Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58508
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李美慧(Mei-Hui Li)
dc.contributor.authorRuo-Wen Hungen
dc.contributor.author洪若紋zh_TW
dc.date.accessioned2021-06-16T08:17:50Z-
dc.date.available2017-02-28
dc.date.copyright2014-03-18
dc.date.issued2014
dc.date.submitted2014-02-10
dc.identifier.citationAiassa, V., Barnes, A. I. and Albesa, I. (2010) Resistance to ciprofloxacin by enhancement of antioxidant defenses in biofilm and planktonic Proteus mirabilis. Biochemical and Biophysical Research Communications 393: 84-88.
Ancion, P.-Y., Lear, G. and Lewis, G. D. (2010) Three common metal contaminants of urban runoff (Zn, Cu, & Pb) accumulate in freshwater biofilm and modify embedded bacterial community. Environmental Pollution 158: 2738-2745.
Antal, T. K., Volgusheva, A. A., Kukarskih, G. P., Bulychev, A. A., Krendeleva, T. E. and Rubin, A. B. (2006) Effects of sulfur limitation on photosystem II functioning in Chlamydomonas reinhardtii as probed by chlorophyll a fluorescence. Physiologia Plantarum 128: 360-367.
Baker, A. (2002a) Fluorescence properties of some farm wastes: implications for water quality monitoring. Water Research 36: 189-195.
Baker, A. (2002b) Spectrophotometric discrimination of river dissolved organic matter. Hydrological Processes 16: 3203-3213.
Baker, A. and Inverarity, R. (2004) Protein-like fluorescence intensity as a possible tool for determining river water quality. Hydrological Processes 18: 2927-2945.
Barbour, M. T., Gerritsen, J., Snyder, B. D. and Stribling, J. B. (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, second edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washinton, D.C.
Beliaeff, B. and Burgeot, T. (2002) Integrated biomarker response: a useful tool for ecological risk assessment. Environmental Toxicology and Chemistry 21: 1316-1322.
Bernhardt, E. S. and Palmer, M. A. (2007) Restoring streams in an urbanizing world. Freshwater Biology 52: 738-751.
Betteridge, D. J. (2000) What is oxidative stress? Metabolism 49: 3-8.
Birdwell, J .E. and Engel, A. S. (2010) Characterization of dissolved organic matter in cave and spring waters using UV-Vis absorbance and fluorescence spectroscopy. Organic Geochemistry 41: 270-280.
Bonet, B., Corcoll, N., Acuňa,V., Sigg, L., Behra, R. and Guasch, H. (2013) Seasonal changes in antioxidant enzyme activities of freshwater biofilms in a metal polluted Mediterranean stream. Science of the Total Environment 444: 60-72.
Bonet, B., Coroll, N. and Guasch, H. (2012) Antioxidant enzyme activities as biomarkers of Zn pollution in fluvial biofilms. Ecotoxicology and Environmental Safety 80: 172-178.
Bonnineau, C., Bonet, B., Coroll, N. and Guasch, H. (2011) Catalase in fluvial biofilms: a comparison between different extraction methods and example of application in a metal-polluted river. Ecotoxicology 20: 293-303.
Bonnineau, C., Guasch, H., Proia, L., Ricart, M., Geiszinger, A., Romani, A. and Sabater, S. (2010) Fluvial biofilms: a pertinent tool to assess β-blocker toxicity. Aquatic Toxicology 96: 225-233.
Bonnineau, C., Sague, I. G., Urrea, G. and Guasch, H. (2012) Light history modulates antioxidant and photosynthetic responses of biofilms to both natural (light) and chemical (herbicides) stressors. Ecotoxicology 21: 1208-1224.
Boulton, A. J. (1999) An overview of river health assessment: philosophies, practice, problems and prognosis. Freshwater Biology 41: 469-479.
Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
Broeg, K. and Lehtonen, K. K. (2006) Indices for the assessment of environmental pollution of the Baltic Sea coasts: integrated assessment of a multi-biomarker approach. Marine Pollution Bulletin 53: 508-522.
Bunn, S. E. and Davies, P. M. (2000) Biological processes in running waters and their implications for the assessment of ecological integrity. Hydrobiologia 422/423: 61-70.
Burns, A. and Ryder, D. S. (2001) Potential for biofilms as biological indicators in Australian riverine systems. Ecological Management and Restoration 2: 53-63.
Chrost, R. J. (1990) Microbial ectoenzymes in aquatic environments. In: Aquatic Microbial Ecology Biochemical and Molecular Approaches, Overbeck, J. and Chrost, R. J. (eds.) 47-78. New York: Brock/ Springer Series in Contemporary Bioscience.
Chrost, R. J. (1991) Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In Microbial enzymes in aquatic environments, Chrost, R. J. (ed.) 29-59. Springer-Verlag.
Corcoll, N., Bonet, B., Leira, M. and Guasch, H. (2011) Chl-a fluorescence parameters as biomarkers of metal toxicity in fluvial biofilms: an experimental study. Hydrobiologia 673: 119-136.
Cornet, N. C. (2011) The use of pulse amplitude modulated fluorescence techniques for metal toxicity assessment in fluvial biofilms. Ph. D. dissertation, Universitat de Girona, Gerona.
Costerton, J. W., Cheng, K. J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M. and Marrie, T. J. (1987) Bacterial biofilms in nature and disease. Annual Review of Microbiology 41: 435-464.
Davis, J. C., Minshall, G. W., Robinson, C. T. and Landres, P. (2001) Monitoring wilderness stream ecosystem. In General Technical Report RMRS-GTR-70, 67-72. Ogden: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
Dorigo, U., Berard, A., Bouchez, A., Rimet, F. and Montuelle, B. (2010) Transplantation of microbenthic algal assemblages to assess structural and functional recovery after diuron exposure. Archives of Environmental Contamination and Toxicology 59: 555-563.
Elliott, A. C., and Hynan, L. S. (2011) A SAS macro implementation of a multiple comparison post hoc test for a Kruskal–Wallis analysis. Computer Methods and Programs in Biomedicine 102: 75-80.
Ercal, N., Gurer-Orhan, H. and Aykin-Burns, N. (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal induced oxidative damage. Current Topics in Medicinal Chemistry 1: 529-539.
Fechner, L. C., Gourlay-France, C., Uher, E. and Tusseau-Vuillemin, M. (2010) Adapting an enzymatic toxicity test to allow comparative evaluation of natural freshwater biofilm’s tolerance to metals. Ecotoxicology 19: 1302-1311.
Feio, M. J., Alves, T., Boavida, M., Medeiros, A. and Graca, M. A. S. (2010) Functional indicators of stream health: a river-basin approach. Freshwater Biology 55: 1050-1065.
Fellman, J. B., Hood, E. and Spencer, G. M. (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limonology and Oceanography 55: 2452-2462.
Fent, K., Weston, A. A. and Caminada, D. (2006) Ecotoxicology of human pharmaceuticals. Aquatic Toxicology 76: 122-159.
Giller, P. S., Hillebrand, H., Beringer, U. G., Gessner, O. M., Hawkins, S., Inchausti, P., Ingkis, C., Lesliem H., Malmqvist, B., Monaghan, M. T., Morin, P. J. and O’Mullan, G. (2004) Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environments. OIKOS 104: 423-436.
Guasch, H., Atli, G., Bonet, B., Corcoll, N., Leira, M. and Serra, A. (2010) Discharge and the response of biofilms to metal exposure in Mediterranean rivers. Hydrobiologia 657: 143-157.
Guasch, H., Navarro, E., Serra, A. and Sabater, S. (2004) Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshwater Biology 49: 463-473.
Hall, R. O., Jr. and Meyer, J. L. (1998) The trophic significance of bacteria in a detritus-based stream food web. Ecology 79: 1995-2012.
Harbott, E. L. and Grace, M. R. (2005) Extracellular enzyme response to bioavailability of dissolved organic C in streams of varying catchment urbanization. Journal of the North American Benthological Society 24: 588-601.
Harbott, E. L., Grace, M. R., Webb, J. A. and Hart, B. T. (2005) Small-scale temporal variation and the effect of urbanization on extracellular enzyme activity in streams. Journal of Environmental Monitoring 7: 861-868.
Heath, R. and Packer, L. (1968) Photoperoxidation in isolated chloroplasts. I. kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125: 189-198.
Hill, B. H., McCormick, F. H., Harvey, B.C., Johnson, S. L., Warren, M. L. and Elonen, C. M. (2010) Microbial enzyme activity nutrient uptake and nutrient limitation in forested streams. Freshwater Biology 55: 1005-1019.
Holt, E. A. and Miller, S. W. (2011) Bioindicators: using organisms to measure environmental impacts. Nature Education Knowledge 2(2): 8.
Hong, Y, Hu, H. Y., Xie, X., Sakoda, A., Sagehashi, M. and Li, F. M. (2009) Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquatic Toxicology 91: 262-269.
Hudson, N., Baker, A. and Reynolds, D. (2007) Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters-a review. River Research and Applications 23: 631-649.
Jass, J., Roberts, S. K. and Lappin-Scott, H. M. (2002) Microbes and enzymes in biofilms. In Enzymes in the environment activity, ecology and application, Burns, R. G. and Richard, P. D. (eds.) CRC Press.
Karr, J. R. (1999) Defining and measuring river health. Freshwater Biology 41: 221-234.
Knauert, S. and Knauer, K. (2008) The role of reactive oxygen species in copper toxicity to two freshwater green algae. Journal of Phycology 44: 311-319.
Lam, P. K. S. (2009) Use of biomarkers in environmental monitoring. Ocean and Coastal Management 52: 348-354.
Lawaetz, A. J. and Stedmon, C. A. (2009) Fluorescence intensity calibration using the raman scatter peak of water. Applied Spectroscopy 63: 936-940.
Lawrence, J. R., George, D. W. S., Leonard, I. W. and Thomas, R. N. (2005) Effects of selected pharmaceuticals on riverine biofilm communities. Canadian Journal of Microbiology 51: 655-669.
Leandrini, J. A. and Rodrigues, L. (2008) Temporal variation of periphyton biomass in semilotic environments of the upper Rarana river floodplain. Acta Limnologica Brasiliensia 20: 21-28.
Lear, G., Dopheide, A., Ancion, P. Y., Roberts, K., Washington, V., Smith, J. and Lewis, G. D. (2012) Biofilms in freshwater: their importance for the maintenance and monitoring of freshwater health. In Microbial biofilms current research and application, Lear, G. and Lewis, G. (eds.) 129-151. Caister Academic Press.
Leiniӧ, S. and Lehtonen, K. K. (2005) Seasonal variability in biomarkers in the bivalves Mytilus edulis and Macoma balthica from northern Baltic Sea. Comparative Biochemistry and Physiology, Part C 140: 408-421.
Matthews, R. A., Buikema, A. L., Carns J. and Rodgers, J. H. (1982) Biological monitoring part Ⅱ A-receiving system functional methods, relationships and indices. Water Research 16: 129-139.
Maxwell K. and Johnson, G. N. (2000) Chlorophyll fluorescence- a practical guide. Journal of Experimental Botany 51: 659-668.
McClellan, K., Altenburger, R. and Schmitt-Jansen, M. (2008) Pollution-induced community tolerance as a measure of species interaction in toxicity assessment. Journal of Applied Ecology 45: 1514-1522.
Meyer, J. L., Paul, M. J. and Taulbee, W. K. (2005) Stream ecosystem function in urbanizing landscapes. Journal of the North American Benthological Society 24: 602-612.
Monserrat, J. M., Letts, R. E., Ferreira, J. L. R., Ventura-Lima, J., Amado, L. L., Rocha, A. M., Gorbi, S., Bocchetti, R., Benedetti, M. and Regoli, F. (2012) Biomarkers of oxidative stress: benefits and drawbacks for their application in biomonitoring of aquatic environments. In Oxidative stress in aquatic ecosystems, Abele, D., Vazquez-Medina, J. P. and Zenteno-Savin, T. (eds.) 317-326. Hoboken: Wiley-Blackwell.
Montuelle, B., Dorigo, U., Berard, A., Volatm B., Bouchez, A., Tlili, A., Gouy, V. and Pesce, S. (2010) The periphyton as a multimetric bioindicator for assessing the impact of land use on rivers: an overview of the Ardieres-Morcille experimental watershed (France). Hydrobiologia 657: 123-141.
Ni, L., Acharya, K., Hao, X., Li, S., Li, Y. and Li. Y. (2012) Effects of artemisinin on photosystem Ⅱ performance of Microcystis aeruginosa by In vivo chlorophyll fluorescence. Bulletin of Environmental Contamination and Toxicology 89: 1165-1169.
Perkins, R. G., Kromkamp, J. C., Serodio, J., Lavaud, J., Jesus, B., Mouget, J. L., Lefebvre, S. and Forster, R. M. (2011) The application of variable chlorophyll fluorescence to microphytobenthic biofilms. In Chlorophyll a fluorescence in aquatic sciences: Methods and Applications, Suggett, D. J., Prašil, O. and Borowitzka, M. A. (eds.) 237-275. Springer.
Plafkin, J. L., Barbour M. T., Porter K. D., Gross S. K. and Hughes R. M. (1989) Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. EPA/444/4-89-001. US. Environmental Protection Agency, Washington, DC.
Pohlon, E., Marxsen, J. and Kűsel, K. (2010) Pioneering bacterial and algal communities and potential extracellular enzyme activities of stream biofilms. FEMS Microbiology Ecology 71: 364-373.
Proia, L., Lupini, G., Osorio, V., Perez, S., Barcelo, D., Schwartz, T., Amalfitano, S., Fazi, S., Romani, A. M. and Sabater, S. (2013) Response of biofilm bacterial communities to antibiotic pollutants in a Mediterranean river. Chemosphere 92: 1126-1135.
Proia, L., Morin, S., Peipoch, M., Romani, A. M. and Sabater, S. (2011) Resistance and recovery of river biofilms receiving short pulses of triclosan and diuron. Science of the Total Environment 409: 3129-3137.
Rier, S. T., Nawrocki, K. S. and Whitley, J. C. (2011) Responses of biofilm extracellular enzymes along a stream nutrient enrichment gradient in an agricultural region of north central Pennsylvania, USA. Hydrobiologia 669: 119-131.
Riipinen, M. P., Davy-Bowker, J. and Dobson, M. (2009) Comparison of structural and functional stream assessment methods to detect changes in riparian vegetation and water pH. Freshwater Biology 54: 2127-2138.
Rohaček, K., Soukupova, J. and Bartak, M. (2008) Chlorophyll fluorescence: a wonderful tool to study plant physiology and plant stress. In Plant cell compartments-selected topics, Schoefs, B. (ed.) 41-104. Research Signpost.
Romani, A. M. (2010) Freshwater biofilms. In Biofouling, Dűrr, S. and Thomason, J. C. (eds.) 137-153. Blackwell Publishing.
Romani, A. M., Artigas, J. and Ylla, I. (2012) Extracellular enzymes in aquatic biofilms: microbial interactions versus water quality effects in the use of organic matter. In Microbial biofilms current research and application, Lear, G. and Lewis, G. (eds.) 153-174. Caister Academic Press.
Ryder, D. S. and Miller, W. (2005) Setting goals and measuring success: linking patterns and processes in stream restoration. Hydrobiologia 552: 147-158.
Sabater, S., Guasch, H., Ricart, M., Romanı’, A. M., Vidal, G. and Klunder , C. (2007) Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Analytical and Bioanalytical Chemistry 387: 1425-1434.
Sanderson, H., Dyer, S. D., Price, B. B., Nielsen, A. M., van Compemolle, R., Selby, M., Stanton, K., Evans, A., Ciarlo, M. and Sedlak, R. (2006) Occurrence and weight-of-evidence risk assessment of alkyl sulfates, alkyl ethoxysulfates, and linear alkylbenzene sulfonates (LAS) in river water and sediments. Science of the Total Environment 368: 695-712.
Scott, J. T., Lang, D. A., King, R. S. and Doyle, R. D. (2009) Nitrogen fixation and phosphatase activity in periphyton growing on nutrient diffusing substrata: evidence for differential nutrient limitation in stream periphyton. Journal of the North American Benthological Society 28: 57-68.
Sinsabaugh, R. L., Antibus, R. K. and Linkins, A. E. (1991) An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agriculture, Ecosystems and Environment 34: 43-54.
Sinsabaugh, R. L., Golladay, S. and Linkins, A. E. (1991) Comparison of epilithic and epixylic biofilm development in a boreal river. Freshwater Biology 25: 179-187.
Snoeijs, P., Sylvander, P. and Hӓubner, N. (2011) Oxidative stress in aquatic primary producers as a driving force for ecosystem responses to large-scale environmental changes. In Oxidative stress in aquatic ecosystems, Abele, D., Vazquez-Medina, J. P. and Zenteno-Savin, T. (eds.) 72-88. Hoboken: Wiley-Blackwell.
Stedmon, C. A. and Bro, R. (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods 6: 572-579.
Stoliar, O. B. and Lushchak, V. I. (2012) Environmental pollution and oxidative stress in fish. In Oxidative stress-environmental induction and dietary antioxidants, Lushchak, V. I. (ed.) 131-166. Crotia: INTECH.
Strasser, R. J., Srivastava, A. and Tsimilli-Michael, M. (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Probing Photosynthesis: Mechanism, Regulation and Adaptation, Yunus, M., Pathre, U. and Mohanty, P. (eds.) 445-483. CRC Press.
Tank, J. L. and Dodds, W. K. (2003) Nutrient limitation of epilithic and epixylic biofilms in ten North American streams. Freshwater Biology 48: 1031-1049.
Tiquia, S. M. (2011) Extracellular hydrolytic enzyme activities of the heterotrophic microbial communities of the Rouge river: an approach to evaluate ecosystem response to urbanization. Microbial Ecology 62: 679-689.
Touchette, B. W., Adams, E. C. and Laimbeer, P. (2012) Age-specific responses to elevated salinity in the coastal marsh plant black needlerush (Juncus roemerianus Scheele) as determined through polyphasic chlorophyll a fluorescence transients (OJIP). Marine Biology 159: 2137-2147.
Trasar-Cepeda, C., Leiros, M. C. and Gil-Sotres, F. (2008) Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality. Soil Biology and Biochemistry 40: 2146-2155.
USEPA (1991) ESS Method 150.1: chlorophyll-spectrophotometric.
Valavanidis, A., Vlahogianni, T., Dassenakis, M. and Scoullos, M. (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety 64: 178-189.
Viladomat, R. M. (2010) Effects of priority and emerging pollutants on river biofilms. PhD thesis, Univeristy of Girona, Institut d’Ecologia Aquatica, Spain.
Villeneuve, A., Bouchez, A. and Montuelle, B. (2011) In situ interactions between the effects of season, current velocity and pollution on a river biofilm. Freshwater Biology 56: 2245-2259.
VOrOsmarty, C. J., Mclntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R. and Davies, P. M. (2010) Global threats to human water security and river biodiversity. Nature 467: 555-561.
Wallace, K. J. (2007) Classification of ecosystem services: problems and solutions. Biological Conservation 139: 235-246.
Walsh, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M. and MorganⅡ, R. P. (2005) The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society 24: 706-723.
Williams, C. J., Scott, A. B., Wilson, H. F. and Xenopoulos, M. A. (2012) Effects of land use on water column bacterial activity and enzyme stoichiometry in stream ecosystems. Aquatic Sciences 74: 483-494.
Wu, J. T. (1999) A generic index of diatom assemblages as bioindicator of pollution in the Keelung River of Taiwan. Hydrobiologia 397: 79-87.
Young, R. G. and Collier, K. J. (2009) Contrasting responses to catchment modification among a range of functional and structural indicators of river ecosystem health. Freshwater Biology 54: 2155-2170.
中央氣象局 (2013) 大氣資料庫。
內政部戶政司 (2012) 鄉鎮土地面積與人口密度,http://www.ris.gov.tw/346 (擷取日期:2012.12.21)。
內政部國土測繪中心 (2012) 國土利用調查成果資訊網。http://lui.nlsc.gov.tw/LUWeb/Home/Content.aspx?MUID=89cb9ee9-6a8e-44dc-b14d-82185fa984ad (擷取日期:2012.08.10)。
王漢泉 (2002) 臺灣河川水質魚類指標之研究,環境檢驗所環境調查研究年報。
朱達仁 (2006) 溪流複合式指標評估模式之建構。特有生物研究 8: 35-56.
朱達仁、施君翰、汪淑慧、張睿昇 (2006) 溪流環境評估常使用的量化生態指標簡介,臺灣林業 32(2): 30-39。
行政院環境保護署 (2005) 河川、湖泊及水庫水質採樣通則 (NIEA W104.51C)。
行政院環境保護署 (2006) 基隆河集水區及大漢溪水質改善推動計畫,臺北:美商傑明工程顧問(股)臺灣分公司。
行政院環境保護署 (2007) 中央管河川劃定水區訂定水體分類檢討計畫。
行政院環境保護署 (2012) 全國環境水質監測網,http://wq.epa.gov.tw/WQEPA/Code/Business/Standard.aspx (擷取日期:2012.06.19;2013.7.10)。
李俊璋 (2006) 毒性化學物質環境流布背景調查計畫,行政院環境保護署委託研究計劃。
林郁真 (2008) 水中醫藥類及其代謝之殘留化學物質之檢測技術建立研究 (2/4),行政院環境保護署環境檢驗所。
林曉武 (1999) 淡水河系底泥重金屬之沉降通量與垂直變化,行政院環境保護署委託研究計畫。
徐崇斌 (2005) 基隆河上游水棲昆蟲在環境衝擊下其群聚結構、序列性、循環性與歧異度之變化,國立臺灣大學昆蟲學研究所博士論文。
陳家揚 (2008) 生活污水中個人保健品殘留化學物質之檢測技術建立研究 (2/4),行政院環境保護署環境檢驗所。
陳樹群、彭思顯 (2002) 臺灣河川型態五層分類法研究,中華水土保持學報 33(3):175-190。
陳鴻烈、蔡大偉、呂銘淵 (2009) 最佳水質指標選擇之研究,農林學報,58:145-162。
新北市政府主計處 (2010) 99年專題分析-新北市公共汙水下水道系統接管概況,http://www.bas.ntpc.gov.tw/_file/1528/SG/37591/D.html (擷取日期:2012.12.21)。
新北市政府觀光旅遊局 (2013) 觀光遊憩區遊客人次統計101年,http://tour.tpc.gov.tw/page.aspx?wtp=1&wnd=811 (擷取日期:2013.12.05)。
溫清光 (2006) 臺灣河川水質指數計算伺服器-WebWQI,http://140.116.44.13/ (擷取日期:2013.1.10)。
經濟部水利水水利規劃試驗所 (2007) 基隆河水源開發利用及供水系統初步規畫檢討-計畫區環境生態調查分析,臺北:聯美環保科技股份有限公司。
經濟部水利署第十河川局 (2011) 基隆河整體治理計畫(前期計畫)治理後之河川調查與評估,臺北:國立臺北科技大學。
廖啟政、周昌弘 (2001) 生物多樣性對於生態系統功能的影響,科學發展月刊 29(2):81-90。
甄慧蓮 (2008) 水中陰離子界面活性劑檢測探討,臺北:臺北自來水公司。
蕃薯藤新聞網 (2012) 基隆市汙水下水道接管 今年新增7,393戶,http://yam.taiwanhot.net/portal.php?mod=view&aid=13292 (擷取日期:2012.12.21)。
羅文琴 (2007) 烏溪水系河川型態於物理性棲地特性之探討,國立中興大學水土保持學研究所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58508-
dc.description.abstract基隆河為大臺北地區重要的河川資源,受到人為活動的影響甚劇。過去常以水質與生物性指標做為評估河川生態系統的標的,但對河川生態系統作用的量測著墨甚少。本研究利用生物膜對河川生態系統作用的重要性,分別在七堵、瑞芳、三貂嶺和菁桐四點進行採樣,採樣時間為2012年12月至2013年11月,每月採樣一次,量測生物膜中七種胞外酵素活性 (β-d-glucosidase、alkaline phosphatase、leucine-aminopeptidase、aryl sulfatase、esterase、peroxidase與polyphenol oxidase) 與光合作用效率作為檢視河川生態系統作用的參數,並分析生物膜體內氧化壓力,藉此了解都市型河川在不同人為活動壓力與棲地型態下,造成的河川生態系統作用影響。
根據本研究結果,顯示基隆河中上游河川生態系統作用受人為干擾的影響,光合作用效率 (Fv / Fm指數),於四樣點皆低於正常常態值 (0.7-0.8),表示其初級生產力較低,將可能進一步影響河川生態系的食物鏈平衡與能量傳遞。河道棲地的干擾如河濱植被的移除,使得水中陸源碳減少,造成生物膜胞外酵素中peroxidase與polyphenol oxidase組成比例降低,進而影響碳循環功能。各樣點leucine-aminopeptidase以及esterase組成比例高,突顯基隆河中上游有機物代謝以含氮與酯類物質為主,顯示基隆河中上游受人為汙水排放的影響。此外,各樣點生物膜檢測氧化壓力所造成的脂質過氧化現象,其中以七堵樣點的生物膜反應較大,瑞芳、三貂嶺與菁桐三樣點之生物膜的脂質過氧化彼此間無顯著差異。
過去基隆河調查水質與生物指標所呈現的梯度現象,於本研究中各樣點生物膜呈現之河川生態系統作用特徵有所不同,上游樣點的生態系統作用特徵,顯示明顯的人為活動干擾造成的影響,瑞芳與七堵具有相似的特徵,而菁桐介於瑞芳和三貂嶺之間的特徵型態,展現與以往水質或生物指標不同的情況,依據瑞芳與菁桐的調查結果,表示生態系統作用與水質環境並非單純的線性關係,儘管上游樣點水質呈現良好,但其河川生態系統作用卻可能已經受到干擾而無法提供正常功能。
zh_TW
dc.description.abstractMany anthropogenic disturbances and their effects of aquatic ecosystem are difficult to quantify in urbanized rivers. In this study, we used river biofilms as a bioindicator to understand the effects of human activities on the ecological processes of river ecosystem in a highly urbanized river by examining their extracellular enzyme activities (β-d-glucosidase, alkaline phosphatase, leucine-aminopeptidase, aryl sulfatase, esterase, peroxidase and polyphenol oxidase), chlorophyll a fluorescence and oxidative stress on biofilms monthly from December 2012 to November 2013. We sampled four sites (Chi-Du, Ruei-Fang, San-Diau Ling and Jing-Tong) along the Keelung river which is one of the most polluted and urbanized rivers in Taiwan.
Based on this study, the impact of human activities on biofilm ecological processes showed in four study sites. The removal of riparian plants could change the biofilm extracellular enzyme activities of peroxidase and polyphenol oxidase by influencing lignin degradation. Domestic pollution and sewage caused the high proportion of leucine-aminopeptidase and esterase among four study sites. Results of biofilm Fv/ Fm index from four study sites were all under a pressure state (below the normal level in 0.7-0.8). This phenomenon would influence the balance between food web and energy cycle in the river ecosystem. In addition, effects of oxidative stress were measured in four study sites. Biofilm response of lipid peroxidation in Chi-Du showed more environmental stress than those of the other sites.
In summary, characteristics of biofilm ecological processes in the upper reaches displayed the impact on physical and chemical stresses in the Keelung river which could not be detected only by water quality parameters and biological indexes. Similar patterns of biofilm ecological processes were observed between the upper and the middle reaches. Bases on the results obtained from Ruei-Fang and Jing-Tong sites, the relationship between biofilm ecological processes and water quality might not be linear. The performance of biofilm ecological processes might show under a pressure state at four study sites, even though water quality index exhibited in good to excellent condition at the upper reaches of the Keelung river.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:17:50Z (GMT). No. of bitstreams: 1
ntu-103-R00228006-1.pdf: 5294634 bytes, checksum: 64897f6cb60d05fa953d87281bed1a4e (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要 I
Abstract II
圖目錄 V
表目錄 VI
Abbreviations VII
第一章 緒論 1
第一節 前言 1
第二節 研究目的 3
第二章 文獻回顧 4
第一節 人為活動對河川的影響 4
2.1.1 都市型河川簡介 4
2.1.2 臺灣重要的都市型河川-基隆河 5
第二節 河川健康與環境監測指標 10
2.2.1 河川健康 10
2.2.2 環境監測指標 12
2.2.3 水體環境污染與氧化壓力 14
2.2.4 小結 16
第三節 環境監測群落-生物膜 17
2.3.1 何謂生物膜及其形成過程 17
2.3.2 生物膜特性 18
2.3.3 生物膜於河川生態系統的角色 20
2.3.4 小結 24
第四節 人為活動對生物膜之影響及其相關研究 25
第三章 研究方法 27
第一節 研究區介紹 27
第二節 野外採樣方法 31
3.2.1 採樣時間 31
3.2.2 採樣與樣本保存 31
第三節 室內實驗方法與步驟 32
3.3.1 實驗材料 32
3.3.2 河川物化因子 34
3.3.3 生物膜樣本葉綠素a濃度與生物量 36
3.3.4 生物膜光合作用效率與胞外酵素活性 37
3.3.5 氧化壓力 41
3.3.6 資料分析方法 44
第四章 結果與討論 46
第一節 各樣點生物膜生長之環境因子 46
4.1.1 水質參數 46
4.1.2 水中溶解性有機物 49
4.1.3 生物膜之氧化壓力 52
4.1.4 小結 55
第二節 生物膜物種自異營型態組成 55
第三節 生物膜提供之生態系統作用 58
4.3.1 光合作用效率 58
4.3.2 有機物代謝與營養鹽循環 60
第四節 都市型河川之生態系統作用特徵 63
4.4.1 生態系統作用組成特性 (IBR) 63
4.4.2 生態系統作用之主成分分析 66
4.4.3 小結 69
第五節 生物膜提供之生態系統作用於環境監測的應用性 70
第五章 結論與建議 72
第一節 結論 72
第二節 研究限制與建議 74
參考文獻 75
附錄一 物理棲地評估標準 (水域) 84
附錄一 物理棲地評估標準 (濱水區) 86
附錄二 基隆河中上游樣點物理棲地評估表 87
附錄三 採樣期間每日氣象資料整理 (2012/12至2013/11) 88
附錄四 胞外酵素冬及春季分組資料 89
附錄四 胞外酵素夏及秋季分組資料 90
dc.language.isozh-TW
dc.title人為活動對河川生物膜生態系統作用之影響-以基隆河中上游為例zh_TW
dc.titleEffects of human activities on the ecological processes of river biofilms in the Keelung riveren
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳俊宗(Jiunn-Tzong Wu),黃誌川(Jr-Chuan Huang)
dc.subject.keyword生物膜,河川生態系統作用,胞外酵素,葉綠素螢光偵測,氧化壓力,基隆河,zh_TW
dc.subject.keywordbiofilms,ecological process,extracellular enzyme activity,chlorophyll a fluorescence,oxidative stress,the Keelung river,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2014-02-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地理環境資源學研究所zh_TW
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
5.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved