請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58423
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 丁詩同(Shih-Torng Ding),劉逸軒(I-Hsuan Liu) | |
dc.contributor.author | Nai-Yun Zhang | en |
dc.contributor.author | 張乃云 | zh_TW |
dc.date.accessioned | 2021-06-16T08:14:38Z | - |
dc.date.available | 2019-03-21 | |
dc.date.copyright | 2014-03-21 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-02-13 | |
dc.identifier.citation | Abramoff, M. D., P. J. Magelhaes, and S. J. Ram. 2004. Image Processing with ImageJ. Biophotonics International 11: 36-42.
Accad, M., S. J. Smith, D. L. Newland, D. A. Sanan, L. E. King, M. F. Linton, S. Fazio, and R. V. Farese. 2000. Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA : cholesterol acyltransferase 1. J Clin Invest 105: 711-719. Acton, Q. A. 2013. Arteriosclerosis: New Insights for the Healthcare Professional: 2013 Edition: ScholarlyBrief. ScholarlyEditions. Babin, P. J., C. Thisse, M. Durliat, M. Andre, M. A. Akimenko, and B. Thisse. 1997. Both apolipoprotein E and A-I genes are present in a nonmammalian vertebrate and are highly expressed during embryonic development. P Natl Acad Sci USA 94: 8622-8627. Bemlih, S., M. D. Poirier, and A. El Andaloussi. 2010. Acyl-coenzyme A Cholesterol acyltransferase inhibitor Avasimibe affect survival and proliferation of glioma tumor cell lines. Cancer Biol Ther 9: 1025-1032. Bhattacharyya, R., and D. M. Kovacs. 2010. ACAT inhibition and amyloid beta reduction. Bba-Mol Cell Biol L 1801: 960-965. Blondeau, X., S. L. Vidmar, I. Emod, M. Pagano, V. Turk, and V. Keildlouha. 1993. Generation of Matrix-Degrading Proteolytic System from Fibronectin by Cathepsin-B, Cathepsin-G, Cathepsin-H and Cathepsin-L. Biol Chem H-S 374: 651-656. Brown, M. S., and J. L. Goldstein. 1997. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89: 331-340. Bryleva, E. Y., M. A. Rogers, C. C. Y. Chang, F. Buen, B. T. Harris, E. Rousselet, N. G. Seidah, S. Oddo, F. M. LaFerla, T. A. Spencer, W. F. Hickey, and T. Y. Chang. 2010. ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD. P Natl Acad Sci USA 107: 3081-3086. Buhman, K. K., M. Accad, S. Novak, R. S. Choi, J. S. Wong, R. L. Hamilton, S. Turley, and R. V. Farese. 2000. Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat Med 6: 1341-1347. Cade, L., D. Reyon, W. Y. Hwang, S. Q. Tsai, S. Patel, C. Khayter, J. K. Joung, J. D. Sander, R. T. Peterson, and J. R. J. Yeh. 2012. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic acids research 40: 8001-8010. Carvalho, L., and C. P. Heisenberg. 2010. The yolk syncytial layer in early, zebrafish development. Trends Cell Biol 20: 586-592. Cases, S., S. Novak, Y. W. Zheng, H. M. Myers, S. R. Lear, E. Sande, C. B. Welch', A. J. Lusis, T. A. Spencer, B. R. Krause, S. K. Erickson, and R. V. Farese. 1998. ACAT-2, a second mammalian acyl-CoA : cholesterol acyltransferase - Its cloning, expression, and characterization. J Biol Chem 273: 26755-26764. Chang, T. Y., C. C. Y. Chang, S. Lin, C. J. Yu, B. L. Li, and A. Miyazaki. 2001. Roles of acyl-coenzyme A : cholesterol acyltransferase-1 and-2. Curr Opin Lipidol 12: 289-296. Chang, T. Y., B. L. Li, C. C. Y. Chang, and Y. Urano. 2009. Acyl-coenzyme A: cholesterol acyltransferases. Am J Physiol-Endoc M 297: E1-E9. Cheng, D. H., and C. L. Tipton. 1999. Activation of acyl-CoA cholesterol acyltransferase: Redistribution in microsomal fragments of cholesterol and its facilitated movement by methyl-beta-cyclodextrin. Lipids 34: 261-268. Coburn, C. T., F. F. Knapp, Jr., M. Febbraio, A. L. Beets, R. L. Silverstein, and N. A. Abumrad. 2000. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. The Journal of biological chemistry 275: 32523-32529. Das, A. 2009. A Comparative Analysis of Intracellular Cholesterol Esterifying Enzymes in Mammals. Wake Forest University Graduate School of Arts and Sciences, Biochemistry and Molecular Biology. Das, A., M. A. Davis, H. Tomoda, S. Omura, and L. L. Rudel. 2008. Identification of the interaction site within acyl-CoA: Cholesterol acyltransferase 2 for the isoform-specific inhibitor pyripyropene A. J Biol Chem 283: 10453-10460. Ding, S. T., and M. S. Lilburn. 2000. The developmental expression of acyl-coenzyme A : cholesterol acyltransferase in the yolk sac membrane, liver, and intestine of developing embryos and posthatch turkeys. Poultry Sci 79: 1460-1464. Fabian, M. R., N. Sonenberg, and W. Filipowicz. 2010. Regulation of mRNA translation and stability by microRNAs. Annual review of biochemistry 79: 351-379. Farese, R. V., S. Cases, S. L. Ruland, H. J. Kayden, J. S. Wong, S. G. Young, and R. L. Hamilton. 1996. A novel function for apolipoprotein B: Lipoprotein synthesis in the yolk sac is critical for maternal-fetal lipid transport in mice. J Lipid Res 37: 347-360. Fassbender, K., M. Simons, C. Bergmann, M. Stroick, D. Lutjohann, P. Keller, H. Runz, S. Kuhl, T. Bertsch, K. von Bergmannn, M. Hennerici, K. Beyreuther, and T. Hartmann. 2001. Simvastatin strongly reduces levels of Alzheimer's disease beta-amyloid peptides A beta 42 and A beta 40 in vitro and in vivo. P Natl Acad Sci USA 98: 5856-5861. Fazio, S., A. S. Major, L. L. Swift, L. A. Gleaves, M. Accad, M. F. Linton, and R. V. Farese. 2001. Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J Clin Invest 107: 163-171. Gingerich, T. J., J. J. Feige, and J. LaMarre. 2004. AU-rich elements and the control of gene expression through regulated mRNA stability. Animal health research reviews / Conference of Research Workers in Animal Diseases 5: 49-63. Glass, C. K., and J. L. Witztum. 2001. Atherosclerosis: The road ahead. Cell 104: 503-516. Goldberg, I. J. 2009. Hypertriglyceridemia: impact and treatment. Endocrinology and metabolism clinics of North America 38: 137-149. Hofmann. 1993. TMbase - A database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 374. Hofmann, A. F., and B. Borgstroem. 1964. The Intraluminal Phase of Fat Digestion in Man: The Lipid Content of the Micellar and Oil Phases of Intestinal Content Obtained during Fat Digestion and Absorption. J Clin Invest 43: 247-257. Hutter-Paier, B., H. J. Huttunen, L. Puglielli, C. B. Eckman, D. Y. Kim, A. Hofmeister, R. D. Moir, S. B. Domnitz, M. P. Frosch, M. Windisch, and D. M. Kovacs. 2010. The ACAT Inhibitor CP-113,818 Markedly Reduces Amyloid Pathology in a Mouse Model of Alzheimer's Disease (vol 44, pg 227, 2004). Neuron 68: 1014-1014. Huttunen, H. J., C. Peach, R. Bhattacharyya, C. Barren, W. Pettingell, B. Hutter-Paier, M. Windisch, O. Berezovska, and D. M. Kovacs. 2009. Inhibition of acyl-coenzyme A: cholesterol acyl transferase modulates amyloid precursor protein trafficking in the early secretory pathway. Faseb J 23: 3819-3828. Ikonen, E. 2008. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Bio 9: 125-138. Ishii, K., T. Tokuda, T. Matsushima, F. Miya, S. Shoji, S. Ikeda, and A. Tamaoka. 2003. Pravastatin at 10 mg/day does not decrease plasma levels of either amyloid-beta (A beta) 40 or A beta 42 in humans. Neurosci Lett 350: 161-164. Joyce, C. W., G. S. Shelness, M. A. Davis, R. G. Lee, K. Skinner, R. A. Anderson, and L. L. Rudel. 2000. ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane. Mol Biol Cell 11: 3675-3687. Karasinska, J. M., and M. R. Hayden. 2011. Cholesterol metabolism in Huntington disease. Nat Rev Neurol 7: 561-572. Kwak, B. R., G. Pelli, N. R. Veillard, F. Mulhaupt, R. W. James, C. A. Power, and F. Mach. 2002. Increased atherosclerosis in LDL receptor-null mice lacking the CC-chemokine receptor 4. Eur Heart J 23: 675-675. Lada, A. T., M. Davis, C. Kent, J. Chapman, H. Tomoda, S. Omura, and L. L. Rudel. 2004. Identification of ACAT1- and ACAT2-specific inhibitors using a novel, cell-based fluorescence assay: individual ACAT uniqueness. J Lipid Res 45: 378-386. Lewis, B. 1959. The metabolism of cholesterol. Postgraduate medical journal 35: 208-215. Lewis, P. M., M. P. Dunn, J. A. McMahon, M. Logan, J. F. Martin, B. St-Jacques, and A. P. McMahon. 2001. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105: 599-612. Li, B. L., X. L. Li, Z. J. Duan, O. Lee, S. Lin, Z. M. Ma, C. C. Y. Chang, X. Y. Yang, J. P. Park, T. K. Mohandas, W. Noll, L. Chan, and T. Y. Chang. 1999. Human acyl-CoA : cholesterol acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase ACAT-1 mRNA is produced from two different chromosomes. J Biol Chem 274: 11060-11071. Liang, J. J., P. Oelkers, C. Y. Guo, P. C. Chu, J. L. Dixon, H. N. Ginsberg, and S. L. Sturley. 2004. Overexpression of human diacylglycerol acyltransferase 1, Acyl-CoA : cholesterol acyltransferase 1, or Acyl-CoA : cholesterol acyltransferase 2 stimulates secretion of apolipoprotein B-containing lipoproteins in McA-RH7777 cells. J Biol Chem 279: 44938-44944. Lieschke, G. J., and P. D. Currie. 2007. Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8: 353-367. Liu, J., C. C. Y. Chang, E. J. Westover, D. F. Covey, and T. Y. Chang. 2005. Investigating the allosterism of acyl-CoA : cholesterol acyltransferase (ACAT) by using various sterols: in vitro and intact cell studies. Biochem J 391: 389-397. Matsumoto, K., Y. Fujiwara, R. Nagai, M. Yoshida, and S. Ueda. 2008. Expression of two isozymes of acyl-coenzyme A: Cholesterol acyltransferase-1 and -2 in clear cell type renal cell carcinoma. Int J Urol 15: 166-170. McFarland, A. P., S. M. Horner, A. Jarret, R. C. Joslyn, E. Bindewald, B. A. Shapiro, D. A. Delker, C. H. Hagedorn, M. Carrington, M. Gale, Jr., and R. Savan. 2014. The favorable IFNL3 genotype escapes mRNA decay mediated by AU-rich elements and hepatitis C virus-induced microRNAs. Nature immunology 15: 72-79. Nguyen, T. M., J. K. Sawyer, K. L. Kelley, M. A. Davis, and L. L. Rudel. 2012. Cholesterol esterification by ACAT2 is essential for efficient intestinal cholesterol absorption: evidence from thoracic lymph duct cannulation. J Lipid Res 53: 95-104. Nowaczyk, M. J. M., and J. S. Waye. 2001. The Smith-Lemli-Opitz syndrome: a novel metabolic way of understanding developmental biology, embryogenesis, and dysmorphology. Clin Genet 59: 375-386. Oelkers, P., A. Behari, D. Cromley, J. T. Billheimer, and S. L. Sturley. 1998. Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes. The Journal of biological chemistry 273: 26765-26771. Paillasse, M. R., P. de Medina, G. Amouroux, L. Mhamdi, M. Poirot, and S. Silvente-Poirot. 2009. Signaling through cholesterol esterification: a new pathway for the cholecystokinin 2 receptor involved in cell growth and invasion. J Lipid Res 50: 2203-2211. Parini, P., M. Davis, A. T. Lada, S. K. Erickson, T. L. Wright, U. Gustafsson, S. Sahlin, C. Einarsson, M. Eriksson, B. Angelin, H. Tomoda, S. Omura, M. C. Willingham, and L. L. Rudel. 2004. ACAT2 is localized to Hepatocytes and is the major cholesterol-esterifying enzyme in human liver. Circulation 110: 2017-2023. Pickart, M. A., E. W. Klee, A. L. Nielsen, S. Sivasubbu, E. M. Mendenhall, B. R. Bill, E. Chen, C. E. Eckfeldt, M. Knowlton, M. E. Robu, J. D. Larson, Y. Deng, L. A. Schimmenti, L. B. M. Ellis, C. M. Verfaillie, M. Hammerschmidt, S. A. Farber, and S. C. Ekker. 2006. Genome-Wide Reverse Genetics Framework to Identify Novel Functions of the Vertebrate Secretome. PloS one 1. Poupard, G., M. Andre, M. Durliat, C. Ballagny, G. Boeuf, and P. J. Babin. 2000a. Apolipoprotein E gene expression correlates with endogenous lipid nutrition and yolk syncytial layer lipoprotein synthesis during fish development. Cell Tissue Res 300: 251-261. Poupard, G., M. Andre, M. Durliat, C. Ballagny, G. Boeuf, and P. J. Babin. 2000b. Apolipoprotein E gene expression correlates with endogenous lipid nutrition and yolk syncytial layer lipoprotein synthesis during fish development. Cell and tissue research 300: 251-261. Powell, K. A., E. A. Deans, and B. K. Speake. 2004. Fatty acid esterification in the yolk sac membrane of the avian embryo. J Comp Physiol B 174: 163-168. Puglielli, L., G. Konopka, E. Pack-Chung, L. A. M. Ingano, O. Berezovska, B. T. Hyman, T. Y. Chang, R. E. Tanzi, and D. M. Kovacs. 2001. Acyl-coenzyme A : cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol 3: 905-912. Punta, M., P. C. Coggill, R. Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell, N. Pang, K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E. L. L. Sonnhammer, S. R. Eddy, A. Bateman, and R. D. Finn. 2012. The Pfam protein families database. Nucleic acids research 40: D290-D301. Quinn, P. J., and V. E. Kagan. 2002. Phospholipid Metabolism in Apoptosis. Springer. Rao, K. N., S. Kottapally, E. D. Eskander, H. Shinozuka, S. Dessi, and P. Pani. 1986. Acinar Cell-Carcinoma of Rat Pancreas - Regulation of Cholesterol Esterification. Brit J Cancer 54: 305-310. Redgrave, T. G. 1970. Formation of cholesteryl ester-rich particulate lipid during metabolism of chylomicrons. J Clin Invest 49: 465-471. Refolo, L. M., M. A. Pappolla, B. Malester, J. LaFrancois, T. Bryant-Thomas, R. Wang, G. S. Tint, K. Sambamurti, and K. Duff. 2000. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model (vol 7, pg 321, 2000). Neurobiol Dis 7: 690-691. Ridgway, N., R. McLeod, J. E. Vance, and D. E. Vance. 2008. Biochemistry of Lipids, Lipoproteins and Membranes. Elsevier Science. Roux, C., C. Wolf, N. Mulliez, W. Gaoua, V. Cormier, F. Chevy, and D. Citadelle. 2000. Role of cholesterol in embryonic development. Am J Clin Nutr 71: 1270s-1279s. Saher, G., B. Brugger, C. Lappe-Siefke, W. Mobius, R. Tozawa, M. C. Wehr, F. Wieland, S. Ishibashi, and K. A. Nave. 2005. High cholesterol level is essential for myelin membrane growth. Nat Neurosci 8: 468-475. Schlegel, A., and D. Y. R. Stainier. 2006. Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae. Biochemistry 45: 15179-15187. Schlombs, K., T. Wagner, and J. Scheel. 2003. Site-1 protease is required for cartilage development in zebrafish. P Natl Acad Sci USA 100: 14024-14029. Shand, J. H., D. W. West, R. C. Noble, and B. K. Speake. 1994. The Esterification of Cholesterol in the Liver of the Chick-Embryo. Bba-Lipid Lipid Met 1213: 224-230. Shimano, H. 2001. Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res 40: 439-452. Simons, M., P. Keller, B. De Strooper, K. Beyreuther, C. G. Dotti, and K. Simons. 1998. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. P Natl Acad Sci USA 95: 6460-6464. Siperstein, M. D. 1984. Role of Cholesterogenesis and Isoprenoid Synthesis in DNA-Replication and Cell-Growth. J Lipid Res 25: 1462-1468. Spady, D. K., M. N. Willard, and R. S. Meidell. 2000. Role of acyl-coenzyme A : cholesterol acyltransferase-1 in the control of hepatic very low density lipoprotein secretion and low density lipoprotein receptor expression in the mouse and hamster. J Biol Chem 275: 27005-27012. Sparrow, C. P., S. Patel, J. Baffic, Y. S. Chao, M. Hernandez, M. H. Lam, J. Montenegro, S. D. Wright, and P. A. Detmers. 1999. A fluorescent cholesterol analog traces cholesterol absorption in hamsters and is esterified in vivo and in vitro. J Lipid Res 40: 1747-1757. Temel, R. E., L. Hou, L. L. Rudel, and G. S. Shelness. 2007. ACAT2 stimulates cholesteryl ester secretion in apoB-containing lipoproteins. Journal of lipid research 48: 1618-1627. Terasawa, Y., S. J. Cases, J. S. Wong, H. Jamil, S. Jothi, M. G. Traber, L. Packer, D. A. Gordon, R. L. Hamilton, and R. V. Farese. 1999. Apolipoprotein B-related gene expression and ultrastructural characteristics of lipoprotein secretion in mouse yolk sac during embryonic development. J Lipid Res 40: 1967-1977. Tosi, M. R., G. Bottura, P. Lucchi, A. Reggiani, A. Trinchero, and V. Tugnoli. 2003. Cholesteryl esters in human malignant neoplasms. Int J Mol Med 11: 95-98. Warner, G. J., G. Stoudt, M. Bamberger, W. J. Johnson, and G. H. Rothblat. 1995. Cell Toxicity Induced by Inhibition of Acyl-Coenzyme a-Cholesterol Acyltransferase and Accumulation of Unesterified Cholesterol. J Biol Chem 270: 5772-5778. Weaver, D. D., B. D. Solomon, K. Akin-Samson, R. I. Kelley, and M. Muenke. 2010. Cyclopia (Synophthalmia) in Smith-Lemli-Opitz Syndrome: First Reported Case and Consideration of Mechanism. Am J Med Genet C 154C: 142-145. Wenzel, M., H. Gersbarlag, A. Schimpl, and H. Rudiger. 1993. Time-Course of Lectin and Storage Protein-Biosynthesis in Developing Pea (Pisum-Sativum) Seeds. Biol Chem H-S 374: 887-894. Yagyu, H., T. Kitamine, J. Osuga, R. Tozawa, Z. Chen, Y. Kaji, T. Oka, S. Perrey, Y. Tamura, K. Ohashi, H. Okazaki, N. Yahagi, F. Shionoiri, Y. Iizuka, K. Harada, H. Shimano, H. Yamashita, T. Gotoda, N. Yamada, and S. Ishibashi. 2000. Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia. J Biol Chem 275: 21324-21330. Zhang, Y., C. J. Yu, J. Liu, T. A. Spencer, C. C. Y. Chang, and T. Y. Chang. 2003. Cholesterol is superior to 7-ketocholesterol or 7 alpha-hydroxycholesterol as an allosteric activator for acyl-coenzyme A : cholesterol acyltransferase 1. J Biol Chem 278: 11642-11647. Zhao, X. N., J. Chen, L. Lei, G. J. Hu, Y. Xiong, J. J. Xu, Q. Li, X. Y. Yang, C. C. Y. Chang, B. L. Song, T. Chang, and B. Li. 2009. The optional long 5 '-untranslated region of human ACAT1 mRNAs impairs the production of ACAT1 protein by promoting its mRNA decay. Acta Bioch Bioph Sin 41: 30-41. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58423 | - |
dc.description.abstract | 固醇酰基轉移酶 (Sterol O-acyltransferase,Soat)為一種將長鏈脂肪酸與膽固醇酯化形成膽固醇酯的細胞內酵素。在哺乳類動物中發現 Soat 有兩種同功酶(isoenzyme): Soat1 與 Soat2 。 哺乳類動物中, Soat1 廣泛存在於組織中(包括小腸、腎臟、心臟、肝臟、巨噬細胞等),而 Soat2 只存在於小腸和肝臟。 根據基因表現位置,Soat1 在生理上被認為是將過多游離膽固醇形成膽固醇酯後,以脂肪滴形式儲存於細胞內以維持細胞內膽固醇平衡; Soat2 則被認為是將飲食中攝取中的膽固醇酯化後,在內質網將膽固醇酯聚集到脂蛋白中以利體內運輸膽固醇。 Soat 在家禽胚胎發育過程中應該扮演重要角色,但此酵素確切功能仍待釐清。
為探討 Soat 在胚胎發育中扮演的角色,我們利用斑馬魚與禽類同為卵生動物作為動物模式,選殖斑馬魚 Soat 基因並分析蛋白質序列,結果顯示其與雞、小鼠、大鼠、人類有高度同源性。 RT-PCR 檢測基因表現後,發現 soat1 在胚胎發育一開始即表現,顯示可能為母性基因;而 soat2 則在發育後12小時才被偵測到,隨後不斷增加基因表現至 48 小時。在成魚組織中, soat1 表現於各個器官而 soat2 在成年斑馬魚中在肝臟、小腸、腦及睪丸表現,不同於哺乳類動物中 soat2 只在肝和小腸表現。 利用原位雜合試驗 (whole-mount in situ hybridization) 觀察 soats 在胚胎發育過程中表現位置,發現 soats 在卵黃周圍、腦部、孵化腺 (hatching gland) 均有表現,暗示 Soats 對於卵黃利用及這些部位發育的重要。從基因表現時間與位置的不同,推測 Soat1 與 Soat2 在斑馬魚生理上可能扮演著不同的角色。 為了證實斑馬魚 Soats 具有膽固醇酯化功能,我們將斑馬魚 soat1 與 soat2 基因轉染到 HEK-293 細胞後,利用具有螢光之膽固醇 (NBD-cholesterol) 追蹤細胞內膽固醇位置及膽固醇累積情形,發現 Soat2 表現細胞所顯示的螢光較控制組與 Soat1 表現細胞多。 此外,利用 Oil red-O 觀察細胞內脂肪滴累積情形也有相同的結果,顯示 Soat2 的膽固醇酯化能力比 Soat1 高。 利用 Soats 抑制劑則發現 Avasimibe 並不能降低斑馬魚 Soat1 及 Soat2 活性,而 Pyripyropene A (PPPA) 則可專一性抑制斑馬魚 Soat2 活性。 此外,將 Soat 抑制劑注射到斑馬魚胚胎後,發現 PPPA 能減緩卵黃的消耗速率,而 Avasimibe 則無影響,顯示胚胎發育時期 Soat2 對卵黃的吸收運輸有所影響。 為更深入探討 Soats 在胚胎發育中扮演的角色,我們使用 TALEN (Transcription activator-like effector nucleases) 技術,在魚胚中注射合成 TALEN mRNA 並成功誘導 Soats 標的基因突變。 綜合上述,Soats 在不同模式動物間,具有高度保留性。 而斑馬魚 Soat1 及 Soat2 除了基因表現位置不同外,對於脂質儲存的能力也不同,顯示著兩者間在斑馬魚生理功能上有所差異。 此外,利用 Soats 抑制劑可降低斑馬魚 Soats 活性且PPPA 抑制劑能降低胚胎對卵黃的利用,顯示 Soat2 在胚胎發育中對卵黃利用有所影響。 此外,應用 TALEN 基因剔除技術已成功誘導 Soats 基因突變之斑馬魚,未來將可更進一步探討 Soats 在卵生動物胚胎發育中扮演的功能及角色。 | zh_TW |
dc.description.abstract | Sterol O-acyltransferase (Soat) is an intracellular enzyme that esterify long-chain fatty acyl-CoA and cholesterol to form cholesterol esters. Two isozymes of Soat had been identified in most animals, Soat1 and Soat2. In mammals, soat1 is expressed ubiquitously in various tissues (including kidney, liver, intestine, heart, macrophages, etc.), while soat2 is restrictively distributed only in the liver and intestine. There are two distinct roles of Soat in animal physiology: 1) formation of cholesterol esters in intracellular as lipid droplets for storage and 2) assembly of cholesterol esters into apoB-containing lipoproteins in the endoplasmic reticulum (ER) lumen for lipid transport. Soat also plays a role in bird embryonic development, but its exact role in embryogenesis remains to be further elucidated. Since Soat is expressed at high levels in the yolk sac membrane and cholesterol esters are synthesized extensively during chicken embryonic development, it is reasonable to hypothesize that Soat mediates the absorption of free fatty acids and yolk cholesterol in the yolk sac membrane and is responsible for the absorption and transportation of yolk lipids to the developing embryos.
To investigate the roles of Soat during embryonic development, zebrafish Soats were cloned and the soat1 and soat2 mRNA encoded proteins of 554 and 534 amino acids, respectively. Soat1 was detected as early as 0 hpf indicating the existence of maternal soat1 message and it was expressed ubiquitously in adult zebrafish tissues. Soat2 mRNA was detected from 12 hpf and it was expressed in liver, intestine, brain and testis in adult zebrafish. Whole mount in situ hybridization demonstrated that both soat1 and soat2 expressed around the yolk, brain and hatching gland, indicating that soats play an important role in these regions. The different gene expression pattern of soat1 and soat2, suggested that Soat1 and Soat2 may play different physiology roles in zebrafish. To investigate zebrafish Soat1 and Soat2 enzyme activity, we incubated Soat1 and Soat2-expressing cells with their substrates. Results suggested that Soat2-expressing cells have a higher activity of cholesterol esterification and thereby more intracellular lipids than Soat1-expressing cells and wild type cells, indicating that Soat2 activity is higher than Soat1. To test Soats inhibitors reduce zebrafish Soats activity, Avasimibe and Pyripyropene A (PPPA) were used for in vitro and in vivo studies. In vitro studies showed that Avasimibe had no effect on zebrafish Soat1 and Soat2, whereas PPPA could only inhibited zebrafish Soat2 activity. In addition, after injecting AVA into zebrafish embryos (3hpf), there was no significant difference between AVA and DMSO groups in yolk decreasing, whereas PPPA treatment leaded to slower rate of yolk decreasing, indicated that Soat2 plays a role in yolk utilization. To further investigate the roles of Soats during zebrafish embryogenesis, we used transcription activator-like effector nucleases (TALENs) to create the soat1 and soat2 knockouts in zebrafish. Results showed that the TALEN-mediated mutations of Soats were successful induced and the toxicity was moderate. In conclusion, comparisons of soat gene sequences indicated that zebrafish soat1 and soat2 are highly conserved throughout evolution. In the in vitro study, we found there were differences between zebrafish Soat1 and Soat2, such as different gene expression profiles and different cholesterol-esterifying activity, indicating the distinct physiology roles in zebrafish. In Soats inhibitors studies, Avasimibe, were found to have no inhibitory activity toward zebrafish Soat1 and Soat2, whereas PPPA was identified that specifically inhibits Soat2. In vivo studies demonstrated that Soat2 could be responsible for the yolk utilization. To further investigate the roles of Soats in vivo, we have successfully generated the Soat1 and Soat2-f0 mutant fish by using TALEN system. The function of soats during zebrafish embryogenesis will be further demonstrated by the knockout study. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:14:38Z (GMT). No. of bitstreams: 1 ntu-103-R99626018-1.pdf: 2309406 bytes, checksum: 9067ba375d1811e6376ee5ce1a03f750 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iv CONTENTS vii LIST OF FIGURES ix Introduction 1 1. Physiological roles of Sterol O-acyltransferase (Soat) 1 2. Sources and functions of cholesterol 2 2.1.1 Sources of cholesterol 2 2.1.2 Functions of cholesterol 4 2.1.3 Disorder due to cholesterol deficiency during embryonic development- Smith-Lemli-Opitz Syndrome (SLOS) 5 3. Soat and disease 6 3.1.1 Atherosclerosis 6 3.1.2 Alzheimer’s disease 8 3.1.3 Tumor cell proliferation 9 4. Lipoprotein synthesis and cholesterol esterification during embryonic development 9 4.1.1 Defective lipoprotein synthesis leads to developmental abnormalities during embryogenesis 10 4.1.2 Cholesterol esterification in the yolk sac membrane during embryogenesis 11 5. Zebrafish as an experimental model for lipid metabolism 12 Specific aims 15 Materials and methods 17 Zebrafish 17 Total RNA extraction 17 Polymerase chain reaction 18 Rapid Amplification of cDNA Ends (5' RACE-PCR and 3' RACE-PCR) 18 PCR purification and plasmid DNA extraction 19 Construction of soat expression vector 19 Digoxigenin – labeled riboprobe synthesis and whole-mount in situ hybridization 20 Frozen section in situ hybridization 21 Fluorescent Soat activity assay 22 Establishing Soats expressing cell lines 22 Oil red O staining and quantification of lipid accumulation 23 Soats inhibitors in vitro studies 24 Soats inhibitors in vivo studies 24 Targeted mutagenesis of soat1 and soat2 using transcription activator-like effector nucleases (TALEN) 25 Statistical Analysis 25 Results 27 Genomic structure, sequence and phylogenetic analysis of soat1 and soat2 27 Expression pattern of Soat1 and Soat2 in zebrafish 29 Functional analysis of zebrafish Soats 30 The effect of Soats inhibitors on zebrafish embryos yolk utilization 32 Design of TALENs for the deletion of zebrafish soat genes 33 Discussion 35 Future work 41 Reference 42 Table 1 56 Figures 57 | |
dc.language.iso | en | |
dc.title | 斑馬魚固醇醯基轉移酶的基因選殖與特性分析 | zh_TW |
dc.title | Molecular Cloning and Characterization of Sterol O-acyltransferases in Zebrafish Embryos | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李士傑(Shyh-Jye Lee),陳洵一(Shuen-EI Chen) | |
dc.subject.keyword | 固醇?基轉移?,膽固醇酯,卵黃囊,胚胎發育,斑馬魚, | zh_TW |
dc.subject.keyword | Soat,ACAT,cholesterol ester,yolk sac,cholesterol,zebrafish,embryonic development., | en |
dc.relation.page | 79 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-02-13 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。