Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 病理學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58422
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor黃佩欣(Pei-Hsin Huang)
dc.contributor.authorWei-Wen Liuen
dc.contributor.author劉瑋文zh_TW
dc.date.accessioned2021-06-16T08:14:36Z-
dc.date.available2016-02-25
dc.date.copyright2014-02-25
dc.date.issued2014
dc.date.submitted2014-02-13
dc.identifier.citationReferences
Adams, J.M., and Cory, S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322-1326.
Akhtar, R.S., Geng, Y., Klocke, B.J., Latham, C.B., Villunger, A., Michalak, E.M., Strasser, A., Carroll, S.L., and Roth, K.A. (2006). BH3-only proapoptotic Bcl-2 family members Noxa and Puma mediate neural precursor cell death. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 7257-7264.
Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, R.J., Rahmsdorf, H.J., Jonat, C., Herrlich, P., and Karin, M. (1987). Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49, 729-739.
Aouacheria, A., Rech de Laval, V., Combet, C., and Hardwick, J.M. (2013). Evolution of Bcl-2 homology motifs: homology versus homoplasy. Trends Cell Biol 23, 103-111.
Arbour, N., Vanderluit, J.L., Le Grand, J.N., Jahani-Asl, A., Ruzhynsky, V.A., Cheung, E.C., Kelly, M.A., MacKenzie, A.E., Park, D.S., Opferman, J.T., et al. (2008). Mcl-1 is a key regulator of apoptosis during CNS development and after DNA damage. The Journal of neuroscience : the official journal of the Society for Neuroscience 28, 6068-6078.
Barnes, D.E., Stamp, G., Rosewell, I., Denzel, A., and Lindahl, T. (1998). Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Current biology : CB 8, 1395-1398.
Batchelor, E., Loewer, A., and Lahav, G. (2009). The ups and downs of p53: understanding protein dynamics in single cells. Nature reviews Cancer 9, 371-377.
Besirli, C.G., and Johnson, E.M., Jr. (2003). JNK-independent activation of c-Jun during neuronal apoptosis induced by multiple DNA-damaging agents. J Biol Chem 278, 22357-22366.
Blaschke, A.J., Weiner, J.A., and Chun, J. (1998). Programmed cell death is a universal feature of embryonic and postnatal neuroproliferative regions throughout the central nervous system. The Journal of comparative neurology 396, 39-50.
Borges, H.L., Linden, R., and Wang, J.Y. (2008). DNA damage-induced cell death: lessons from the central nervous system. Cell research 18, 17-26.
Borner, C., Martinou, I., Mattmann, C., Irmler, M., Schaerer, E., Martinou, J.C., and Tschopp, J. (1994). The protein bcl-2 alpha does not require membrane attachment, but two conserved domains to suppress apoptosis. J Cell Biol 126, 1059-1068.
Bouillet, P., and Strasser, A. (2002). BH3-only proteins - evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. Journal of cell science 115, 1567-1574.
Buss, R.R., Sun, W., and Oppenheim, R.W. (2006). Adaptive roles of programmed cell death during nervous system development. Annual review of neuroscience 29, 1-35.
Cartron, P.-F., Gallenne, T., Bougras, G., Gautier, F., Manero, F., Vusio, P., Meflah, K., Vallette, F.M., and Juin, P. (2004a). The First [alpha] Helix of Bax Plays a Necessary Role in Its Ligand-Induced Activation by the BH3-Only Proteins Bid and PUMA. Molecular Cell 16, 807-818.
Cartron, P.F., Gallenne, T., Bougras, G., Gautier, F., Manero, F., Vusio, P., Meflah, K., Vallette, F.M., and Juin, P. (2004b). The first alpha helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol Cell 16, 807-818.
Chao, C., Saito, S., Anderson, C.W., Appella, E., and Xu, Y. (2000). Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. Proc Natl Acad Sci U S A 97, 11936-11941.
Chen, L., Willis, S.N., Wei, A., Smith, B.J., Fletcher, J.I., Hinds, M.G., Colman, P.M., Day, C.L., Adams, J.M., and Huang, D.C.S. (2005). Differential Targeting of Prosurvival Bcl-2 Proteins by Their BH3-Only Ligands Allows Complementary Apoptotic Function. Molecular Cell 17, 393-403.
Chen, M., Quintans, J., Fuks, Z., Thompson, C., Kufe, D.W., and Weichselbaum, R.R. (1995). Suppression of Bcl-2 messenger RNA production may mediate apoptosis after ionizing radiation, tumor necrosis factor alpha, and ceramide. Cancer research 55, 991-994.
Cheng, E.H., Kirsch, D.G., Clem, R.J., Ravi, R., Kastan, M.B., Bedi, A., Ueno, K., and Hardwick, J.M. (1997). Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278, 1966-1968.
Chinenov, Y., and Kerppola, T.K. (2001). Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 20, 2438-2452.
Chipuk, J.E., Fisher, J.C., Dillon, C.P., Kriwacki, R.W., Kuwana, T., and Green, D.R. (2008). Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proc Natl Acad Sci U S A 105, 20327-20332.
Chipuk, J.E., Moldoveanu, T., Llambi, F., Parsons, M.J., and Green, D.R. (2010). The BCL-2 family reunion. Mol Cell 37, 299-310.
Chittenden, T. (2002). BH3 domains: intracellular death-ligands critical for initiating apoptosis. Cancer cell 2, 165-166.
Chung, L., Yang, T.L., Huang, H.R., Hsu, S.M., Cheng, H.J., and Huang, P.H. (2007). Semaphorin signaling facilitates cleft formation in the developing salivary gland. Development 134, 2935-2945.
Cory, S., and Adams, J.M. (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nature reviews Cancer 2, 647-656.
Cory, S., Huang, D.C., and Adams, J.M. (2003). The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22, 8590-8607.
Crowe, S.L., Tsukerman, S., Gale, K., Jorgensen, T.J., and Kondratyev, A.D. (2011). Phosphorylation of histone H2A.X as an early marker of neuronal endangerment following seizures in the adult rat brain. The Journal of neuroscience : the official journal of the Society for Neuroscience 31, 7648-7656.
Czabotar, P.E., Lessene, G., Strasser, A., and Adams, J.M. (2013). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature reviews Molecular cell biology 15, 49-63.
Dehay, C., and Kennedy, H. (2007). Cell-cycle control and cortical development. Nature reviews Neuroscience 8, 438-450.
Deshmukh, M., and Johnson, E.M., Jr. (1998). Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron 21, 695-705.
Eckenrode, E.F., Yang, J., Velmurugan, G.V., Foskett, J.K., and White, C. (2010). Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J Biol Chem 285, 13678-13684.
Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic pathology 35, 495-516.
Estaquier, J., Vallette, F., Vayssiere, J.L., and Mignotte, B. (2012). The mitochondrial pathways of apoptosis. Advances in experimental medicine and biology 942, 157-183.
Ferrer, I., Soriano, E., del Rio, J.A., Alcantara, S., and Auladell, C. (1992). Cell death and removal in the cerebral cortex during development. Progress in neurobiology 39, 1-43.
Finlay, B.L., and Slattery, M. (1983). Local differences in the amount of early cell death in neocortex predict adult local specializations. Science 219, 1349-1351.
Frank, K.M., Sharpless, N.E., Gao, Y., Sekiguchi, J.M., Ferguson, D.O., Zhu, C., Manis, J.P., Horner, J., DePinho, R.A., and Alt, F.W. (2000). DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol Cell 5, 993-1002.
Frappart, P.O., and McKinnon, P.J. (2008). Mouse models of DNA double-strand break repair and neurological disease. DNA repair 7, 1051-1060.
Fujimoto, M., and Hayashi, T. (2011). New insights into the role of mitochondria-associated endoplasmic reticulum membrane. International review of cell and molecular biology 292, 73-117.
Gao, Y., Ferguson, D.O., Xie, W., Manis, J.P., Sekiguchi, J., Frank, K.M., Chaudhuri, J., Horner, J., DePinho, R.A., and Alt, F.W. (2000). Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404, 897-900.
Gao, Y., Sun, Y., Frank, K.M., Dikkes, P., Fujiwara, Y., Seidl, K.J., Sekiguchi, J.M., Rathbun, G.A., Swat, W., Wang, J., et al. (1998). A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95, 891-902.
Ghahremani, M.H., Keramaris, E., Shree, T., Xia, Z., Davis, R.J., Flavell, R., Slack, R.S., and Park, D.S. (2002). Interaction of the c-Jun/JNK pathway and cyclin-dependent kinases in death of embryonic cortical neurons evoked by DNA damage. J Biol Chem 277, 35586-35596.
Ghosh, A.P., Cape, J.D., Klocke, B.J., and Roth, K.A. (2011). Deficiency of pro-apoptotic Hrk attenuates programmed cell death in the developing murine nervous system but does not affect Bcl-x deficiency-induced neuron apoptosis. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 59, 976-983.
Gilmore, E.C., Nowakowski, R.S., Caviness, V.S., Jr., and Herrup, K. (2000). Cell birth, cell death, cell diversity and DNA breaks: how do they all fit together? Trends in neurosciences 23, 100-105.
Gobbel, G.T., Bellinzona, M., Vogt, A.R., Gupta, N., Fike, J.R., and Chan, P.H. (1998). Response of postmitotic neurons to X-irradiation: implications for the role of DNA damage in neuronal apoptosis. The Journal of neuroscience : the official journal of the Society for Neuroscience 18, 147-155.
Green, D.R., and Evan, G.I. (2002). A matter of life and death. Cancer cell 1, 19-30.
Gu, Y., Sekiguchi, J., Gao, Y., Dikkes, P., Frank, K., Ferguson, D., Hasty, P., Chun, J., and Alt, F.W. (2000). Defective embryonic neurogenesis in Ku-deficient but not DNA-dependent protein kinase catalytic subunit-deficient mice. Proc Natl Acad Sci U S A 97, 2668-2673.
Hakem, R., Hakem, A., Duncan, G.S., Henderson, J.T., Woo, M., Soengas, M.S., Elia, A., de la Pompa, J.L., Kagi, D., Khoo, W., et al. (1998). Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339-352.
Hanada, M., Aime-Sempe, C., Sato, T., and Reed, J.C. (1995). Structure-function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J Biol Chem 270, 11962-11969.
Hasan, S.M., Sheen, A.D., Power, A.M., Langevin, L.M., Xiong, J., Furlong, M., Day, K., Schuurmans, C., Opferman, J.T., and Vanderluit, J.L. (2013). Mcl1 regulates the terminal mitosis of neural precursor cells in the mammalian brain through p27Kip1. Development 140, 3118-3127.
Haydar, T.F., Kuan, C.Y., Flavell, R.A., and Rakic, P. (1999). The role of cell death in regulating the size and shape of the mammalian forebrain. Cerebral cortex 9, 621-626.
Haynes, C.M., and Ron, D. (2010). The mitochondrial UPR - protecting organelle protein homeostasis. Journal of cell science 123, 3849-3855.
Herzog, K.H., Chong, M.J., Kapsetaki, M., Morgan, J.I., and McKinnon, P.J. (1998). Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 280, 1089-1091.
Hetz, C., and Glimcher, L. (2008). The daily job of night killers: alternative roles of the BCL-2 family in organelle physiology. Trends Cell Biol 18, 38-44.
Huang, H.Y., Cheng, Y.Y., Liao, W.C., Tien, Y.W., Yang, C.H., Hsu, S.M., and Huang, P.H. (2012). SOX4 transcriptionally regulates multiple SEMA3/plexin family members and promotes tumor growth in pancreatic cancer. PloS one 7, e48637.
Hunter, J.J., Bond, B.L., and Parslow, T.G. (1996). Functional dissection of the human Bc12 protein: sequence requirements for inhibition of apoptosis. Molecular and cellular biology 16, 877-883.
Igata, E., Inoue, T., Ohtani-Fujita, N., Sowa, Y., Tsujimoto, Y., and Sakai, T. (1999). Molecular cloning and functional analysis of the murine bax gene promoter. Gene 238, 407-415.
Jeffers, J.R., Parganas, E., Lee, Y., Yang, C., Wang, J., Brennan, J., MacLean, K.H., Han, J., Chittenden, T., Ihle, J.N., et al. (2003). Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer cell 4, 321-328.
Jeppesen, D.K., Bohr, V.A., and Stevnsner, T. (2011). DNA repair deficiency in neurodegeneration. Progress in neurobiology 94, 166-200.
Jiang, P., Du, W., and Wu, M. (2007). p53 and Bad: remote strangers become close friends. Cell research 17, 283-285.

Jones, D.T., Taylor, W.R., and Thornton, J.M. (1992). The rapid generation of mutation data matrices from protein sequences. Computer applications in the biosciences : CABIOS 8, 275-282.
Kale, J., Liu, Q., Leber, B., and Andrews, D.W. (2012). Shedding light on apoptosis at subcellular membranes. Cell 151, 1179-1184.
Kawatani, M., and Imoto, M. (2003). Deletion of the BH1 Domain of Bcl-2 Accelerates Apoptosis by Acting in a Dominant Negative Fashion. J Biol Chem 278, 19732-19742.
Kelekar, A., and Thompson, C.B. (1998). Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol 8, 324-330.
Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer 26, 239-257.
Kim, H., Tu, H.C., Ren, D., Takeuchi, O., Jeffers, J.R., Zambetti, G.P., Hsieh, J.J., and Cheng, E.H. (2009). Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36, 487-499.
Klocke, B.J., Latham, C.B., D'Sa, C., and Roth, K.A. (2002). p53 deficiency fails to prevent increased programmed cell death in the Bcl-X(L)-deficient nervous system. Cell Death Differ 9, 1063-1068.
Korsmeyer, S.J. (1999). BCL-2 gene family and the regulation of programmed cell death. Cancer research 59, 1693s-1700s.
Korsmeyer, S.J., Shutter, J.R., Veis, D.J., Merry, D.E., and Oltvai, Z.N. (1993). Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Seminars in cancer biology 4, 327-332.
Krajewska, M., Mai, J.K., Zapata, J.M., Ashwell, K.W., Schendel, S.L., Reed, J.C., and Krajewski, S. (2002). Dynamics of expression of apoptosis-regulatory proteins Bid, Bcl-2, Bcl-X, Bax and Bak during development of murine nervous system. Cell Death Differ 9, 145-157.
Krajewski, S., Tanaka, S., Takayama, S., Schibler, M.J., Fenton, W., and Reed, J.C. (1993). Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer research 53, 4701-4714.
Kuan, C.Y., Roth, K.A., Flavell, R.A., and Rakic, P. (2000). Mechanisms of programmed cell death in the developing brain. Trends in neurosciences 23, 291-297.
Kuan, C.Y., Yang, D.D., Samanta Roy, D.R., Davis, R.J., Rakic, P., and Flavell, R.A. (1999). The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22, 667-676.
Kuida, K., Haydar, T.F., Kuan, C.Y., Gu, Y., Taya, C., Karasuyama, H., Su, M.S., Rakic, P., and Flavell, R.A. (1998). Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325-337.
Kuida, K., Zheng, T.S., Na, S., Kuan, C., Yang, D., Karasuyama, H., Rakic, P., and Flavell, R.A. (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368-372.
Kuwana, T., Bouchier-Hayes, L., Chipuk, J.E., Bonzon, C., Sullivan, B.A., Green, D.R., and Newmeyer, D.D. (2005). BH3 Domains of BH3-Only Proteins Differentially Regulate Bax-Mediated Mitochondrial Membrane Permeabilization Both Directly and Indirectly. Molecular Cell 17, 525-535.
Kuwana, T., and Newmeyer, D.D. (2003). Bcl-2-family proteins and the role of mitochondria in apoptosis. Current opinion in cell biology 15, 691-699.
Le-Niculescu, H., Bonfoco, E., Kasuya, Y., Claret, F.X., Green, D.R., and Karin, M. (1999). Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Molecular and cellular biology 19, 751-763.
Lee, W., Haslinger, A., Karin, M., and Tjian, R. (1987). Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV40. Nature 325, 368-372.
Lee, Y., Barnes, D.E., Lindahl, T., and McKinnon, P.J. (2000). Defective neurogenesis resulting from DNA ligase IV deficiency requires Atm. Genes & development 14, 2576-2580.
Lee, Y., Chong, M.J., and McKinnon, P.J. (2001). Ataxia telangiectasia mutated-dependent apoptosis after genotoxic stress in the developing nervous system is determined by cellular differentiation status. The Journal of neuroscience : the official journal of the Society for Neuroscience 21, 6687-6693.
Lee, Y., and McKinnon, P.J. (2007). Responding to DNA double strand breaks in the nervous system. Neuroscience 145, 1365-1374.
Lei, K., Nimnual, A., Zong, W.X., Kennedy, N.J., Flavell, R.A., Thompson, C.B., Bar-Sagi, D., and Davis, R.J. (2002). The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Molecular and cellular biology 22, 4929-4942.
Li, C., Fox, C.J., Master, S.R., Bindokas, V.P., Chodosh, L.A., and Thompson, C.B. (2002). Bcl-X(L) affects Ca(2+) homeostasis by altering expression of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci U S A 99, 9830-9835.
Liang, P., and Pardee, A.B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967-971.
Lindsten, T., Golden, J.A., Zong, W.X., Minarcik, J., Harris, M.H., and Thompson, C.B. (2003). The proapoptotic activities of Bax and Bak limit the size of the neural stem cell pool. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 11112-11119.
Lindsten, T., Ross, A.J., King, A., Zong, W.X., Rathmell, J.C., Shiels, H.A., Ulrich, E., Waymire, K.G., Mahar, P., Frauwirth, K., et al. (2000). The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6, 1389-1399.
Ma, C., Ying, C., Yuan, Z., Song, B., Li, D., Liu, Y., Lai, B., Li, W., Chen, R., Ching, Y.P., et al. (2007). dp5/HRK is a c-Jun target gene and required for apoptosis induced by potassium deprivation in cerebellar granule neurons. J Biol Chem 282, 30901-30909.
Malone, C.D., Hasan, S.M., Roome, R.B., Xiong, J., Furlong, M., Opferman, J.T., and Vanderluit, J.L. (2012). Mcl-1 regulates the survival of adult neural precursor cells. Molecular and cellular neurosciences 49, 439-447.
Mandal, M., Olson, D.J., Sharma, T., Vadlamudi, R.K., and Kumar, R. (2001). Butyric acid induces apoptosis by up-regulating Bax expression via stimulation of the c-Jun N-terminal kinase/activation protein-1 pathway in human colon cancer cells. Gastroenterology 120, 71-78.
Matsumoto, Y., Imai, Y., Sugita, Y., Tanaka, T., Tsujimoto, G., Saito, H., and Oshida, T. (2010). CCDC132 is highly expressed in atopic dermatitis T cells. Molecular medicine reports 3, 83-87.
Miyashita, T., and Reed, J.C. (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293-299.
Monaco, G., Beckers, M., Ivanova, H., Missiaen, L., Parys, J.B., De Smedt, H., and Bultynck, G. (2012a). Profiling of the Bcl-2/Bcl-X(L)-binding sites on type 1 IP(3) receptor. Biochem Biophys Res Commun 428, 31-35.
Monaco, G., Decrock, E., Akl, H., Ponsaerts, R., Vervliet, T., Luyten, T., De Maeyer, M., Missiaen, L., Distelhorst, C.W., De Smedt, H., et al. (2012b). Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl. Cell Death Differ 19, 295-309.
Nakano, K., and Vousden, K.H. (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7, 683-694.
Narasimhaiah, R., Tuchman, A., Lin, S.L., and Naegele, J.R. (2005). Oxidative damage and defective DNA repair is linked to apoptosis of migrating neurons and progenitors during cerebral cortex development in Ku70-deficient mice. Cerebral cortex 15, 696-707.
Nechushtan, A., Smith, C.L., Hsu, Y.T., and Youle, R.J. (1999). Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J 18, 2330-2341.
Nechushtan, A., Smith, C.L., Lamensdorf, I., Yoon, S.H., and Youle, R.J. (2001). Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J Cell Biol 153, 1265-1276.
Nowak, E., Etienne, O., Millet, P., Lages, C.S., Mathieu, C., Mouthon, M.A., and Boussin, F.D. (2006). Radiation-induced H2AX phosphorylation and neural precursor apoptosis in the developing brain of mice. Radiation research 165, 155-164.
Oakes, S.A., Scorrano, L., Opferman, J.T., Bassik, M.C., Nishino, M., Pozzan, T., and Korsmeyer, S.J. (2005). Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci U S A 102, 105-110.
Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T., and Tanaka, N. (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053-1058.
Ola, M.S., Nawaz, M., and Ahsan, H. (2011). Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Molecular and cellular biochemistry 351, 41-58.
Oltvai, Z.N., Milliman, C.L., and Korsmeyer, S.J. (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609-619.
Orii, K.E., Lee, Y., Kondo, N., and McKinnon, P.J. (2006). Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development. Proc Natl Acad Sci U S A 103, 10017-10022.
Puthalakath, H., and Strasser, A. (2002). Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 9, 505-512.
Ren, D., Tu, H.C., Kim, H., Wang, G.X., Bean, G.R., Takeuchi, O., Jeffers, J.R., Zambetti, G.P., Hsieh, J.J., and Cheng, E.H. (2010). BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330, 1390-1393.
Renault, T.T., and Chipuk, J.E. (2013). Getting away with murder: how does the BCL-2 family of proteins kill with immunity? Annals of the New York Academy of Sciences 1285, 59-79.
Rodriguez, D., Rojas-Rivera, D., and Hetz, C. (2011). Integrating stress signals at the endoplasmic reticulum: The BCL-2 protein family rheostat. Biochim Biophys Acta 1813, 564-574.
Rogakou, E.P., Boon, C., Redon, C., and Bonner, W.M. (1999). Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146, 905-916.
Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S., and Bonner, W.M. (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273, 5858-5868.
Roset, R., Ortet, L., and Gil-Gomez, G. (2007). Role of Bcl-2 family members on apoptosis: what we have learned from knock-out mice. Frontiers in bioscience : a journal and virtual library 12, 4722-4730.
Roth, K.A., Kuan, C., Haydar, T.F., D'Sa-Eipper, C., Shindler, K.S., Zheng, T.S., Kuida, K., Flavell, R.A., and Rakic, P. (2000). Epistatic and independent functions of caspase-3 and Bcl-X(L) in developmental programmed cell death. Proc Natl Acad Sci U S A 97, 466-471.
Roth, K.A., Motoyama, N., and Loh, D.Y. (1996). Apoptosis of bcl-x-deficient telencephalic cells in vitro. The Journal of neuroscience : the official journal of the Society for Neuroscience 16, 1753-1758.
Saito, T., and Nakatsuji, N. (2001). Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Developmental biology 240, 237-246.
Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution 4, 406-425.
Sattler, M., Liang, H., Nettesheim, D., Meadows, R.P., Harlan, J.E., Eberstadt, M., Yoon, H.S., Shuker, S.B., Chang, B.S., Minn, A.J., et al. (1997). Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983-986.
Schuler, M., and Green, D.R. (2005). Transcription, apoptosis and p53: catch-22. Trends in genetics : TIG 21, 182-187.
Sedlak, T.W., Oltvai, Z.N., Yang, E., Wang, K., Boise, L.H., Thompson, C.B., and Korsmeyer, S.J. (1995). Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc Natl Acad Sci U S A 92, 7834-7838.
Sekiguchi, J., Ferguson, D.O., Chen, H.T., Yang, E.M., Earle, J., Frank, K., Whitlow, S., Gu, Y., Xu, Y., Nussenzweig, A., et al. (2001). Genetic interactions between ATM and the nonhomologous end-joining factors in genomic stability and development. Proc Natl Acad Sci U S A 98, 3243-3248.
Shamas-Din, A., Brahmbhatt, H., Leber, B., and Andrews, D.W. (2011). BH3-only proteins: Orchestrators of apoptosis. Biochim Biophys Acta 1813, 508-520.
Shamas-Din, A., Kale, J., Leber, B., and Andrews, D.W. (2013). Mechanisms of action of Bcl-2 family proteins. Cold Spring Harbor perspectives in biology 5, a008714.
Shibue, T., Takeda, K., Oda, E., Tanaka, H., Murasawa, H., Takaoka, A., Morishita, Y., Akira, S., Taniguchi, T., and Tanaka, N. (2003). Integral role of Noxa in p53-mediated apoptotic response. Genes & development 17, 2233-2238.
Shindler, K.S., Latham, C.B., and Roth, K.A. (1997). Bax deficiency prevents the increased cell death of immature neurons in bcl-x-deficient mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 17, 3112-3119.
Smeenk, L., van Heeringen, S.J., Koeppel, M., van Driel, M.A., Bartels, S.J., Akkers, R.C., Denissov, S., Stunnenberg, H.G., and Lohrum, M. (2008). Characterization of genome-wide p53-binding sites upon stress response. Nucleic acids research 36, 3639-3654.
Soares, H.D., Morgan, J.I., and McKinnon, P.J. (1998). Atm expression patterns suggest a contribution from the peripheral nervous system to the phenotype of ataxia-telangiectasia. Neuroscience 86, 1045-1054.
Spreafico, R., Frassoni, C., Arcelli, P., Selvaggio, M., and De Biasi, S. (1995). In situ labeling of apoptotic cell death in the cerebral cortex and thalamus of rats during development. The Journal of comparative neurology 363, 281-295.

Takahashi, M., Sato, K., Nomura, T., and Osumi, N. (2002). Manipulating gene expressions by electroporation in the developing brain of mammalian embryos. Differentiation; research in biological diversity 70, 155-162.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution 28, 2731-2739.
Thomaidou, D., Mione, M.C., Cavanagh, J.F., and Parnavelas, J.G. (1997). Apoptosis and its relation to the cell cycle in the developing cerebral cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 17, 1075-1085.
Tsujimoto, Y., Cossman, J., Jaffe, E., and Croce, C.M. (1985). Involvement of the bcl-2 gene in human follicular lymphoma. Science 228, 1440-1443.
Tsujimoto, Y., Finger, L.R., Yunis, J., Nowell, P.C., and Croce, C.M. (1984). Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226, 1097-1099.
van Dam, H., Huguier, S., Kooistra, K., Baguet, J., Vial, E., van der Eb, A.J., Herrlich, P., Angel, P., and Castellazzi, M. (1998). Autocrine growth and anchorage independence: two complementing Jun-controlled genetic programs of cellular transformation. Genes & development 12, 1227-1239.
van den Eijnde, S.M., Lips, J., Boshart, L., Vermeij-Keers, C., Marani, E., Reutelingsperger, C.P., and De Zeeuw, C.I. (1999). Spatiotemporal distribution of dying neurons during early mouse development. The European journal of neuroscience 11, 712-724.
Vaux, D.L., Cory, S., and Adams, J.M. (1988). Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440-442.
Villunger, A., Michalak, E.M., Coultas, L., Mullauer, F., Bock, G., Ausserlechner, M.J., Adams, J.M., and Strasser, A. (2003). p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302, 1036-1038.
Vinson, C., Myakishev, M., Acharya, A., Mir, A.A., Moll, J.R., and Bonovich, M. (2002). Classification of human B-ZIP proteins based on dimerization properties. Molecular and cellular biology 22, 6321-6335.
Walantus, W., Castaneda, D., Elias, L., and Kriegstein, A. (2007). In utero intraventricular injection and electroporation of E15 mouse embryos. Journal of visualized experiments : JoVE, 239.
Wang, K., Gross, A., Waksman, G., and Korsmeyer, S.J. (1998). Mutagenesis of the BH3 Domain of BAX Identifies Residues Critical for Dimerization and Killing. Mol Cell Biol 18, 6083-6089.
Ward, J.F. (2000). Complexity of damage produced by ionizing radiation. Cold Spring Harbor symposia on quantitative biology 65, 377-382.
Watson, A., Eilers, A., Lallemand, D., Kyriakis, J., Rubin, L.L., and Ham, J. (1998). Phosphorylation of c-Jun is necessary for apoptosis induced by survival signal withdrawal in cerebellar granule neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 18, 751-762.
Westphal, D., Kluck, R.M., and Dewson, G. (2014). Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ. 21, 196-205.
Willis, S.N., and Adams, J.M. (2005). Life in the balance: how BH3-only proteins induce apoptosis. Current opinion in cell biology 17, 617-625.
Willis, S.N., Fletcher, J.I., Kaufmann, T., van Delft, M.F., Chen, L., Czabotar, P.E., Ierino, H., Lee, E.F., Fairlie, W.D., Bouillet, P., et al. (2007). Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315, 856-859.
Wong, H.K., Fricker, M., Wyttenbach, A., Villunger, A., Michalak, E.M., Strasser, A., and Tolkovsky, A.M. (2005). Mutually exclusive subsets of BH3-only proteins are activated by the p53 and c-Jun N-terminal kinase/c-Jun signaling pathways during cortical neuron apoptosis induced by arsenite. Molecular and cellular biology 25, 8732-8747.
Wu, Z., Earle, J., Saito, S., Anderson, C.W., Appella, E., and Xu, Y. (2002). Mutation of mouse p53 Ser23 and the response to DNA damage. Molecular and cellular biology 22, 2441-2449.
Wyman, C., and Kanaar, R. (2006). DNA double-strand break repair: all's well that ends well. Annual review of genetics 40, 363-383.
Yakovlev, A.G., Ota, K., Wang, G., Movsesyan, V., Bao, W.L., Yoshihara, K., and Faden, A.I. (2001). Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. The Journal of neuroscience : the official journal of the Society for Neuroscience 21, 7439-7446.
Yang, J.Y., Xia, W., and Hu, M.C. (2006). Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis. International journal of oncology 29, 643-648.
Yin, X.-M., Oltvai, Z.N., and Korsmeyer, S.J. (1994a). BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369, 321-323.
Yin, X.M., Oltvai, Z.N., and Korsmeyer, S.J. (1994b). BH1
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58422-
dc.description.abstract胚胎發育時期的神經細胞利用BCL-2家族成員來調控其死亡的機制使皮質形態能夠正常的發育。利用mRNA差顯技術,我們發現了一個在中樞神經系統有著大量表現的新穎BCL-2家族成員,並將之命名為BLM-s。由於BLM-s的表現僅侷限於E14-E17這段神經細胞死亡的高峰時期中有絲分裂後期的神經細胞,我們因此對其是否調控此段時期的神經細胞死亡感到興趣。BLM-s 為一個座落在粒腺體及內質網的分子,不論在體內或體外,當我們在細胞過量表達BLM-s時,細胞會呈現細胞凋亡的狀態並導致粒腺體釋放cytochrome c進而活化下游的caspase 3。 如同其他的BCL-2家族之促死亡分子,BLM-s可藉由與特定的促生存分子即BCL-2和MCL-1作用來調控細胞凋亡,我們亦發現其調控之細胞凋亡是仰賴促死亡分子BAX的存在。因此我們認為BLM-s在調控細胞凋亡的過程中,是扮演著像”sensitizer”或“depressor”的角色。利用gamma放射線來模擬造成神經細胞死亡的DNA雙股斷裂刺激後,我們則發現BLM-s會被大量表現並促進神經細胞凋亡。其中的分子機制我們則是利用和啟動子區結合之分子所調控的轉錄活化狀態來做分析,分析結果顯示p53及AP1轉錄因子能夠有效的藉由直接和BLM-s啟動子區的結合來調控BLM-s之轉錄活化狀態。我們並進一步的證明BLM-s能被大量表現於受到gamma放射線導致的DNA雙股斷裂刺激的細胞中,並且此機制是受ATM/p53或JNK/AP1所調控的。利用p53基因缺失的老鼠,我們也發現到BLM-s的表現受到了影響,即使給予DNA雙股斷裂的刺激,也無法再促進BLM-s的表現。總結我們的實驗結果,BLM-s為一個會在神經系統發育過程中表現並促進細胞凋亡的BCL-2家族成員,經由DNA雙股斷裂的刺激,其大量表現所導致的神經細胞凋亡可透過ATM/p53或JNK/AP1的訊息傳導來調控。zh_TW
dc.description.abstractNeuronal cell death during embryonic development is critical for cortical morphogenesis and is mainly regulated by members of the BCL-2 family. Utilizing mRNA differential display, we have identified a CNS-enriched, novel BCL-2 family member, which is designated as Blm-s (Bcl-2-like molecule-small transcript). Blm-s expression is restricted to postmitotic migratory neurons at E14-E17 stage, which is the peak of naturally occurring neuronal cell death, we thus wonder whether BLM-s participate in regulating neuronal apoptosis at this stage. In our data, BLM-s localizes at mitochondria and ER, and overexpressing BLM-s both in vivo and in vitro kills cells by apoptosis via mitochondrial cytochrome c release and caspase-3 activation. Like all the other BCL-2 family members, BLM-s mediates apoptosis through its BH domain, and is able to selectively interact with BCL-2 and MCL-1, but not with BAX and BAK. Moreover, BLM-s-induced apoptosis is inhibited by BCL-2, and its pro-apoptotic activity is in a BAX-dependent fashion. This suggests that BLM-s may perform as a “sensitizer or derepressor” during apoptosis. We use γ-irradiation as a DNA double-strand breaks (DSBs) inducer to trigger developmental neuronal apoptosis in developing mouse brains and the finding shows Blm-s is upregulated to potentiate neuronal apoptosis in vulnerable cortical regions. Via promoter binding assays and luciferase assay, we have demonstrated that transcriptional activation of Blm-s requires p53 and AP1 to bind putative p53 and AP1 consensus motifs in the defined Blm-s promoter. In vivo, diminished Blm-s transcripts are observed in the normal or irradiated embryonic cortex of E15.5 p53-null mouse. We further demonstrate that BLM-s induces apoptosis via transcriptional upregulation through both the ATM/p53 and JNK/AP1 signaling pathways in response to DSB stress. Collectively, our study demonstrates that BLM-s is a novel pro-apoptotic BCL-2 family member in the developing nervous system and it can be upregulated in response to DNA damage to potentiate neuronal apoptosis through ATM/p53 and JNK/AP1 signaling pathway.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:14:36Z (GMT). No. of bitstreams: 1
ntu-103-F91444008-1.pdf: 154331893 bytes, checksum: 66c69595acb3faa1301c7063b4a11ac3 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝................................................................................................................i
中文摘要.........................................................................................................ii
Abstract........................................................................................................iii
Table of Contents...........................................................................................v
List of Figures...............................................................................................vii
Introduction...................................................................................................1
Introduction to apoptosis...............................................................................1
Regulation of apoptosis by BCL-2 family in intrinsic pathway.........................2
Apoptosis in cortical histogenesis..................................................................3
The role of BCL-2 family in the developing nervous system...........................4
The role of DNA double-strand breaks in neuronal apoptosis........................5
ATM/p53 signaling in nervous system...........................................................6
JNK/AP-1 signaling in nervous system...........................................................7
Materials and Methods...................................................................................9
Results.........................................................................................................22
Chapter 1: BLM-s is a Potent Pro-apoptotic BCL-2 Family Member That Functions as a Sensitizer/Derepressor BH3-only Protein...............................22
Identification of a novel member of BCL-2 family enriched in mouse embryonic nervous system...........................................................................22
Overexpression of BLM-s induces apoptosis in vitro and in vivo ....................24
BLM-s executes apoptosis via a conventional mitochondrial apoptotic pathway ....................................................................................................................27
BLM-s localizes at ER and mitochondria.......................................................28
Pro-apoptotic activity of BLM-s is regulated by its sub cellular localization..30
BLM-s induces apoptosis through calcium signaling.....................................32
BLM-s induces apoptosis through its BH domain and behaves like a BH3-only apoptosis sensitizer/derepressor in mediating apoptosis..............................33
Chapter 2: Blm-s Mediates Neuronal Apoptosis Through Transcriptional Regulation in Response to DNA Double-Strand Breaks..................................38
Blm-s expression is unregulated by DNA double-strand breaks stress in the postmitotic neurons.....................................................................................38
Blm-s is upregulated via ATM/p53 and JNK/AP1 pathway and confers cells death by rheostat switch in response to DNA double-strand breaks stress 40
Blm-s is a direct target for transcriptional factors p53 and AP-1..................44
Discussion....................................................................................................49
Figures and Figure Legends..........................................................................61
References...................................................................................................98
Figure 1 Identification of a novel gene enriched in the mouse embryonic CNS.............................................................................................................61
Figure 2 The transcription initiation site of Blm-s.......................................63
Figure 3 The phylogenetic tree of mouse Blm-s homolog...........................64
Figure 4 BLM-s is a novel BCL-2 family member.........................................65
Figure 5 Overexpression of BLM-s induces apoptosis in COS cells...............67
Figure 6 Overexpression of BLM-s promotes apoptosis in vivo....................69
Figure 7 BLM-s-induced apoptosis is not due to ER stress caused by protein misfolding...................................................................................................71
Figure 9 BLM-s localizes at ER and mitochondria........................................73
Figure 10 Schematic structure and proteins expression of deletion and chimeric GFP-tagged BLM-s constructs........................................................74
Figure 11 Either mitochondrial or ER localization of BLM-s can facilitate BLM-s ensuing celllar apoptosis, and the apoptotic function can be counteracted by BCL-2................................................................................75
Figure 12 BLM-s modulates intracellular calcium signals............................77
Figure 13 BH domain is required for BLM-s ensuing apoptosis....................78
Figure 14 BLM-s selectively interacts with BCL-2 family members..............80
Figure 15 BLM-s-mediated apoptosis is through BAX-dependent manner..82
Figure 16 The proapoptotic activity of BLM-s is prohibited through interaction with BCL-2 via BH domain..........................................................84
Figure 17 Model for BLM-s functions as a BH3-only sensitizer/derepressor in mediating apoptosis....................................................................................85
Figure 18 Blm-s localizes at postmitotic region in embryonic mouse brains..........................................................................................................86
Figure 19 Upregulated expression of Blm-s in response of DNA double-strand breaks stress.....................................................................................87
Figure 20 Blm-s transcript is induced in vivo by γ-irradiation with concomitant increase in cortical apoptosis, which is partially abolished by RNAi-depletion of BLM-s.............................................................................88
Figure 21 Proapoptotic BLM-s together with BAX is upregulated with concurrent downregulation of prosurvival BLC-2 triggered by DSBs-inducing agents.........................................................................................................89
Figure 22 ATM/p53 and JNK/AP1 signals are required for Blm-s transcription and Blm-s-mediated apoptosis....................................................................91
Figure 23 Blm-s is a transcriptional target of p53 and AP1. …………….......94
Figure 24 Both p53 and AP1 are pre-requisite for up regulation of Blm-s mRNA..........................................................................................................95
Figure 25 p53 is required for Blm-s expression in mouse embryonic brains. ....................................................................................................................96
Figure 26 Model for the role of BLM-s in mediating cellular apoptosis........97
dc.language.isoen
dc.subject神經細胞凋亡zh_TW
dc.subjectBH3-only BCL-2家族分子zh_TW
dc.subjectDNA雙股斷裂zh_TW
dc.subjectBLM-szh_TW
dc.subjectATM/p53訊息傳導zh_TW
dc.subjectJNK/AP1訊息傳導zh_TW
dc.subjectBLM-sen
dc.subjectTranscriptional regulation of neuronal apoptosis by p53 and AP1en
dc.subjectDNA double-strand breaksen
dc.subjectPostmitotic neuronal deathen
dc.subjectBH3-only sensitizer/derepressoren
dc.subjectapoptosisen
dc.subjectBCL-2 familyen
dc.title功能性探討一新穎BCL-2家族分子-BLM-szh_TW
dc.titleFunctional Characterization of a Novel BCL-2 Family Member-BLM-sen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.oralexamcommittee程淮榮(Hwai-Jong Cheng),李芳仁(Fang-Jen S. Lee),周祖述(Tzuu-Shuh Jou),薛一蘋(Yi-Ping Hsueh),陳瑞華(Ruey-Hwa Chen)
dc.subject.keywordBLM-s,BH3-only BCL-2家族分子,神經細胞凋亡,DNA雙股斷裂,ATM/p53訊息傳導,JNK/AP1訊息傳導,zh_TW
dc.subject.keywordBLM-s,BCL-2 family,apoptosis,BH3-only sensitizer/derepressor,Postmitotic neuronal death,DNA double-strand breaks,Transcriptional regulation of neuronal apoptosis by p53 and AP1,en
dc.relation.page116
dc.rights.note有償授權
dc.date.accepted2014-02-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept病理學研究所zh_TW
Appears in Collections:病理學科所

Files in This Item:
File SizeFormat 
ntu-103-1.pdf
  Restricted Access
150.71 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved