching and mutual information. IEEE Transactions on Pattern Analysis and Machine Intelligence. 30(2): 328-341. Hwang, Y. K. and N. Ahuja. 1992. Gross motion planning: A survey. Computing Surveys. 24(3): 219-291. Jian, G., L. Li and W. Chen. 1998. Fast recursive algorithms for two-dimensional thresholding. Pattern Recognition. 31(3): 295-300. Kasper, D., G. Weidl, T. Dang, G. Breuel, A. Tamke and W. Rosenstiel. 2011. Object-oriented Bayesian networks for detection of lane change maneuvers. IEEE Intelligent Vehicles Symposium (IV). 673-678. Kise, M., Q. Zhang and F. Rovira Mas. 2005. A stereovision-based crop row detection method for tractor-automated guidance. Biosystems Engineering. 90(4): 357-367. Liu, W., C. Song, X. Z. Wen, H. Yuan and H. Zhao. 2007. A monocular-vision rear vehicle detection algorithm. IEEE International Conference on Vehicular Electronics and Safety. 1-6. Lowe, D., G. 2004. Distinctive image features from scale-invariant keypoints. Journal of Computer Vision. 60(2): 91-110. Lv X. L., X. R. Lv and B. F. Lu. 2011. Identification and Location of Picking Tomatoes Based on Machine Vision. IEEE International Conference on Intelligent Computation Technology and Automation (ICICTA). 101-107. Mockel, S., F. Scherer and P. F. Schuster. 2003. Multi-Sensor Obstacle Detection on Railway Tracks. Proceedings IEEE Intelligent Vehicles Symposium. 42-46. Ollis, M. and A. Stentz. 1996. First results in vision-based crop line tracking. Proc. IEEE International Conference on Robotic and Automation. 951-956. Pilarski, T., M. Happold, H. Pangels. M. Ollis, K. Fitzpatrick and A. Stentz. 2002. The Demeter System for Automated Harvesting. Proceedings of the 8th International Topical Meeting on Robotics and Remote Systems. Pocol, C., S. Nedevschi and M. M. Meinecke. 2008. Obstacle Detection Based on Dense Stereovision for Urban ACC Systems. In Proceedings of the 5th International Workshop on Intelligent Transportation. 13-18. Rovira-Mas, F., Q. Zhang, J. F. Reid and J. D. Will. 2005. Hough-transform-based vision algorithm for crop row detection of an automated agricultural vehicle. Proceedings of the Institution of Mechanical Engineers. 219(8): 999-1010. Rovira-Mas, F., Q. Zhang and J. F. Reid. 2004. Automated agricultural equipment navigation using stereo disparity images. Rowley, H. A., S. Baluja and T. Kanade. 1998. Neural Network-Based Face Detection. IEEE Transactions on Pattern Analysis and Machine intelligence. 20(1): 23-38. Safavian, S. R. and D. Landgrebe. A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man and Cybernetics. 21(3): 660-674. Schofield, C. P., J. A. Marchant, R. P. White, N. Brandl and M. Wilson. 1999. Monitoring Pig Growth using a Prototype Imaging System. Journal of Agricultural Engineering Research. 72: 205-210. Sivaraman, S. and M. M. Trivedi. 2013. Looking at Vehicles on the Road: A Survey of Vision-Based Vehicle Detection, Tracking, and Behavior Analysis. IEEE Transactions on Intelligent Transportation Systems. 1-23. Sivaraman, S., B. T. Morris and M. M. Trivedi. 2011. Learning multi-lane trajectories using vehicle-based vision. IEEE International Conference on Computer Vision Workshops (ICCV Workshops). 2070-2076. Sturm, P. F. and S. J. Maybank. 1999. On plane-based camera calibration: A general algorithm, singularities, applications. In Conference on Computer Vision and Pattern Recognition. 432-437. Sun, Z., G. Bebis and R. Miller. 2006. Monocular precrash vehicle detection: features and classifiers. IEEE Transactions on Image Processing. 15(7): 2019-2034. Sural, S., G. Qian and S. Pramanik. 2002. Segmentation and histogram generation using the HSV color space for image retrieval. International Conference on Image Processing. 589-592. Tilneac, M., V. Dolga, S. Grigorescu and M. A. Bitea. 2012. 3D Stereo Vision Measurements for Weed-Crop Discrimination. Electronics and Electrical Engineering. 123(7): 9-12. Trucco., E. and A. Verri. 1998. Introductory techniques for 3-D computer vision. New Jersey: Prentice Hall. Tsai, R. Y. 1987. A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses. IEEE Journal of Robotics and Autimation. 3(4): 323-343. Welch, G. and G. Bishop. 1995. An introduction to the Kalman filter. University of North Carolina at Chapel Hill. Wender, S. and K. Dietmayer. 2008. 3D vehicle detection using a laser scanner and a video camera. IET Intelligent Transport Systems. 2(2): 105-112. Yang, J., J. Y. Yang, D. Zhang, and J. F. Lu. 2003. Feature fusion: parallel strategy vs. serial strategy. Pattern Recognition. 36(6): 1369-1381. Yao, J., C. Lin, A. J. Wang and C. C. Hung. 2010. Path planning for virtual human motion using improved A* star algorithm. Proceedings of the IEEE International Conference on Information Technology. 1154-1158. Yilmaz, A., O. Javed and M. Shah. 2006. Object Tracking: A Survey. ACM Computing Surveys. 38(45): 1-45. Zhang, Z. 1999. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence. 22(11): 1330-1334. Zhu, C. 2011. Video Object Tracking using SIFT and Mean Shift. Master Thesis. Gothenburg: Chalmers University of Technology, Department of Signals and Systems. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5852 | - |
dc.description.abstract | 本研究以兩顆CCD攝影機建構一套雙眼視覺立體影像系統藉以作為車輛與農業環境監控預警系統之應用。此系統將可計算出影像中像素的三維資訊,然後利用此資訊投影至上視圖進行障礙物偵測,再設定幾何限制將障礙物標定於畫面中。針對偵測到之移動障礙物影像,以巴氏距離 (Bhattacharyya distance) 進行結合距離與色彩特徵的計算,再匹配以達到追蹤目的,追蹤到目標物除了可計算取得運動的行進資訊與速度外,還可依此判斷該障礙物之動態行為作為警示作用。除此之外,追蹤到的障礙物其座標位置將會被紀錄並利用卡爾曼濾波器 (Kalman filter) 進行軌跡預測。此外,先透過立體視覺對前方資訊進行地圖的建立,再藉由A* 路徑規劃演算法達到導航與避障的作用。綜合立體視覺系統所得到的環境資訊,以抬頭顯示器之概念加以整合與顯示作為系統的避障模式。經過實驗驗證,本系統已能成功應用於車輛導航和農業的即時環境監測,透過提出的適應性巴氏距離和交叉比對方法在不同場景皆能達到95% 以上的追蹤準確率,軌跡預測誤差平均約25公分。在路徑規劃演算法A* 的應用下,進行區域式地圖搜尋,其搜尋範圍平均約49% ,經實驗驗證能有效應用於即時導航。 | zh_TW |
dc.description.abstract | In this study, a dual camera stereo vision system was built to apply in the pre-crash warning system of vehicle and agriculture environment monitoring. Based on this stereo vision system, the three-dimensional information of each pixel in the image can be estimated. Then, this information was projected to top-view so as to detect and mark obstacles according to some geometric limited. For these detected moving obstacles, we combined depth and color features and calculate Bhattacharyya distance to match different obstacles between the two continuous images in the video sequence. While the targets have been tracked, the motion models will be built. Meanwhile, the state of obstacles and their speed can also be estimated which is useful for warning. In addition, Kalman filter was employed in location prediction with these models, and then we achieve navigation and obstacle avoidance by means of A * path-planning algorithm. Finally, the concept of head-up display design is applied to integrate with the above information ahead of vehicle, which can help users to make correct decision. After experimental validation, our system is capable of applying in the vehicle autonomous navigation and monitoring of agriculture. With the adaptive Bhattacharyya distance and cross matching methods, the experimental results indicate that the performance of target tracking is over 95%, and the trajectory prediction error is about 25 cm. Besides, local path planning technique can be conducted in real time vehicle navigation with 49% of map searching. | en |
dc.description.provenance | Made available in DSpace on 2021-05-16T16:17:48Z (GMT). No. of bitstreams: 1 ntu-102-R00631016-1.pdf: 11652736 bytes, checksum: 13b48cf7728d36f2159662bbd733d5d2 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract ii 目錄 iii 圖目錄 v 表目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 研究目的 3 第二章 文獻探討 5 2.1 立體視覺 5 2.1.1 攝影機校正 5 2.1.2 圖像比對 6 2.1.3 計算深度資訊 7 2.2 障礙物偵測 8 2.3 目標物追蹤 9 2.4 導航系統 14 2.4.1 路徑規劃 14 2.4.2 勢力場 18 2.5 立體視覺的應用 22 2.5.1 車輛上的應用 22 2.5.2 農業上的應用 24 第三章 材料與方法 25 3.1 系統架構 25 3.1.1 硬體架構 25 3.1.2 軟體架構 29 3.2 立體視覺 31 3.2.1 攝影機校正 31 3.2.2 立體視覺理論 34 3.2.3 圖像匹配與像差影像 36 3.3 障礙物偵測方法 38 3.3.1 建立上視圖 39 3.3.2 團塊法 40 3.3.3 設立障礙物條件 42 3.4 障礙物追蹤方法 42 3.4.1 特徵擷取與匹配 43 3.4.2 適應性追蹤演算法 47 3.4.3 速度估算方法 50 3.5 避障模式 51 3.5.1 建立權重地圖 51 3.5.2 卡爾曼濾波器 54 3.5.3 路徑規劃 58 3.5.4 避障標誌辨識方法 62 3.5.5 障礙物動態行為分析 64 3.5.6 警示系統與導航 66 3.6 系統驗證與實驗方法 69 第四章 結果與討論 71 4.1 立體視覺 71 4.1.1 攝影機校正 71 4.1.2 像差影像 75 4.1.3 距離估測 76 4.2 障礙物偵測結果 77 4.3 追蹤方法探討 83 4.3.1 不同特徵之追蹤效果 83 4.3.2 背景影響 86 4.3.3 障礙物速度估算 87 4.3.4 適應性追蹤方法 91 4.3.5 障礙物追蹤結果 92 4.3.6 橫向移動與追蹤效果之探討 96 4.4 避障模式 97 4.4.1 卡爾曼濾波器之探討 97 4.4.2 路徑規劃 100 4.4.3 避障標誌辨識結果 103 4.4.4 導航與警示系統 104 第五章 結論與建議 106 5.1 結論 106 5.2 建議 108 參考文獻 109 | |
dc.language.iso | zh-TW | |
dc.title | 基於立體視覺之即時障礙物追蹤與避障方法 | zh_TW |
dc.title | Real-time Obstacle Tracking and Collision Avoidance Methods Based on Stereo Vision | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江昭皚,林聖泉 | |
dc.subject.keyword | 立體視覺,巴氏距離,卡爾曼濾波器,A*演算法, | zh_TW |
dc.subject.keyword | stereo vision,Bhattacharyya distance,Kalman filter,A star, | en |
dc.relation.page | 114 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2013-08-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf | 11.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。