Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58412
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor唐存勇(Tswen Yung Tang),王胄(Joe Wang)
dc.contributor.authorYa-Ting Changen
dc.contributor.author張雅婷zh_TW
dc.date.accessioned2021-06-16T08:14:14Z-
dc.date.available2014-03-09
dc.date.copyright2014-03-09
dc.date.issued2014
dc.date.submitted2014-02-13
dc.identifier.citationAlford, M. (2003), Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159–162.
Chang, Y.-T., W.-L. Hsu, J.-H. Tai, T. Y. Tang, M.-H. Chang, and S.-Y. Chao (2010a), Cold deep water in the South China Sea, J. Oceano., 66, 183-190.
Chang, Y.-T., T. Yung Tang, S.-Y. Chao, M.-H. Chang, D. S. Ko, Y. J. Yang, W.-D. Liang, and M. J. McPhaden (2010b), Mooring observations and numerical modeling of thermal structures in the South China Sea, J. Geophys. Res., 115, C10022, doi:10.1029/2010JC006293.
Chen, Shuyi S., Wei Zhao, Mark A. Donelan, James F. Price, Edward J. Walsh (2007), The CBLAST-Hurricane Program and the Next-Generation Fully Coupled Atmosphere–Wave–Ocean Models for Hurricane Research and Prediction. Bull. Amer. Meteor. Soc., 88, 311–317.
Chiang, T.-L., C.-R. Wu, and L.-Y. Oey, (2011), Typhoon Kai-Tak: an ocean’s perfect storm, J. Phys. Oceanogr., 41, 221-233.
Cione, J. J., and E. W. Uhlhorn (2003), Sea surface temperature variability in hurricanes: Implications with respect to intensity change, Mon. Weather Rev., 131(5), 1783– 1796.
D’Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill (2007), Cold wake of Hurricane Frances, Geophys. Res. Lett., 34, L15609, doi:10.1029/2007GL030160
D’Asaro, E., P.G. Black, L.R. Centurioni, Y.-T. Chang, S.S. Chen, Ralph Foster, H.C. Graber, P. Harr, Verena Hormann, R.-C. Lien, I.-I. Lin, T.B. Sanford, T.-Y. Tang, and C.-C. Wu (2013), Impact of Typhoons on the Ocean in the Pacific: ITOP, Bulletin of the American Meteorological Society. (accepted)
Dickey, T. D., D. Frye, J. McNeil, D. Manov, N. Nelson, D. Sigurdson, H. Jannasch, D. Siegel, A. Michaels, and R. Johnson (1998), Upper ocean temperature response to Hurricane Felix as measured by the Bermuda Testbed Mooring, Mon. Weather Rev., 126, 1195–1201.
Dijkstra, H. A. (2008), Dynamical oceanography ([Corr. 2nd print.] ed.). Berlin: Springer Verlag. p. 276.
Duda, T. F., J. F. Lynch, J. D. Irish, R. C. Beardsley, S. R. Ramp, C.-S. Chiu, T. Y. Tang, and Y. J. Yang (2004), Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE J. Oceanic Eng., 29, 1105–1130.
Dugan, J. P., R. Mied, P. Mignerey, and A. Schuetz (1982), Compact, intrathermocline eddies in the Sargasso Sea. J. Geophys. Res., 87, 385–393.
Emanuel, K. A. (1999), Thermodynamic control of hurricane intensity. Nature, 401, 665–669.
Emery, W. J. and R. E. Thomson (2004). Data analysis methods in physical oceanography. 2nd Ed., Elsevier.
Evans J. L., and K. McKinley (1998), Relative timing of tropical storm lifetime maximum intensity and track recurvature. Meteoro. and Atmos. Physics, 65, 241–245.
Garfield, N., C. A. Collins, R. G. Paquette, and E. Carter (1999), Lagrangian exploration of the California Undercurrent, 1992– 1995. J. Phys. Oceanogr., 29, 560–583.
Garrett, C. (2001), What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum?, J. Phys. Oceanogr., 31, 962-971.
Gill, A. E., (1982), Atmosphere-Ocean Dynamics, Academic Press, 662 p.p.
Gordon, A.L., C.F. Giulivi, C.M. Lee, H.H. Furey, A. Bower, and L.D. Talley (2002), Japan/East Sea thermocline eddies. J. Phys. Oceanogr., 32, 1,960–1,974.
Halliwell, G. R., L. K. Shay, J. K. Brewster, and W. J. Teague (2011), Evaluation and sensitivity analysis of an ocean model to Hurricane Ivan, Mon. Wea. Rev., 139, 921–945.
Hebert, D., N. Oakey, and B. Ruddick (1990), Evolution of a Mediterranean salt lens: scalar properties, J. Phys. Oceanogr., 20, 1468– 1483.
Hodanish, S., and W. M. Gray (1993) An Observational Analysis of Tropical Cyclone Recurvature. Mon. Wea. Rev., 121, 2665–2689.
Hogan, P.J., and H.E. Hurlburt (2006), Why do intrathermocline eddies form in the Japan/East Sea? A modeling perspective. Oceanogr., 19(3),134–143.
Hua, B. L., J. C. McWilliams, and P. Klein (1998), Lagrangian accelerations in geostrophic turbulence. J. Fluid Mech., 366, 87–108.
Hwang, C., C. R. Wu, and R. Kao (2004), TOPEX/Poseidon observations of mesoscale eddies over the subtropical countercurrent: Kinematic characteristics of an anticyclonic eddy and of a cyclonic eddy. J. Geophys. Res., 109, C08013, doi:10.1029/ 2003JC002026.
Inness, A., F. Baier, A. Benedetti, I. Bouarar, S. Chabrillat, H. Clark, C. Clerbaux, P. Coheur, R. J. Engelen, Q. Errera, J. Flemming, M. George, C. Granier, J. Hadji-Lazaro, V. Huijnen, D. Hurtmans, L. Jones, J.W. Kaiser, J. Kapsomenakis, K. Lefever, J. Leitao, M. Razinger, A. Richter, M. G. Schultz, A. J. Simmons, M. Suttie, O. Stein, J.-N. Thepaut, V. Thouret, M. Vrekoussis, C. Zerefos, and the MACC team (2013), The MACC reanalysis: an 8 yr data set of atmospheric composition, Atmos. Chem. Phys., 13, 4073-4109, doi:10.5194/acp-13-4073-2013.
Jacob, S. D., and L. K. Shay (2003), The role of mesoscale features on the tropical cyclone–induced mixed layer response: A case study, J. Phys. Oceanogr., 33, 649–676.
Jaimes, B., and L. K. Shay (2009), Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita, Mon. Wea. Rev., 137, 4188–4207.
Jaimes, B., and L. K. Shay (2010), Near-inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies, J. Phys. Oceanogr., 40, 1320–1337.
Kallberg, P., P. Berrisford, B. Hoskins, A. Simmons, S. Uppala, S. Lamy-Thepaut and R. Hine (2005), ERA-40 atlas. Technical report, ERA-40 Project Report Series, ECMWF, Shinfield Park, Reading, U.K., 191 pp.
Knaff, J. A. (2009), Revisiting the maximum intensity of recurving tropical cyclones. Int. J. Climatol., 29: 827–837.
Ko, D. S., S.Y. Chao, P. Huang, S.-F. Lin (2009), Anomalous upwelling in Nan Wan: July 2008. Terr Atmos Ocean Sci, 20(6):839–852.
Kobashi, F., and H. Kawamura (2002), Seasonal variation and instability nature of the North Pacific Subtropical Countercurrent and the Hawaiian Lee Countercurrent. J. Geophys. Res., 107, 3185, doi:10.1029/2001JC001225.
Kostianoy, A. G., and I. M. Belkin (1991), A survey of observations on intrathermocline eddies in the world ocean, in Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence, J. C. J. Nihoul and B. M. Jamart, Eds., Elsevier, 821–841.
Kundu, P. (1993), On internal waves generated by traveling wind, J. Fluid Mech., 254, 529-559.
Kunze, E. (1985), Near-inertial wave propagation in geostrophic shear, J. Phys. Oceanogr., 15, 544-565.
Lapeyre, G., P. Klein and B. L. Hua (1999), Does the tracer gradient vector align with the strain eigenvectors in 2-D turbulence? Phys. Fluids, 11, 3729–3737.
Lee, I-.H., D. S. Ko, Y.-H. Wang, L. Centurioni, D.-P. Wang (2013), The mesoscale eddies and Kuroshio transport in the western North Pacific east of Taiwan from 8-year (2003–2010) model reanalysis. Ocean Dynamics 63:9-10, 1027-1040
Leipper, D. F. (1967), Observed ocean conditions and Hurricane Hilda, 1964, J. Atmos. Sci., 24, 182–186.
Lin, I.-I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu, and I.-F. Pun (2005), The interaction of supertyphoon Maemi (2003) with a warm ocean eddy, Mon. Weather Rev., 133, 2635– 2649.
Lin, I.-I., C.-C. Wu, I.-F. Pun, and D.-S. Ko (2008), Upper ocean thermal structure and the western North Pacific category-5 typhoons. Part I: Ocean features and category-5 typhoon’s intensification, Mon. Weather Rev., 136, 3288– 3306.
Lin, I.-I., C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C.Wu (2009), Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008), Geophys. Res. Lett., 36, L03817, doi:10.1029/2008GL035815.
McWilliams, J. C., (1984), The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech., 146, 21–43.L18602, doi:10.1029/2009GL039402.
McWilliams, J. C., F. Colas, and M. J. Molemaker (2009), Cold filamentary intensification and oceanic surface convergence lines, Geophys. Res. Lett., 36, L18602, doi:10.1029/2009GL039402.
Milburn, H. B., and P. D. McLain (1986), ATLAS: A low cost satellite data telemetry mooring developed for NOAA’s Climate Research Mission, in Proceedings, MDS ‘86, Marine Data Systems International Symposium, 30 April—2 May, New Orleans, LA, pp. 393–396.
Mooers, C. N. K. (1975), Several effects of baroclinic currents on the three-dimensional propagation of inertial-internal waves, 6, 277-284.
Ou, H.W., and A. Gordon (2002), Subduction along a midocean front and the generation of Intrathermocline eddies: A theoretical study. J. Phys. Oceanogr., 32(6),1,975–1,986.
Pawlowicz, R., B. Beardsley, and S. Lentz (2002), Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers and Geosciences, 28, 929-937.
Price, J. F. (1981), Upper ocean response to a hurricane, J. Phys. Oceanogr., 11, 153– 175.
Price, J. F., T. B. Sanford, G. Z. Forristall (1994), Forced stage response to a moving hurricane, J. Phys. Oceanogr., 24, 233-260.
Qiu, B. (1999), Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory, J. Phys. Oceanogr., 29, 1670-1685.
Qiu, B., and S. Chen (2010), Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field, J. Phys. Oceanogr., 40, 213-225, doi:10.1175/2009JPO4285.1.
Ramp, R. S., T. Y. Tang, T. F. Duda, J. F. Lynch, A. K. Liu, C.-S. Chiu, F. Bahr, H.-R. Kim, and Y. J. Yang (2004), Internal solitons in the northeastern South China Sea Part I: Source and deep water propagation. IEEE J. Oceanic Eng., 29, 1157–1181.
Roemmich, D., and J. Gilson (2001) Eddy transport of heat and thermocline waters in the North Pacific: A key to interannual/decadal climate variability, J. Phys. Oceanogr., 31, 675-687, doi: http://dx.doi.org/10.1175/1520-0485(2001)031 <0675: ETOHAT> 2.0.CO;2.
Sanford, T.B., J.F. Price, J.B. Girton (2011), Upper ocean response to Hurricane Frances (2004) observed by EM-APEX floats. J. Phys. Oceanogr., 41, 1041–1056.
Shay, L. K., G. J. Goni, and P. G. Black (2000), Effects of a warm oceanic feature on Hurricane Opal, Mon. Weather Rev., 128, 1366– 1383.
Shay, L. K., A. J. Mariano, S. D. Jacob and E. H. Ryan (1998), Mean and near-inertial current to Hurricane Gilbert, J. Phys. Oceanogr.,28, 858-889.
Thomas, L. N. (2008), Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity, Dynam. Atmos. Oceans, 45, 252-273.
Walker, N.D., R. R. Leben, and S.Balasubramanian (2005), Hurricaneforced upwelling and chlorophyll a enhancement within coldcore cyclones in the Gulf of Mexico, Geophys. Res. Lett., 32, L18610, doi:10.1029/2005GL023716.
Zedler, S. E., T. D. Dickey, S. C. Doney, J. F. Price, X. Yu, and G. L. Mellor (2002), Analyses and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring site: 13–23 August 1995. J. Geophys. Res., 107, 3232,, doi:10.1029/2001JC000969.
Zedler, S. E. (2009), Simulations of the Ocean Response to a Hurricane: Nonlinear Processes. J. Phys. Oceanogr., 39, 2618–2634.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58412-
dc.description.abstract為研究颱風與海洋間交互作用,2009年由台灣與美國合作之西北太平洋及其邊緣海之颱風-海洋交互作用與內波之研究,英文簡稱ITOP,實驗規劃在西北太平洋中施放三組海氣象觀測即時傳輸平台,觀測項目包含氣象參數與水下溫度,在2009年3月至2010年3月,共記錄了一年水下資料與片段的氣象資料。水下溫度記錄顯示海洋溫度變化以季節性變動為主,另外亦夾帶有較小時間尺度的降溫或升溫;後者中有些降溫與冷鋒通過有關,其特徵是溫降由海表開始向下略有延遲,時間尺度約為一週;另外也有海洋中尺度渦旋(eddy)通過所引起之升溫或降溫,其時間尺度則為數週。
觀測期間,盧碧颱風(Lupit, 2009)通過其中兩個測站,一個記錄到颱風眼通過,而另一個則是記錄到颱風眼牆區通過時之氣象與水下溫度反應。颱風本身的行進速度與颱風在路徑變化時風應力變化趨勢,皆是造成颱風冷尾跡(cold wake)呈現對稱分佈或是偏向路徑右側的原因。測站所記錄到之最高風速為60公尺/秒,最低氣壓為942毫巴;颱風造成在颱風眼下方測站海表面溫度降低4.5 °C,在眼牆區亦降低4.5 °C。在颱風眼下方的海洋,受到直接輻散作用影響,溫度約在0~0.5個慣性週期時降低,而在颱風路徑左側,因有水平平流(advection)效果而使得降溫時間延後約0.2個慣性週期。
積分上層100公尺溫度可得上層海洋熱含量,其顯示慣性震盪在颱風通過後約持續5天,受到季節變化影響,上層海洋熱含量並未恢復到颱風前的狀態。海洋中的冷渦在颱風通過前已經存在,其受到颱風影響而增強;有冷渦存在的區域,因溫躍層受冷渦影響抬升,颱風在此處引起之降溫幅度會更大,其亦為颱風降溫幅度之主要因素。另外在其中一個測站量測到次中尺度流絲(filament),其在颱風引起之冷尾跡回溫時造成再降溫,然而此一再降溫僅持續三天,其回溫速度很快,並未影響到原來冷尾跡之回溫速度。
比較衛星資料之海表面異常值與積分至360公尺處之海洋熱含量顯示高相關性,顯示此處之溫度變化主要受到中尺度海洋運動影響。使用經驗正交函數(EOF)分析所量測之海洋溫度,在三個測站皆顯示第一模態佔80%以上之變異量,而第一模態之時間序列與衛星資料之海表面異常值亦有高相關性,利用量測資料與量測期間內之海表面異常值為資料庫,反推二者關係,進而推估垂直分布之海溫結構,可提供予未來預測研究區域之垂直海溫結構。
zh_TW
dc.description.abstractThree surface buoys at stations A1, A2 and A3, equipped with surface meteorological and subsurface temperature sensors, were deployed in the tropical western Pacific. Together, they recorded a year of upper ocean thermal structure and some meteorological data from March 2009 to March 2010. Seasonal cooling and warming trend was often interrupted by intermittent cooling and sudden warming. Some cooling episodes were induced by cold air passages in spring. Others, cooling or warming, were often related to the migration of cold and warm eddies.
Lupit (2009), once intensified to a category-5 typhoon, ran over one buoy with its eye and skirted by another with its eye wall when it was weakening from category 3 to 2. All buoys worked well except for a few instrument failures after Lupit’s passage. Changes in the translation speed and wind stress field during typhoon re-curvature or left-turning influenced the appearance and location of the cold wake. The highest wind speed of 60 m/s and lowest air pressure of 941 mb were recorded under the eye. The net sea surface temperature drop was 4.5 °C under the eye and 4.5 °C under the eye wall. During Lupit’s passage, temperature in the upper thermocline increased first before decreasing. The upper-ocean current divergence under the typhoon’s eye caused the temperature drop in half an inertial period or less. On the left-side of Lupit’s track, horizontal advection delayed the cooling by about 0.2 inertial period.
Upper ocean heat content in the top 100 m showed post-typhoon near-inertial oscillations for 5 days and did not bounce back to the pre-Lupit value thereafter. Preconditioning by a cold eddy enhanced the post-typhoon cooling at one station. A sub-mesoscale filament was observed during the warming or relaxation of the cold wake at station A3. It induced a three-day cooling pulse superimposed on the otherwise warming trend.
Applied Empirical Orthogonal Functions (EOFs) analysis to the observed temperature, Mode 1 explained over 80% variance at all three stations. Mode 1 amplitude has a high correlation with satellite derived sea level anomaly (SLA). The relationship between SLA and Mode 1 amplitude, found by linear regression, may be useful for prediction of vertical temperature structure in the Phillipine Sea.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:14:14Z (GMT). No. of bitstreams: 1
ntu-103-F93241101-1.pdf: 19939826 bytes, checksum: 8b598ee02282ad45d984cf308fb7c666 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsList of Figure ii
List of Table viii
Chapter 1 Introduction 1
Chapter 2 Data and Methodology 7
2.1 Field Work 7
2.2 Empirical Orthogonal Functions 12
Chapter 3 Data Overview 14
3.1 Meteorological data 14
3.2 Underwater temperature 18
3.2.1 Mixed layer 19
3.2.2 Upper thermocline 22
3.2.3 Lower thermocline 26
Chapter 4 Impact from Eddies 29
Chapter 5 Lupit’s impact 40
5.1 Meteorological and sea surface responses to Lupit 40
5.2 Lupit’s impact on Subsurface temperature 43
5.3 The spatial difference in Lupit induced cold wake 47
5. 4 Lupit induced near-inertial motion 57
5. 5 Differences between A1 and A3 61
Chapter 6 Discussion 73
6.1 Upwelling effect on post-typhoon cooling 73
6.2 EOF analysis of Thermal Structure 78
Chapter 7 Conclusion 85
Reference 88
Appendix I 98
Appendix II 99
Appendix III 108
dc.language.isoen
dc.subject渦旋zh_TW
dc.subject颱風zh_TW
dc.subject熱帶西太平洋zh_TW
dc.subject冷尾跡zh_TW
dc.subjectEddyen
dc.subjectTropical Western Pacific Oceanen
dc.subjectCold Wakeen
dc.subjectTyphoonen
dc.title熱帶西太平洋上近一年之錨碇量測上層海洋溫度與颱風對其影響zh_TW
dc.titleYearlong mooring observations of upper ocean temperature with typhoon impacts in the tropical western Pacific Oceanen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.coadvisor趙慎餘(Shenn-yu Chao)
dc.contributor.oralexamcommittee林依依(I-I Lin),陳慶生(Ching-Shen Chern),何宗儒(Chung-Ru Ho),詹森(Sen Jan)
dc.subject.keyword颱風,渦旋,熱帶西太平洋,冷尾跡,zh_TW
dc.subject.keywordTyphoon,Eddy,Tropical Western Pacific Ocean,Cold Wake,en
dc.relation.page127
dc.rights.note有償授權
dc.date.accepted2014-02-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
19.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved