Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58484
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 管希聖(Hsi-Sheng Goan) | |
dc.contributor.author | Shang-Yu Huang | en |
dc.contributor.author | 黃上瑜 | zh_TW |
dc.date.accessioned | 2021-06-16T08:16:50Z | - |
dc.date.available | 2014-03-08 | |
dc.date.copyright | 2014-03-08 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-02-11 | |
dc.identifier.citation | [1] A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77 (1996) 1413-- 1415.
[2] W. Dur, G. Vidal, J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62 (2000) 062314. [3] O. Guhne, F. Bodoky, M. Blaauboer, Multiparticle entanglement under the in fluence of decoherence, Phys. Rev. A 78 (2008) 060301. [4] H. J. Briegel, R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett. 86 (2001) 910 913. [5] H. Ha ner, W. Hansel, C. F. Roos, J. Benhelm, D. Chek-al kar, M. Chwalla, T. Korber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Guhne, W. Dur, R. Blatt, Scalable multiparticle entanglement of trapped ions, Nature 438 (7068) (2005) 643 646. [6] M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, H.Weinfurter, Experimental realization of a three-qubit entangled w state, Phys. Rev. Lett. 92 (2004) 077901. [7] M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O/'Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, J. M. Martinis, Generation of three-qubit entangled states using superconducting phase qubits, Nature 467 (7315) (2010) 570 573. [8] A. A. Gangat, I. P. McCulloch, G. J. Milburn, Deterministic many-resonator entanglement of nearly arbitrary microwave states via attractive bose-hubbard simulation, Phys.Rev. X 3 (2013) 031009. [9] S. Spilla, R. Migliore, M. Scala, A. Napoli, Ghz state generation of three josephson qubits in the presence of bosonic baths, Journal of Physics B: Atomic, Molecular and Optical Physics 45 (6) (2012) 065501. [10] J. Ferber, F. K. Wilhelm, E cient creation of multipartite entanglement in fl ux qubits, Nanotechnology 21 (27) (2010) 274015. [11] L. S. Bishop, J. M. Chow, J. Koch, A. A. Houck, M. H. Devoret, E. Thuneberg,S. M. Girvin, R. J. Schoelkopf, Nonlinear response of the vacuum rabi resonance, Nat Phys 5 (2) (2009) 105 109. [12] K. Lalumiere, J. M. Gambetta, A. Blais, Tunable joint measurements in the dispersive regime of cavity qed, Phys. Rev. A 81 (2010) 040301. [13] F. Helmer, F. Marquardt, Measurement-based synthesis of multiqubit entangled states in superconducting cavity qed, Phys. Rev. A 79 (2009) 052328. [14] H. M. Wiseman, G. J. Milburn, Quantum theory of eld-quadrature measurements,Phys. Rev. A 47 (1993) 642 662. [15] A. R. R. Carvalho, J. J. Hope, Stabilizing entanglement by quantum-jump based feedback, Phys. Rev. A 76 (1) (2007) 10301. [16] L. Tornberg, G. Johansson, High- delity feedback-assisted parity measurement in circuit qed, Phys. Rev. A 82 (2010) 012329. [17] Z. Liu, L. Kuang, K. Hu, L. Xu, S. Wei, L. Guo, X.-Q. Li, Deterministic creation and stabilization of entanglement in circuit qed by homodyne-mediated feedback control, Phys. Rev. A 82 (2010) 032335. [18] W. Feng, P. Wang, X. Ding, L. Xu, X.-Q. Li, Generating and stabilizing the Greenberger-Horne-Zeilinger state in circuit QED: Joint measurement, Zeno eff ect, and feedback, Phys. Rev. A 83 (4) (2011) 42313. [19] H. M. Wiseman, G. J. Milburn, Quantum Measurement and Control, Cambridge University Press, 2009. [20] M. Sarovar, H.-S. Goan, T. P. Spiller, G. J. Milburn, High-fi delity measurement and quantum feedback control in circuit qed, Phys. Rev. A 72 (2005) 062327. [21] A. Blais, R.-S. Huang, A. Wallra , S. M. Girvin, R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A 69 (2004) 062320. [22] A. Wallra , D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, R. J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature 431 (7005) (2004) 162 167. [23] A. Wallra , D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf, Approaching unit visibility for control of a superconducting qubit with dispersive readout, Phys. Rev. Lett. 95 (2005) 060501. [24] D. I. Schuster, A. Wallra , A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. M. Girvin, R. J. Schoelkopf, ac stark shift and dephasing of a superconducting qubit strongly coupled to a cavity fi eld, Phys. Rev. Lett. 94 (2005) 123602. [25] J. Gambetta, A. Blais, D. I. Schuster, A. Wallra , L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf, Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting, Phys. Rev. A 74 (2006) 042318. [26] A. Blais, J. Gambetta, A. Wallra , D. I. Schuster, S. M. Girvin, M. H. Devoret, R. J. Schoelkopf, Quantum-information processing with circuit quantum electrodynamics, Phys. Rev. A 75 (2007) 032329. [27] J. Gambetta, W. A. Bra , A. Wallra , S. M. Girvin, R. J. Schoelkopf, Protocols for optimal readout of qubits using a continuous quantum nondemolition measurement, Phys. Rev. A 76 (2007) 012325. [28] A. A. Houck, J. A. Schreier, B. R. Johnson, J. M. Chow, J. Koch, J. M. Gambetta, D. I. Schuster, L. Frunzio, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf, Controlling the spontaneous emission of a superconducting transmon qubit, Phys. Rev. Lett. 101 (8) (2008) 080502. [29] V. Bonzom, H. Bouzidi, P. Degiovanni, Dissipative dynamics of circuit-qed in the mesoscopic regime, The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 47 (2008) 133 149, 10.1140/epjd/e2008-00039-9. [30] M. Boissonneault, J. M. Gambetta, A. Blais, Dispersive regime of circuit qed: Photon-dependent qubit dephasing and relaxation rates, Phys. Rev. A 79 (2009) 013819. [31] S. Filipp, P. Maurer, P. J. Leek, M. Baur, R. Bianchetti, J. M. Fink, M. Goppl, L. Ste en, J. M. Gambetta, A. Blais, A. Wallra ff, Two-qubit state tomography using a joint dispersive readout, Phys. Rev. Lett. 102 (20) (2009) 200402. [32] L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, R. J. Schoelkopf, Preparation and measurement of three-qubit entanglement in a superconducting circuit, Nature 467 (7315) (2010) 574 578. [33] P. J. Leek, M. Baur, J. M. Fink, R. Bianchetti, L. Ste en, S. Filipp, A. Wallraff , Cavity quantum electrodynamics with separate photon storage and qubit readout modes, Phys. Rev. Lett. 104 (2010) 100504. [34] S. Filipp, A. F. van Loo, M. Baur, L. Ste en, A. Wallra ff, Preparation of subradiant states using local qubit control in circuit qed, Phys. Rev. A 84 (2011) 061805. [35] M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, R. J. Schoelkopf, Realization of three-qubit quantum error correction with superconducting circuits, Nature 482 (7385) (2012) 382 385. [36] A. Fedorov, L. Ste en, M. Baur, M. P. da Silva, A. Wallra ff, Implementation of a to ffoli gate with superconducting circuits, Nature 481 (7380) (2012) 170 172. [37] J. M. Chow, L. DiCarlo, J. M. Gambetta, A. Nunnenkamp, L. S. Bishop, L. Frunzio, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf, Detecting highly entangled states with a joint qubit readout, Phys. Rev. A 81 (6) (2010) 062325. [38] L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, R. J. Schoelkopf, Demonstration of two-qubit algorithms with a superconducting quantum processor, Nature 460 (7252) (2009) 240 244. [39] N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O'Connell, H. Wang, A. N. Cleland, J. M. Martinis, A. N. Korotkov, Reversal of the weak measurement of a quantum state in a superconducting phase qubit, Phys. Rev. Lett. 101 (2008) 200401. [40] R. Vijay, D. H. Slichter, I. Siddiqi, Observation of quantum jumps in a superconducting artifi cial atom, Phys. Rev. Lett. 106 (2011) 110502. [41] R. Vijay, C. Macklin, D. H. Slichter, S. J. Weber, K. W. Murch, R. Naik, A. N. Korotkov, I. Siddiqi, Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback, Nature 490 (7418) (2012) 77 80. [42] K. W. Murch, U. Vool, D. Zhou, S. J. Weber, S. M. Girvin, I. Siddiqi, Cavity assisted quantum bath engineering, Phys. Rev. Lett. 109 (2012) 183602. [43] K. W. Murch, S. J. Weber, K. M. Beck, E. Ginossar, I. Siddiqi, Reduction of the radiative decay of atomic coherence in squeezed vacuum, Nature 499 (7456) (2013) 62 65. [44] K. W. Murch, S. J. Weber, C. Macklin, I. Siddiqi, Observing single quantum trajectories of a superconducting quantum bit, Nature 502 (7470) (2013) 211 --214. [45] D. Riste, M. Dukalski, C. A. Watson, G. de Lange, M. J. Tiggelman, Y. M. Blanter, K. W. Lehnert, R. N. Schouten, L. DiCarlo, Deterministic entanglement of superconducting qubits by parity measurement and feedback, Nature 502 (7471) (2013) 350 354. [46] J. Q. You, Y. Nakamura, F. Nori, Fast two-bit operations in inductively coupled fl ux qubits, Phys. Rev. B 71 (2005) 024532. [47] J. Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474 (7353) (2011) 589 597. [48] J. Clarke, F. K. Wilhelm, Superconducting quantum bits, Nature 453 (7198) (2008) 1031 1042. [49] I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, J. E. Mooij, Coherent quantum dynamics of a superconducting ux qubit, Science 299 (5614) (2003) 1869 1871. arXiv:http://www.sciencemag.org/content/299/5614/1869.full.pdf. [50] Y. Nakamura, Y. A. Pashkin, J. S. Tsai, Coherent control of macroscopic quantum states in a single-cooper-pair box, Nature 398 (6730) (1999) 786 788. [51] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M. H. Devoret, Manipulating the quantum state of an electrical circuit, Science 296 (5569) (2002) 886 889. arXiv:http://www.sciencemag.org/content/296/5569/886.full.pdf. [52] P. Bertet, I. Chiorescu, G. Burkard, K. Semba, C. J. P. M. Harmans, D. P. DiVincenzo, J. E. Mooij, Dephasing of a superconducting qubit induced by photon noise, Phys. Rev. Lett. 95 (2005) 257002. [53] J. M. Martinis, K. B. Cooper, R. McDermott, M. Ste en, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, C. C. Yu, Decoherence in josephson qubits from dielectric loss, Phys. Rev. Lett. 95 (2005) 210503. [54] F. Yoshihara, K. Harrabi, A. O. Niskanen, Y. Nakamura, J. S. Tsai, Decoherence of fl ux qubits due to 1/f fl ux noise, Phys. Rev. Lett. 97 (2006) 167001. [55] K. Kakuyanagi, T. Meno, S. Saito, H. Nakano, K. Semba, H. Takayanagi, F. Deppe, A. Shnirman, Dephasing of a superconducting fl ux qubit, Phys. Rev. Lett. 98 (2007) 047004. [56] J. M. Chow, L. DiCarlo, J. M. Gambetta, F. Motzoi, L. Frunzio, S. M. Girvin, R. J. Schoelkopf, Optimized driving of superconducting artifi cial atoms for improved single-qubit gates, Phys. Rev. A 82 (2010) 040305. [57] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, R. J. Schoelkopf, Observation of high coherence in josephson junction qubits measured in a three-dimensional circuit qed architecture, Phys. Rev. Lett. 107 (2011) 240501. [58] A. D. Corcoles, J. M. Chow, J. M. Gambetta, C. Rigetti, J. R. Rozen, G. A. Keefe, M. Beth Rothwell, M. B. Ketchen, M. Ste en, Protecting superconducting qubits from radiation, Applied Physics Letters 99 (18) (2011) 181906. [59] C. Rigetti, J. M. Gambetta, S. Poletto, B. L. T. Plourde, J. M. Chow, A. D. Corcoles, J. A. Smolin, S. T. Merkel, J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B. Ketchen, M. Ste en, Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms, Phys. Rev. B 86 (2012) 100506. [60] J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, J. E. Mooij, Demonstration of controlled-not quantum gates on a pair of superconducting quantum bits, Nature 447 (7146) (2007) 836 839. [61] J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallra , A. Blais, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf, Coupling superconducting qubits via a cavity bus, Nature 449 (7161) (2007) 443 447. [62] T. Yamamoto, Y. A. Pashkin, O. Asta ev, Y. Nakamura, J. S. Tsai, Demonstration of conditional gate operation using superconducting charge qubits, Nature 425 (6961) (2003) 941 944. [63] M. A. Sillanpaa, J. I. Park, R. W. Simmonds, Coherent quantum state storage and transfer between two phase qubits via a resonant cavity, Nature 449(7161) (2007) 438 442. [64] A. O. Niskanen, K. Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, J. S. Tsai, Quantum coherent tunable coupling of superconducting qubits, Science 316 (5825) (2007) 723 726. arXiv:http://www.sciencemag.org/content/316/5825/723.full.pdf. [65] J. M. Chow, A. D. Corcoles, J. M. Gambetta, C. Rigetti, B. R. Johnson, J. A. Smolin, J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B. Ketchen, M. Steffen, Simple all-microwave entangling gate for fixed-frequency superconducting qubits, Phys. Rev. Lett. 107 (2011) 080502. [66] A. Dewes, F. R. Ong, V. Schmitt, R. Lauro, N. Boulant, P. Bertet, D. Vion, D. Esteve, Characterization of a two-transmon processor with individual single-shot qubit readout, Phys. Rev. Lett. 108 (2012) 057002. [67] J. M. Chow, J. M. Gambetta, A. D. Corcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, J. R. Rozen, M. B. Ketchen, M. Ste en, Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits, Phys. Rev. Lett. 109 (2012) 060501. [68] J. Palao, R. Koslo , Quantum Computing by an Optimal Control Algorithm for Unitary Transformations, Physical Review Letters 89 (18) (2002) 188301. [69] J. Palao, R. Koslo , Optimal control theory for unitary transformations, Physical Review A 68 (6) (2003) 62308. [70] S. Montangero, T. Calarco, R. Fazio, Robust Optimal Quantum Gates for Josephson Charge Qubits, Physical Review Letters 99 (17) (2007) 170501. [71] I. I. Maximov, Z. Tosner, N. C. Nielsen, Optimal control design of NMR and dynamic nuclear polarization experiments using monotonically convergent algorithms., The Journal of chemical physics 128 (18) (2008) 184505. [72] R. Eitan, M. Mundt, D. J. Tannor, Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods, Physical Review A 83 (5) (2011) 053426. [73] B. Hwang, H.-S. Goan, Optimal control for non-Markovian open quantum systems, Physical Review A 85 (3) (2012) 032321. [74] A. P. Peirce, M. A. Dahleh, H. Rabitz, Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications, Phys. Rev. A 37 (1988) 4950 4964. [75] D. J. Tannor, V. Kazakov, V. Orlov, Time-Dependent Quantum Molecular Dynamics, Springer, 1992. [76] Y.-x. Liu, L. F. Wei, J. S. Tsai, F. Nori, Controllable coupling between flux qubits, Phys. Rev. Lett. 96 (2006) 067003. [77] a. Sporl, T. Schulte-Herbruggen, S. Glaser, V. Bergholm, M. Storcz, J. Ferber, F. Wilhelm, Optimal control of coupled Josephson qubits, Physical Review A 75 (1) (2007) 12302. [78] R. Rolo , W. Potz, Time-optimal performance of Josephson charge qubits: A process tomography approach, Physical Review B 79 (22) (2009) 224516. [79] M. Wenin, R. Rolo , W. Potz, Robust control of josephson charge qubits, Journal of Applied Physics 105 (8) (2009) . [80] M. Wenin, W. Potz, Minimization of environment-induced decoherence in quantum subsystems and application to solid-state-based quantum gates, Phys. Rev. B 78 (2008) 165118. [81] M. Wenin, W. Potz, State-independent control theory for weakly dissipative quantum systems, Phys. Rev. A 78 (2008) 012358. [82] M. Wenin, W. Potz, Optimal control of a single qubit by direct inversion, Phys. Rev. A 74 (2006) 022319. [83] H. Jirari, Optimal control approach to dynamical suppression of decoherence of a qubit, EPL (Europhysics Letters) 87 (4) (2009) 40003. [84] C. Meier, D. J. Tannor, Non-markovian evolution of the density operator in the presence of strong laser elds, J. Chem. Phys. 111 (1999) 3365. [85] S. Welack, M. Schreiber, U. Kleinekathoofer, The in fluence of ultra fast laser pulses on electron transfer in molecular wires studied by a non-markovian density-matrix approach, J. Chem. Phys. 124 (2006) 044712. [86] G.-Q. Li, U. Kleinekathofer, Optimal control of shot noise and fano factor by external fi elds, The European Physical Journal B 76 (2) (2010) 309 319. [87] H. J. Carmichael, Statistical Methods in Quantum Optics 2, Springer Berlin Heidelberg, 2008. [88] Gardiner, Handbook of Stochastic Method, Springer Berlin, 1985. [89] E. Paladino, A. D'Arrigo, A. Mastellone, G. Falci, Decoherence times of universal two-qubit gates in the presence of broad-band noise, New Journal of Physics 13 (9) (2011) 093037. [90] F. Chiarello, E. Paladino, M. G. Castellano, C. Cosmelli, A. D'Arrigo, G. Torrioli, G. Falci, Superconducting qubit manipulated by fast pulses: experimental observation of distinct decoherence regimes, New Journal of Physics 14 (2) (2012) 023031. [91] J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D. G. Cory, Y. Nakamura, J.-S. Tsai, W. D. Oliver, Noise spectroscopy through dynamical decoupling with a superconducting fl ux qubit, Nat Phys 7 (7) (2011) 565 570. [92] F. Yan, S. Gustavsson, J. Bylander, X. Jin, F. Yoshihara, D. G. Cory, Y. Nakamura, T. P. Orlando, W. D. Oliver, Rotating-frame relaxation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution, Nat Commun 4 (2013) . [93] Y. Pashkin, O. Asta ev, T. Yamamoto, Y. Nakamura, J. Tsai, Josephson charge qubits: a brief review, Quantum Information Processing 8 (2-3) (2009) 55 80. [94] M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O/'Connell, H. Wang, A. N. Cleland, J. M. Martinis, Process tomography of quantum memory in a josephson-phase qubit coupled to a two-level state, Nat Phys 4 (7) (2008) 523 526. [95] R. C. Bialczak, M. Ansmann, M. Hofheinz, E. Lucero, M. Neeley, A. D. O/'Connell, D. Sank, H. Wang, J. Wenner, M. Ste en, A. N. Cleland, J. M. Martinis, Quantum process tomography of a universal entangling gate implemented with josephson phase qubits, Nat Phys 6 (6) (2010) 409 413. [96] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, S. Lloyd, Josephson persistent-current qubit, Science 285 (5430) (1999) 1036 1039. arXiv:http://www.sciencemag.org/content/285/5430/1036.full.pdf. [97] W. D. Oliver, Y. Yu, J. C. Lee, K. K. Berggren, L. S. Levitov, T. P. Orlando, Mach-zehnder interferometry in a strongly driven superconducting qubit, Science 310 (5754) (2005) 1653 1657. arXiv:http://www.sciencemag.org/content/310/5754/1653.full.pdf. [98] F. Mallet, F. R. Ong, A. Palacios-Laloy, F. Nguyen, P. Bertet, D. Vion, D. Esteve, Single-shot qubit readout in circuit quantum electrodynamics, Nat Phys 5 (11) (2009) 791 795. [99] S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, M. H. Devoret, Autonomously stabilized entanglement between two superconducting quantum bits, Nature advance online publication (2013) . [100] H. Mabuchi, A. C. Doherty, Cavity quantum electrodynamics: Coherence in context, Science 298 (5597) (2002) 1372 1377. arXiv:http://www.sciencemag.org/content/298/5597/1372.full.pdf. [101] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallra , J. M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf, Resolving photon number states in a superconducting circuit, Nature 445 (7127) (2007) 515 518. [102] F. Deppe, M. Mariantoni, E. P. Menzel, A. Marx, S. Saito, K. Kakuyanagi, H. Tanaka, T. Meno, K. Semba, H. Takayanagi, E. Solano, R. Gross, Twophoton probe of the jaynes-cummings model and controlled symmetry breaking in circuit qed, Nat Phys 4 (9) (2008) 686 691. [103] A. Fragner, M. Goppl, J. M. Fink, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, A. Wallra , Resolving vacuum fluctuations in an electrical circuit by measuring the lamb shift, Science 322 (5906) (2008) 1357 1360. arXiv:http://www.sciencemag.org/content/322/5906/1357.full.pdf. [104] J. M. Fink, M. Goppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, A.Wallra ff, Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system, Nature 454 (7202) (2008) 315 318. [105] S. M. Girvin, M. H. Devoret, R. J. Schoelkopf, Circuit qed and engineering charge-based superconducting qubits, Physica Scripta 2009 (T137) (2009) 014012. [106] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hummer, E. Solano, A. Marx, R. Gross, Circuit quantum electrodynamics in the ultra strong-coupling regime, Nat Phys 6 (10) (2010) 772 776. [107] F. Beaudoin, J. M. Gambetta, A. Blais, Dissipation and ultrastrong coupling in circuit qed, Phys. Rev. A 84 (2011) 043832. [108] M. H. Devoret, R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339 (6124) (2013) 1169 1174. arXiv:http://www.sciencemag.org/content/339/6124/1169.full.pdf. [109] C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.-M. Raimond, S. Haroche, Real-time quantum feedback prepares and stabilizes photon number states, Nature 477 (7362) (2011) 73 77. [110] D. I. Schuster, Circuit quantum electrodynamics, Ph.D. thesis, Yale University (2007). [111] J. Wang, H. M. Wiseman, G. J. Milburn, Dynamical creation of entanglement by homodyne-mediated feedback, Phys. Rev. A 71 (2005) 042309. [112] A. C. Doherty, K. Jacobs, Feedback control of quantum systems using continuous state estimation, Phys. Rev. A 60 (4) (1999) 2700-- 2711. [113] C. Ahn, A. C. Doherty, A. J. Landahl, Continuous quantum error correction via quantum feedback control, Phys. Rev. A 65 (4) (2002) 42301. [114] C. Ahn, H. M. Wiseman, G. J. Milburn, Quantum error correction for continuously detected errors, Phys. Rev. A 67 (5) (2003) 52310. [115] M. Sarovar, C. Ahn, K. Jacobs, G. J. Milburn, Practical scheme for error control using feedback, Phys. Rev. A 69 (5) (2004) 52324. [116] J. Combes, H. M. Wiseman, Quantum feedback for rapid state preparation in the presence of control imperfections, Journal of Physics B: Atomic, Molecular and Optical Physics 44 (15) (2011) 154008. [117] H. Mabuchi, Continuous quantum error correction as classical hybrid control, New Journal of Physics 11 (10) (2009) 105044. [118] K. Sundermann, R. de Vivie-Riedle, Extensions to quantum optimal control algorithms and applications to special problems in state selective molecular dynamics, The Journal of Chemical Physics 110 (4) (1999) 1896. [119] R. Xu, Y. Yan, Y. Ohtsuki, Y. Fujimura, H. Rabitz, Optimal control of quantum non-Markovian dissipation: reduced Liouville-space theory., The Journal of chemical physics 120 (14) (2004) 6600 6608. [120] M. Grace, C. Brif, H. Rabitz, I. a. Walmsley, R. L. Kosut, D. a. Lidar, Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles, Journal of Physics B: Atomic, Molecular and Optical Physics 40 (9) (2007) S103 -S125. [121] F. F. Floether, P. D. Fouquieres, S. G. Schirmer, Robust quantum gates for open systems via optimal control: Markovian versus non-Markovian dynamics, New Journal of Physics 14 (7) (2012) 73023. [122] D. M. Reich, M. Ndong, C. P. Koch, Monotonically convergent optimization in quantum control using Krotov's method., The Journal of chemical physics 136 (10) (2012) 104103. [123] I. Schaefer, R. Koslo , Optimal-control theory of harmonic generation, Physical Review A 86 (6) (2012) 063417. [124] S. G. Schirmer, P. de Fouquieres, E cient algorithms for optimal control of quantum dynamics: the Krotov method unencumbered, New Journal of Physics 13 (7) (2011) 73029. [125] A. I. Konnov, V. A. Krotov, Automation Remote Control 60 (1999) 1427. [126] G. J. Milburn, K. Jacobs, D. F. Walls, Quantum-limited measurements with the atomic force microscope, Phys. Rev. A 50 (1994) 5256 5263. [127] T. A. Brun, H.-S. Goan, Realistic simulations of single-spin nondemolition measurement by magnetic resonance force microscopy, Phys. Rev. A 68 (2003) 032301. [128] J. Gambetta, A. Blais, M. Boissonneault, A. A. Houck, D. I. Schuster, S. M. Girvin, Quantum trajectory approach to circuit qed: Quantum jumps and the zeno eff ect, Phys. Rev. A 77 (2008) 012112. [129] S.-Y. Huang, H.-S. Goan, X.-Q. Li, G. J. Milburn, Generation and stabilization of a three-qubit entangled state in circuit qed via quantum feedback control, Phys. Rev. A 88 (2013) 062311. [130] L. Diosi, N. Gisin, W. T. Strunz, Non-markovian quantum state di usion, Phys. Rev. A 58 (1998) 1699 1712. [131] H. Yang, H. Miao, Y. Chen, Nonadiabatic elimination of auxiliary modes in continuous quantum measurements, Phys. Rev. A 85 (2012) 040101. [132] V. Giovannetti, D. Vitali, Phase-noise measurement in a cavity with a movable mirror undergoing quantum brownian motion, Phys. Rev. A 63 (2001) 023812. [133] C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity assisted cooling schemes, Phys. Rev. A 77 (2008) 033804. [134] Oksendal, Stochastic Di fferential Equations, Springer Berlin, 1992. [135] B. Hu, J. Paz, Y. Zhang, Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise, Physical Review D 45 (8) (1992) 2843 2861. [136] C. H. Fleming, A. Roura, B. L. Hu, Exact analytical solutions to the master equation of quantum Brownian motion for a general environment, Annals of Physics 326 (5) (2011) 1207 1258. [137] L. Diosi, On High-Temperature Markovian Equation for Quantum Brownian Motion, EPL (Europhysics Letters) 22 (1) (1993) 1. [138] F. Haake, R. Reibold, Strong damping and low-temperature anomalies for the harmonic oscillator, Phys. Rev. A 32 (1985) 2462 2475. [139] W. T. Strunz, T. Yu, Convolutionless non-markovian master equations and quantum trajectories: Brownian motion, Phys. Rev. A 69 (2004) 052115. [140] J. J. Halliwell, T. Yu, Alternative derivation of the hu-paz-zhang master equation of quantum brownian motion, Phys. Rev. D 53 (1996) 2012 2019. [141] G. W. Ford, R. F. O'Connell, Exact solution of the hu-paz-zhang master equation, Phys. Rev. D 64 (2001) 105020. [142] W. T. Strunz, F. Haake, Decoherence scenarios from microscopic to macroscopic superpositions, Phys. Rev. A 67 (2003) 022102. [143] K. Keane, A. N. Korotkov, Simple quantum error detection and correction for superconducting qubits, e-print arXiv:1205.1836. [144] J. M. Fink, R. Bianchetti, M. Baur, M. Goppl, L. Ste en, S. Filipp, P. J. Leek, A. Blais, A. Wallra , Dressed collective qubit states and the tavis-cummings model in circuit qed, Phys. Rev. Lett. 103 (2009) 083601. [145] Q.-Q. Wu, L. Xu, Q.-S. Tan, L.-L. Yan, Multipartite entanglement transfer in a hybrid circuit-qed system, International Journal of Theoretical Physics 1 910.1007/s10773-011-1023-4. [146] M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, K. W. Lehnert, Ampli cation and squeezing of quantum noise with a tunable josephson meta-material, Nat Phys 4 (12) (2008) 929 931. [147] F. Mallet, M. A. Castellanos-Beltran, H. S. Ku, S. Glancy, E. Knill, K. D. Irwin, G. C. Hilton, L. R. Vale, K. W. Lehnert, Quantum state tomography of an itinerant squeezed microwave fi eld, Phys. Rev. Lett. 106 (2011) 220502. [148] X.-Y. Lu, S. Ashhab, W. Cui, R. Wu, F. Nori, Two-qubit gate operations in superconducting circuits with strong coupling and weak anharmonicity, New Journal of Physics 14 (7) (2012) 073041. [149] C. Rigetti, A. Blais, M. Devoret, Protocol for universal gates in optimally biased superconducting qubits, Phys. Rev. Lett. 94 (2005) 240502. [150] P. Bertet, C. J. P. M. Harmans, J. E. Mooij, Parametric coupling for superconducting qubits, Phys. Rev. B 73 (2006) 064512. [151] S. Ashhab, S. Matsuo, N. Hatakenaka, F. Nori, Generalized switchable coupling for superconducting qubits using double resonance, Phys. Rev. B 74 (2006) 184504. [152] C. Rigetti, M. Devoret, Fully microwave-tunable universal gates in superconducting qubits with linear couplings and xed transition frequencies, Phys. Rev. B 81 (2010) 134507. [153] A. O. Niskanen, Y. Nakamura, J.-S. Tsai, Tunable coupling scheme for flux qubits at the optimal point, Phys. Rev. B 73 (2006) 094506. [154] K. Harrabi, F. Yoshihara, A. O. Niskanen, Y. Nakamura, J. S. Tsai, Engineered selection rules for tunable coupling in a superconducting quantum circuit, Phys. Rev. B 79 (2009) 020507. [155] M. Grajcar, Y.-x. Liu, F. Nori, A. M. Zagoskin, Switchable resonant coupling of fl ux qubits, Phys. Rev. B 74 (2006) 172505. [156] P. Aliferis, J. Preskill, Fibonacci scheme for fault-tolerant quantum computation, Phys. Rev. A 79 (2009) 012332. [157] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbruggen, S. J. Glaser, Optimal control of coupled spin dynamics: design of {NMR} pulse sequences by gradient ascent algorithms, Journal of Magnetic Resonance 172 (2) (2005) 296--305. [158] D.-B. Tsai, P.-W. Chen, H.-S. Goan, Optimal control of the silicon-based donor-electron-spin quantum computing, Phys. Rev. A 79 (2009) 060306. [159] P. Rebentrost, I. Serban, T. Schulte-Herbruggen, F. K. Wilhelm, Optimal control of a qubit coupled to a non-markovian environment, Phys. Rev. Lett. 102 (2009) 090401. [160] T. P. Orlando, J. E. Mooij, L. Tian, C. H. van der Wal, L. S. Levitov, S. Lloyd, J. J. Mazo, Superconducting persistent-current qubit, Phys. Rev. B 60 (22) (1999) 15398 15413. [161] V. Krotov, Global Methods in Optimal Control Theory, CRC Press, 1995. [162] A. Izmalkov, M. Grajcar, E. Il'ichev, T. Wagner, H.-G. Meyer, A. Y. Smirnov, M. H. S. Amin, A. M. van den Brink, A. M. Zagoskin, Evidence for entangled states of two coupled ux qubits, Phys. Rev. Lett. 93 (2004) 037003. [163] X. Zhou, I. Dotsenko, B. Peaudecerf, T. Rybarczyk, C. Sayrin, S. Gleyzes, J. M. Raimond, M. Brune, S. Haroche, Field locked to a fock state by quantum feedback with single photon corrections, Phys. Rev. Lett. 108 (2012) 243602. [164] B. Peaudecerf, C. Sayrin, X. Zhou, T. Rybarczyk, S. Gleyzes, I. Dotsenko, J. M. Raimond, M. Brune, S. Haroche, Quantum feedback experiments stabilizing fock states of light in a cavity, Phys. Rev. A 87 (2013) 042320. [165] D. Bozyigit, C. Lang, L. Ste en, J. M. Fink, C. Eichler, M. Baur, R. Bianchetti, P. J. Leek, S. Filipp, M. P. da Silva, A. Blais, A. Wallraff , Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors, Nat Phys 7 (2) (2011) 154 158. [166] F. Dolde, V. Bergholm, Y. Wang, I. Jakobi, S. Pezzagna, J. Meijer, P. Neumann, T. Schulte-Herbrueggen, J. Biamonte, J. Wrachtrup, High fidelity spin entanglement using optimal control, e-print arXiv:1309.4430. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58484 | - |
dc.description.abstract | 量子資訊處理 (quantum information processing) 的基本前提是要能夠對量子系統或者量子位元 (quantum bit or qubit) 進行精準的控制。因此本論文致力於對具擴展性 (scalable) 的固態量子計算系統--超導體量子位元 (superconducting qubit) 的控制與操作進行研究。我們的研究內容包含了兩種不同類型的超導體量子位元與結構:電路型空腔量子電動力學 (circuit cavity quantum electrodynamics) 和通量量子位元的耦合系統 (coupled superconducting flux qubits)。
在第一部分,我們對超導體電路型空腔量子電動力學系統提出了一個簡單且有希望實現的回饋方案來產生並穩定三個量子位元的 W 糾纏態 (three-qubit entangled W state) 的回饋方案。我們利用量子軌跡法 (quantum trajectory method) 與極化子變換法 (polaron-type transformation method)所得到的等效隨機主方程式 (stochastic master equation) 來模擬量子回饋控制的方案。我們的結果顯示在受到一般不太強的環境去相干(environmental decoherence) 的影響下,W 糾纏態的保真度不僅 可以高於 0.9,而且還可以被維持比單一量子位元的去相干時間 (dcoherence time)還要長的時間上。除此之外,這個回饋控制方案也被證實在測量效率低下,或是個別量子衰變率存在差異的時候還是相當地穩固。最後,本論文也對使用極化子變換法以及常用的絕熱消去法 (adiabatic elimination method) 來消去空腔態做了比較。 在第二部分中,我們應用了以克羅托夫法 (Krotov method) 為基礎的最佳化控制理論來實現在電感耦合超導體通量量子位元系統上的單一量子位元的 X 和 Z 邏輯閘,以及雙量子位元的 CNOT 邏輯閘,此超導量子通量子系統具有固定的量子躍遷頻率以及固定的量子位元耦合強度。在我們的方案中,量子位元處在最佳相干點運作,而且邏輯閘的運行時間(單量子位元邏輯閘 <1 奈秒; CNOT邏輯閘 2 奈秒)比相對應的量子位元的去相干時間要短得多。CNOT 邏輯閘或其它普遍的量子邏輯閘可以藉由最佳化的方式找出單一脈衝序列的來運行, 而不須將其分解成若干個單個 量子位元操控並且串聯一些糾纏的雙量子位元操控的複合脈衝序列方式來運作。我們利用最佳化控制的方式所構造出來的量子邏輯閘都具有很高的保真度(非常低的誤差),因為我們的方法把量子位元固定的頻率失調 (detuning),固定的量子位元之間的作用力,以及其由於時變的磁通量所引起的耦合的各種因素都考慮進來。 此外,我們探討在測量效率因素以及去相干影響下的連續測量過程中以非絕熱消除的方式 (nonadiabatic elimination method)來消除與感興趣的系統耦合的輔助探測場。當被消除的輔助場演化的時間尺度在大於或者接近系統演化以及衰減的時間尺度的時候,相較於絕熱消去法,我們所發展出來的非絕熱消除法就顯得特別重要,因為在這種情況下,輔助場不僅存在有限的記憶效應,而且系統本身的動力學也變為非馬爾可夫過程。我們以與輔助空腔模具線性相互作用的光學機械系統的精確可解模型來進行研究,並且利用這個模型來闡明我們的方法。 | zh_TW |
dc.description.abstract | An essential prerequisite for quantum information processing (QIP) is precise coherent control of the dynamics of quantum systems or quantum bits (qubits). This thesis is devoted to the study of quantum control and manipulation of superconducting qubits that are promising candidates for scalable solid-state quantum computing. We study two different types of superconducting qubits and architectures:
Circuit cavity quantum electrodynamics (QED) and coupled flux qubit systems. In the first part, we present a simple and promising quantum feedback control scheme for deterministic generation and stabilization of a three-qubit entangled W state in the superconducting circuit QED system. We simulate the dynamics of the proposed quantum feedback control scheme using the quantum trajectory approach with an effective stochastic maser equation obtained by a polaron-type transformation method and demonstrate that in the presence of moderate environmental decoherence, the average state fidelity higher than 0.9 can be achieved and maintained for a considerably long time (much longer than the single-qubit decoherence time). This control scheme is also shown to be robust against measurement inefficiency and individual qubit decay rate differences. Finally, the comparison of the polaron-type transformation method to the commonly used adiabatic elimination method to eliminate the cavity mode is presented. In the second part, we apply the quantum optimal control theory based on the Krotov method to implement single-qubit X and Z gates and two-qubit CNOT gates for inductively coupled superconducting flux qubits with fixed qubit transition frequencies and fixed off-diagonal qubit-qubit coupling. The qubits in our scheme are operated at the optimal coherence points and the gate operation times (single-qubit gates <1 ns; CNOT gates 2 ns) are much shorter than the corresponding qubit decoherence time. A CNOT gate or other general quantum gates can be implemented in a ingle run of pulse sequence rather than being decomposed into several single-qubit and some entangled two-qubit operations in series by composite pulse sequences. Quantum gates constructed via our scheme are all with very high delity (very low error) as our optimal control scheme takes into account the fixed qubit detuning and fixed two- qubit interaction as well as all other time-dependent magnetic-eld-induced single- qubit interactions and two-qubit ouplings. In addition, we also investigate the effects of inefficient measurement and additional decoherence on the problems of nonadiabatic elimination of an auxiliary mode coupled to the system of interest in continuous quantum measurements. In contrast to the adiabatic elimination method, the eveloped nonadiabatic elimination approach is particularly important when the eliminated auxiliary mode evolves at a time scale larger than or comparable to the typical system evolution or decay time scale as, in this case, the auxiliary mode has finite memory, and the resultant dynamics of the system alone becomes non-Markovian. We investigate an exactly solvable model of an optomechanical system with a linear interaction with an auxiliary cavity mode to illustrate our approach. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:16:50Z (GMT). No. of bitstreams: 1 ntu-103-D96222001-1.pdf: 4564559 bytes, checksum: ff7d71585379a27917557c87eb002e62 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 誌謝I
摘要II Abstract IV 1 Introduction 1 2 Open Quantum System 5 2.1 Interaction picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Time-evolution equations in the Interaction picture . . . . . . 6 2.1.2 An open quantum system in the interaction picture . . . . . . 8 2.2 Quantum master equation . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Markovian limit . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Beyond the Markovian limit . . . . . . . . . . . . . . . . . . . 13 3 Quantum Measurement 16 3.1 General measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 Positive-operator valued measurement . . . . . . . . . . . . . 17 3.1.2 Indirect measurement . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Quantum jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.1 The bath as an apparatus . . . . . . . . . . . . . . . . . . . . 20 3.2.2 Quantum trajectories . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Homodyne measurement . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.1 Adding a local oscillator . . . . . . . . . . . . . . . . . . . . . 24 3.3.2 The continuum limit: Quantum state diffusion . . . . . . . . . 26 4 Superconducting Circuit 29 4.1 Superconducting qubit . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.1.1 Cooper pair boxes . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.1.2 Superconducting flux qubits . . . . . . . . . . . . . . . . . . . 32 4.2 Transmission line resonator . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.1 Quantization of the LC oscillator . . . . . . . . . . . . . . . . 35 4.2.2 Coupling CPB to cavity . . . . . . . . . . . . . . . . . . . . . 36 5 Quantum Control Theory 38 5.1 Quantum feedback control . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1.1 Direct quantum feedback control . . . . . . . . . . . . . . . . 39 5.1.2 Adaptive state estimation feedback control . . . . . . . . . . . 41 5.2 Krotov quantum optimal control . . . . . . . . . . . . . . . . . . . . . 43 6 Nonadiabatic elimination of an auxiliary mode in continuous quantum measurement: Effects of inffecient measurements and additional decoherence 46 6.1 Nonadiabatical elimination: general description . . . . . . . . . . . . 48 6.2 Optomechanical systems . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2.1 Elimination for the ideal case . . . . . . . . . . . . . . . . . . 55 6.2.2 Elimination for the non-ideal case . . . . . . . . . . . . . . . . 60 7 Generation and stabilization of a three-qubit entangled W state in circuit QED via quantum feedback control 66 7.1 System: Hamiltonian and stochastic master equation . . . . . . . . . 68 7.2 Entanglement creation and stabilization by quantum feedback control 78 7.2.1 Quantum feedback control strategy . . . . . . . . . . . . . . . 78 7.2.2 Entanglement Creation and Stabilization . . . . . . . . . . . 79 7.3 Comparison with adiabatic elimination method . . . . . . . . . . . . 87 8 Optimal control for fast and high-delity quantum gates in coupled superconducting flux qubits 90 8.1 Hamiltonian of Coupled Flux Qubits . . . . . . . . . . . . . . . . . . 93 8.2 Krotov Quantum Optimal Control Method . . . . . . . . . . . . . . . 99 8.3 Quantum gate operations via quantum optimal control theory . . . . 101 8.3.1 Single-qubit gate: unitary case . . . . . . . . . . . . . . . . . . 103 8.3.2 Two-qubits gate: unitary case . . . . . . . . . . . . . . . . . . 106 8.3.3 Effect of leakage states . . . . . . . . . . . . . . . . . . . . . . 108 8.3.4 Effect of decoherence . . . . . . . . . . . . . . . . . . . . . . . 110 9 Conclusion 112 A Adiabatic elimination method 117 A.1 The coherent state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 A.2 The adiabatic elimination method . . . . . . . . . . . . . . . . . . . . 120 A.3 The Tavis-Cummings model . . . . . . . . . . . . . . . . . . . . . . . 124 B Polaron-type transformation 128 Bibliography 133 | |
dc.language.iso | en | |
dc.title | 超導體量子位元的回饋與最佳化控制的理論研究 | zh_TW |
dc.title | Theoretical Study of Quantum Feedback and
Quantum Optimal Control for Superconducting Qubits | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蔡政達(Jeng-Da Chai),李瑞光(Ray-Kuang Lee),蘇正耀(Zheng-Yao Su),周忠憲(Chung-Hsien Chou) | |
dc.subject.keyword | 量子回饋控制,量子最佳化控制,非絕熱消除法,量子軌跡法,超導體量子位元,量子邏輯閘,電路型空腔量子電動力學, | zh_TW |
dc.subject.keyword | quantum feedback control,quantum optimal control,nonadiabatic elimination method,quantum trajectory method,superconducting qubit,quantum gate,circuit cavity QED, | en |
dc.relation.page | 152 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-02-11 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
Appears in Collections: | 物理學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-103-1.pdf Restricted Access | 4.46 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.