請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58441完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛景中 | |
| dc.contributor.author | Jiun-Hao Lin | en |
| dc.contributor.author | 林鈞浩 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:15:16Z | - |
| dc.date.available | 2014-02-26 | |
| dc.date.copyright | 2014-02-26 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-12 | |
| dc.identifier.citation | 1. Lehnert, D., et al., Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion, Journal of Cell Science, 2004. 117 (1) , 41-52
2. Roumen Pankov and Kenneth M. Yamada, Fibronectin at a glance, Journal of Cell Science, 2002. 115, 3861-3863 3. Fibronectin, Sigma-Aldrich 4. Holly Colognato and Peter D. Yurchenco, Form and function: the laminin family of heterotrimers., Developmental Dynamics, 2000. 218 (2), 213-34 5. Laminin, Sigma-Aldrich 6. Khoshnoodi, J., et al., Mammalian Collagen IV, Microscopy Research and Technique, 2008. 71, 357-370 7. Kalluri, R., Basement membranes: structure, assembly and role in tumour angiogenesis, Nature Reviews Cancer, 2003. 3, 422-433 8. Ellingsen, J.E., A study on the mechanism of protein adsorption to TiO2, Biomaterials, 1991. 12 (6), 593-596 9. Yusuke Arima, Hiroo Iwata, Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers, Biomaterials, 2007. 28, 3074–3082 10. Osaki, T., et al., Hydrophobic and Electrostatic Interactions in the Adsorption of Fibronectin at Maleic Acid Copolymer Films, J. Phys. Chem. B, 2006. 110, 12119-12124 11. Ostuni, E., et al., Adsorption of Proteins to Hydrophobic Sites on Mixed Self-Assembled Monolayers, Langmuir, 2003. 19, 1861-1872 12. Glasmastar, Y., et al., Protein Adsorption on Supported Phospholipid Bilayers, Journal of Colloid and Interface Science, 2002. 246, 40–47 13. Ehrenberg, M.S., et al., The influence of protein adsorption on nanoparticle association with cultured endothelial cells, Biomaterials, 2009. 30, 603–610 14. W.C. Bigelow, D.L. Pickett, W.A. Zisman, Oleophobic monolayers : I. Films adsorbed from solution in non-polar liquids, Journal of Colloid Science, 1946. 1 (6), 513-538 15. Kuhn, H., Functionalized monolayer assembly manipulation, Thin Solid Films, 1983. 99 (1-3), 1-16 16. Ralph G. Nuzzo and David L. Allara, Adsorption of Bifunctional Organic Disulfides on Gold Surfaces, J. Am. Chem. Soc., 1983. 105 (13), 4481-4483 17. Younan Xia and George M. Whitesides, Soft Lithography, Angew. Chem. Int. Ed., 1998. 37 (5), 550-575 18. Lee, T.R., et al., Heterogeneous catalysis on platinum and self-assembled monolayers on metal and metal oxide surfaces, Pure & Appl. Chem.,1991. 63 (6), 821-828 19. Folkers, J.P., et al., Self-Assembled Monolayers of Long-Chain Hydroxamic Acids on the Native Oxide of Metals, Langmuir, 1995. 11 (3), 813-824 20. Tredgold, R.H., An Introduction to Ultrathin Organic Films: from Langmuir-Blodgett to Self-Assembly, Ulman, A. Nature, 1991. 354 (6349), 120-120 21. Shyue, J.J., et al., Acid−Base Properties and Zeta Potentials of Self-Assembled Monolayers Obtained via in Situ Transformations, Langmuir, 2004. 20 (20), 8693-8698 22. Jing-Jong Shyue and Mark R. De Guire, Deposition of Vanadium(V) Oxide Thin Films on Nitrogen-Containing Self-Assembled Monolayers, Chem. Mater., 2005. 17 (4), 787-794 23. Jing-Jong Shyue and Mark R. De Guire, Deposition of Titanium−Vanadium Oxide Thin Films on Organic Self-Assembled Monolayers: Role of Complexing Agents, Chem. Mater., 2005. 17 (22), 5550-5557 24. Gole, A., et al., Immobilization of Gold Nanorods onto Acid-Terminated Self-Assembled Monolayers via Electrostatic Interactions, Langmuir, 2004. 20, 7117-7122 25. Masuda, Y., et al., Selective Deposition and Micropatterning of Titanium Dioxide on Self-Assembled Monolayers from a Gas Phase, Langmuir, 2001. 17, 4876-4880 26. Lin, Y.C., et al., Site-Selective Deposition of Gold on Photo-Patterned Self-Assembled Monolayers, Chem. Mater., 2008. 20, 6606-6610 27. Lin, W.C., et al., Tuning the surface potential of gold substrates arbitrarily with self-assembled monolayers with mixed functional groups, Phys. Chem. Chem. Phys., 2009. 11, 6199-6204 28. Lin, Y.C., et al., Tailoring the surface potential of gold nanoparticles with self-assembled monolayers with mixed functional groups, Journal of Colloid and Interface Science, 2009. 340, 126-130 29. Gunter Sauerbrey, Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung, Zeitschrift fur Physik, 1959. 155 (2), 206-222 30. Q-sense support 31. T. Nomura, M. Okuhara, Frequency shifts of piezoelectric quartz crystals immersed in organic liquids, Analytica Chimica Acta, 1982. 142, 281-284 32. K.K. Kanazawa, O.R. Melroy, The quartz resonator: Electrochemical applications, IBM J. Res. Decelop., 1993. 37 (2), 157-171 33. Daniel A. Buttry, Michael D. Ward, Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance, Chem. Rev., 1992. 92 (6), 1355-1379 34. Reed, C.E., et al., Physical description of a viscoelastically loaded AT‐cut quartz resonator, Journal of Applied Physics, 1990. 68 (5), 1993-2001 35. Caruso, F., et al., Quartz Crystal Microbalance Study of DNA Immobilization and Hybridization for Nucleic Acid Sensor Development, Anal. Chem., 1997. 69 (11), 2043-2049 36. Hook, F., et al., Measurements Using the Quartz Crystal Microbalance Technique of Ferritin Monolayers on Methyl-Thiolated Gold: Dependence of Energy Dissipation and Saturation Coverage on Salt Concentration, Journal of Colloid and Interface Science, 1998. 208, 63-67 37. Hook, F., et al., Structural changes in hemoglobin during adsorption to solid surfaces: Effects of pH, ionic strength, and ligand binding, Proceedings of the National Academy of Sciences, 1998. 95 (21), 12271-12276 38. www.substech.com 39. Anton Paar support 40. Instruction Manual for ZetaPALS, Zeta Potential Analyzer 41. Stockbridge, C.D., Vacuum Microbalance Technique. Vol.5 1996. 42. Voinova, M.V., et al., Viscoelastic Acoustic Response of Layered Polymer Films at Fluid-Solid Interfaces: Continuum Mechanics Approach, Physica Scripta, 1999. 59 (5), 391-396 43. G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope, Phys. Rev. Lett., 1986. 56, 930-933 44. Malmstrom, J., et al., Viscoelastic Modeling of Highly Hydrated Laminin Layers at Homogeneous and Nanostructured Surfaces: Quantification of Protein Layer Properties Using QCM-D and SPR, Langmuir, 2007. 23, 9760-9768 45. Coelho, N.M., et al., Arrangement of Type IV Collagen on NH2 and COOH Functionalized Surfaces, Biotechnology and Bioengineering, 2011, 108 (12), 3009-3018 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58441 | - |
| dc.description.abstract | 細胞外基質會影響許多細胞的行為,如細胞貼附、細胞伸展等等,而細胞外基質中的各種蛋白質,像是纖維連接蛋白、層黏連蛋白及膠原蛋白,更是在其中扮演了非常重要的角色。藉由研究這些蛋白質在不同性質的表面上的貼附行為對於了解細胞在不同環境中的反應有很大的幫助。
由本實驗室之前的研究可以知道,藉由調控金基材上二元自組裝單層膜中表面官能基的胺基與羧基比例,可以得到一系列不同的表面電位。本研究利用石英振盪微天平(QCM-D)及6-胺基-1-己基硫醇和6-羧基-1-己基硫醇的自組裝單層膜分子修飾的鍍金石英晶片來探討表面電位對於細胞外基質蛋白質和基材間交互作用的影響。此外,實驗中使用磷酸緩衝溶液來控制環境中的酸鹼值及離子強度,並藉由電動力分析儀及動態光散射分析儀分別量測以二元自組裝單層膜修飾的金基材及蛋白質的表面電位。在吸附過程中,同時偵測石英晶片的共振頻率變化及能量消散,並利用黏彈性模型可計算得到表面的吸附重量變化。另外,藉由能量消散對共振頻率變化作圖,其斜率可讓我們得到吸附蛋白質之機械性質資訊,而此機械性質資訊也可利用原子力顯微鏡掃描得到的蛋白質吸附層之表面形貌相互印證。 本研究發現,縱然在表面都是帶負電性的狀況下,低電荷密度的蛋白質依然可以吸附在高電荷密度的自組裝單層膜表面上。雖然在巨觀條件下靜電作用是排斥的作用力,但在微觀條件下由於高電荷密度的自組裝單層膜將蛋白質極化產生偶極誘導偶極力,所以促進此吸附行為。另一方面,在較低電位的自組裝單層膜修飾之表面,蛋白質被極化的現象較不明顯,在靜電作用主導之下會發現其吸附量會降低。除此之外,分子間作用力也會使蛋白質聚集成不同的結構,進而影響吸附後的表面形貌及其吸附速率。 | zh_TW |
| dc.description.abstract | Extracellular matrix (ECM) proteins such as fibronectin, laminin and collagen play an important role in many cellular behaviors including cell adhesion, cell spreading, etc. Understanding their adsorption behavior on surfaces of different nature is helpful for studying the cellular response to environments. It is known that by tailoring the chemical composition in binary amine and carboxylic acid terminated self-assembled monoalyers (SAMs) modified gold substrate, different surface potentials can be obtained. To examine how the surface potential affects the interaction between ECM proteins and the substrates, a quartz crystal microbalance with dissipation detection (QCM-D) using binary-SAMs-modified Au on quartz crystal is used. The ionic strength and pH are controlled by phosphate buffer solution at 37 °C and the zeta-potential of modified Au and protein is determined with electrokinetic analyzer and dynamic light scattering, respectively. During adsorption, the shift of resonate frequency (f) and the energy dissipation (D) are acquired simultaneously and the weight change is calculated using the viscoelastic model. The result reveals that the low charge-density protein can be adsorbed on highly charged SAM even both surfaces are negatively charged. This behavior is attributed to the highly charged SAM polarized the protein microscopically and the Debye interaction allows the adsorption although the macroscopic electrostatic interaction discourage the adsorption. For SAM-modified surface of moderate potential, proteins are not polarized and electrostatic interaction dominated hence less adsorption is observed. Besides, the intermolecular force that allows protein to self-assemble into macroscopic structure also lead to change in adsorption morphology and kinetics. This difference can also be identified from the D-f plot. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:15:16Z (GMT). No. of bitstreams: 1 ntu-103-R01527015-1.pdf: 2637739 bytes, checksum: 6d773e4acb5e3ce839472931937d0c28 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄
第一章 緒論 1 第二章 文獻回顧 3 2.1 細胞貼附及細胞外基質之重要性 3 2.2 細胞外基質中的貼附蛋白 5 2.2.1 纖維連接蛋白 5 2.2.2 層黏連蛋白 6 2.2.3 IV型膠原蛋白 7 2.3 研究蛋白質貼附之材料 8 2.4 自組裝單層膜(SAMs)簡介 9 2.5 自組裝單層膜(SAMs)的應用 11 2.5.1 SAMs系統於靜電吸附之應用 11 2.5.2 利用SAMs進行選擇性吸附 13 2.5.3 利用混合官能基調控材料表面電位 14 2.6 QCM-D於生物分子之研究 19 2.6.1 QCM-D於生物晶片之應用 21 2.6.2 QCM-D於蛋白質吸附行為之研究 23 第三章 實驗 29 3.1 實驗藥品 29 3.2 儀器簡介及原理 30 3.2.1 X光光電子光譜儀 (X-ray Photoelectron Spectroscopy, XPS) 30 3.2.2 Zeta potential 簡介 31 3.2.3 石英振盪微天平 (Quartz Crystal Microbalance, QCM) 33 3.2.4 原子力顯微鏡 (Atomic Force Microscopy, AFM) 35 3.3 實驗步驟 38 3.3.1 試片準備 38 3.3.2 表面官能基比例分析 38 3.3.3 混合官能基修飾之金表面電位量測 39 3.3.4 蛋白質之表面電位量測 39 3.3.5 石英振盪微天平(QCM-D)實驗 40 3.3.6 蛋白質之表面形貌 40 第四章 結果討論 41 4.1 表面官能基比例 41 4.2 以SAMs修飾之金基板表面電位 43 4.3 蛋白質分子之表面電位 44 4.4 二元SAMs表面對蛋白質吸附行為之影響 45 4.4.1 層黏連蛋白之吸附行為 46 4.4.2 纖維連接蛋白之吸附行為 49 4.4.3 IV型膠原蛋白之吸附行為 52 第五章 結論 57 參考文獻 59 | |
| dc.language.iso | zh-TW | |
| dc.subject | 表面電位 | zh_TW |
| dc.subject | 偶極誘導偶極 | zh_TW |
| dc.subject | 混合官能基 | zh_TW |
| dc.subject | 自組裝單層膜 | zh_TW |
| dc.subject | 蛋白質貼附 | zh_TW |
| dc.subject | 分子間作用力 | zh_TW |
| dc.subject | intermolecular force | en |
| dc.subject | self-assembled monolayers | en |
| dc.subject | mixed functional groups | en |
| dc.subject | surface potential | en |
| dc.subject | Debye interaction | en |
| dc.subject | protein adsorption | en |
| dc.title | 表面電位對於蛋白質吸附行為之影響 | zh_TW |
| dc.title | Effect of Surface Potential on the Adsorption of Proteins | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 虞邦英,康佳正 | |
| dc.subject.keyword | 蛋白質貼附,自組裝單層膜,混合官能基,表面電位,偶極誘導偶極,分子間作用力, | zh_TW |
| dc.subject.keyword | protein adsorption,self-assembled monolayers,mixed functional groups,surface potential,Debye interaction,intermolecular force, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-02-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
