Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58406
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor席行正(Hsing-Cheng Hsi)
dc.contributor.authorMeng-Yuan Ouen
dc.contributor.author歐夢圓zh_TW
dc.date.accessioned2021-06-16T08:14:01Z-
dc.date.available2020-07-23
dc.date.copyright2020-07-23
dc.date.issued2020
dc.date.submitted2020-07-21
dc.identifier.citationAhmad, M., Lee, S. S., Yang, J. E., Ro, H. M., Lee, Y. H., Ok, Y. S. (2012). Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and Environmental Safety, 79, 225-231.
Ahmad, M., Lee, S. S., Lim, J. E., Lee, S. E., Cho, J. S., Moon, D. H., Hashimoto, Y., Ok, Y. S. (2014). Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere, 95, 433-441.
Alasadi, A., Khaili, F., Awwad, A. (2019). Adsorption of Cu (II), Ni (II) and Zn (II) ions by nano kaolinite: Thermodynamics and kinetics studies. Chemistry International, 5(4), 258-268.
Apitz, S. E., Power, E. A. (2002). From risk assessment to sediment management an international perspective. Journal of Soils and Sediments, 2(2), 61-66.
Azcue, J. M., Zeman, A. J., Forstner, U. (1998). International review of application of subaqueous capping techniques for remediation of contaminated sediments International Congress on Environmental Geotechnics, 537-542.
ASTM D2765-16 (2016). Standard test methods for determination of gel content and swell ratio of crosslinked ethylene plastics. ASTM International, West Conshohocken, PA. www.astm.org.
Bouhamed, F., Elouear, Z., Bouzid, J., Ouddane, B. (2016). Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones. Environmental Science and Pollution Research, 23(16), 15801-15806.
Bravo, A. G., Bouchet, S., Tolu, J., Björn, E., Mateos-Rivera, A., Bertilsson, S. (2017). Molecular composition of organic matter controls methylmercury formation in boreal lakes. Nature Communications, 8(1), 1-9.
Calmano, W., Hong, J., Förstner, U. (1993). Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Science and Technology, 28(8-9), 223-235.
Eek, E., Cornelissen, G., Kibsgaard, A., Breedveld, G. D. (2008). Diffusion of PAH and PCB from contaminated sediments with and without mineral capping; measurement and modelling. Chemosphere, 71(9), 1629-1638.
Feng, Y., Gong, J. L., Zeng, G. M., Niu, Q. Y., Zhang, H. Y., Niu, C. G., Deng, J. H., Yan, M. (2010). Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chemical Engineering Journal, 162(2), 487-494.
Fuller, C. C., Bargar, J. R., Davis, J. A., Piana, M. J. (2002). Mechanisms of uranium interactions with hydroxyapatite: Implications for groundwater remediation. Environmental Science Technology, 36(2), 158-165.
Glatstein, D. A., Francisca, F. M. (2015). Influence of pH and ionic strength on Cd, Cu and Pb removal from water by adsorption in Na-bentonite. Applied Clay Science, 118, 61-67.
Gu, S., Kang, X., Wang, L., Lichtfouse, E., Wang, C. (2019). Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environmental Chemistry Letters, 17(2), 629-654.
Kutuniva, J., Mäkinen, J., Kauppila, T., Karppinen, A., Hellsten, S., Luukkonen, T., Lassi, U. (2019). Geopolymers as active capping materials for in situ remediation of metal (loid)-contaminated lake sediments. Journal of Environmental Chemical Engineering, 7(1), 102852.
Hsu, T. C. (2009). Experimental assessment of adsorption of Cu2+ and Ni2+ from aqueous solution by oyster shell powder. Journal of Hazardous Materials, 171(1-3), 995-1000.
Hamadi, N. K., Chen, X. D., Farid, M. M., Lu, M. G. (2001). Adsorption kinetics for the removal of chromium (VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chemical Engineering Journal, 84(2), 95-105.
Jang, S. H., Min, B. G., Jeong, Y. G., Lyoo, W. S., Lee, S. C. (2008). Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams. Journal of Hazardous Materials, 152(3), 1285-1292.
Jalees, M. I., Farooq, M. U., Basheer, S., Asghar, S. (2019). Removal of Heavy Metals from Drinking Water Using Chikni Mitti (Kaolinite): Isotherm and Kinetics. Arabian Journal for Science and Engineering, 44(7), 6351-6359.
Jeong, H. Y., Klaue, B., Blum, J. D., Hayes, K. F. (2007). Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS). Environmental Science Technology, 41(22), 7699-7705.
Jiang, M. Q., Jin, X. Y., Lu, X. Q., Chen, Z. L. (2010). Adsorption of Pb (II), Cd (II), Ni (II) and Cu (II) onto natural kaolinite clay. Desalination, 252(1-3), 33-39.
Kay, M. I., Young, R. A., Posner, A. S. (1964). Crystal structure of hydroxyapatite. Nature, 204(4963), 1050-1052.
Korkmaz, C., Ay, Ö., Ersoysal, Y., Köroğlu, M. A., Erdem, C. (2019). Heavy metal levels in muscle tissues of some fish species caught from north-east Mediterranean: Evaluation of their effects on human health. Journal of Food Composition and Analysis, 81, 1-9.
Krestou, A., Xenidis, A., Panias, D. (2004). Mechanism of aqueous uranium (VI) uptake by hydroxyapatite. Minerals Engineering, 17(3), 373-381.
Kumar, G. S., Girija, E. K., Venkatesh, M., Karunakaran, G., Kolesnikov, E., Kuznetsov, D. (2017). One step method to synthesize flower-like hydroxyapatite architecture using mussel shell bio-waste as a calcium source. Ceramics International, 43(3), 3457-3461.
Kwapinski, W., Byrne, C. M., Kryachko, E., Wolfram, P., Adley, C., Leahy, J. J., Novotny, E. H., Hayes, M. H. (2010). Biochar from biomass and waste. Waste and Biomass Valorization, 1(2), 177-189.
Latifi, Z., Jalali, M. (2019). Measuring and Simulating Co (II) Sorption on Waste Calcite, Zeolite and Kaolinite. Natural Resources Research, 29(2), 1-15.
Lee, C. H., Lee, D. K., Ali, M. A., Kim, P. J. (2008). Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials. Waste Management, 28(12), 2702-2708.
Li, G., Shen, B., Lu, F. (2015). The mechanism of sulfur component in pyrolyzed char from waste tire on the elemental mercury removal. Chemical Engineering Journal, 273, 446-454.
Li, H., Shi, A., Li, M., Zhang, X. (2013). Effect of pH, temperature, dissolved oxygen, and flow rate of overlying water on heavy metals release from storm sewer sediments. Journal of Chemistry, 434012.
Lin, J. G., Chen, S. Y. (1998). The relationship between adsorption of heavy metal and organic matter in river sediments. Environment International, 24(3), 345-352.
Lewis, P. A. (1994). Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. EPA U.S. Environmental Monitoring Systems Laboratory.
Mehrotra, A. S., Horne, A. J., Sedlak, D. L. (2003). Reduction of net mercury methylation by iron in Desulfobulbus propionicus (1pr3) cultures: Implications for engineered wetlands. Environmental Science Technology, 37(13), 3018-3023.
Mikulova, Z., Sedenkova, I., Matejova, L., Večeř, M., Dombek, V. (2013). Study of carbon black obtained by pyrolysis of waste scrap tyres. Journal of Thermal Analysis and Calorimetry, 111(2), 1475-1481.
Mittal, A., Teotia, M., Soni, R. K., Mittal, J. (2016). Applications of egg shell and egg shell membrane as adsorbents: a review. Journal of Molecular Liquids, 223, 376-387.
Morse, J. W., Arakaki, T. (1993). Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochimica et Cosmochimica Acta, 57(15), 3635-3640.
Moon, D. H., Wazne, M., Cheong, K. H., Chang, Y. Y., Baek, K., Ok, Y. S., Park, J. H. (2015). Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag. Environmental Science and Pollution Research, 22(14), 11162-11169.
Narwade, V. N., Khairnar, R. S., Kokol, V. (2018). In situ synthesized hydroxyapatite—cellulose nanofibrils as biosorbents for heavy metal ions removal. Journal of Polymers and the Environment, 26(5), 2130-2141.
Olsta, J. T. (2007). In-Situ Capping of Contaminated Sediments with Reactive Materials. In Ports 2007: 30 Years of Sharing Ideas: 1977-2007, 1-9
Parks, J. M., Johs, A., Podar, M., Bridou, R., Hurt, R. A., Smith, S. D., Tomanicek, S. J., Qian, Y., Brown, S. D., Brandt, C. C., Palumbo, A. V., Smith, J. C., Judy, D. W., Elias, D. A., Liang, L. Y. (2013). The genetic basis for bacterial mercury methylation. Science, 339(6125), 1332-1335.
Peng, J. F., Song, Y. H., Yuan, P., Cui, X. Y., Qiu, G. L. (2009). The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials, 161(2-3), 633-640.
Singh, S. P., Ma, L. Q., Tack, F. M., Verloo, M. G. (2000). Trace metal leachability of land-disposed dredged sediments. Journal of Environmental Quality, 29(4), 1124-1132.
Song, Z., Tang, W., Shan, B. (2017). A scheme to scientifically and accurately assess cadmium pollution of river sediments, through consideration of bioavailability when assessing ecological risk. Chemosphere, 185, 602-609.
Sobczak-Kupiec, A., Malina, D., Kijkowska, R., Wzorek, Z. (2012). Comparative study of hydroxyapatite prepared by the authors with selected commercially available ceramics. Digest Journal of Nanomaterials and Biostructures, 7(1), 385-391.
Suuberg, E. M., Aarna, I. (2007). Porosity development in carbons derived from scrap automobile tires. Carbon, 45(9), 1719-1726.
Ting, Y., Chen, C., Ch’ng, B. L., Wang, Y. L., Hsi, H. C. (2018). Using raw and sulfur-impregnated activated carbon as active cap for leaching inhibition of mercury and methylmercury from contaminated sediment. Journal of Hazardous Materials, 354, 116-124.
Ting, Y., Ch'ng, B. L., Chen, C., Ou, M. Y., Cheng, Y. H., Hsu, C. J., Hsi, H. C. (2020). A simulation study of mercury immobilization in estuary sediment microcosm by activated carbon/clay-based thin-layer capping under artificial flow and turbation. Science of The Total Environment, 708, 135068.
Trinkunaite-Felsen, J., Prichodko, A., Semasko, M., Skaudzius, R., Beganskiene, A., Kareiva, A. (2015). Synthesis and characterization of iron-doped/substituted calcium hydroxyapatite from seashells Macoma balthica (L.). Advanced Powder Technology, 26(5), 1287-1293.
Tsui, M. T. K., Finlay, J. C. (2011). Influence of dissolved organic carbon on methylmercury bioavailability across Minnesota stream ecosystems. Environmental Science Technology, 45(14), 5981-5987.
Wang, X., Yu, R., Wang, P., Chen, F., Yu, H. (2015). Co-modification of F− and Fe (III) ions as a facile strategy towards effective separation of photogenerated electrons and holes. Applied Surface Science, 351, 66-73.
Wu, Q., Chen, J., Clark, M., Yu, Y. (2014). Adsorption of copper to different biogenic oyster shell structures. Applied Surface Science, 311, 264-272.
Wu, S. C., Tsou, H. K., Hsu, H. C., Hsu, S. K., Liou, S. P., Ho, W. F. (2013). A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite. Ceramics International, 39(7), 8183-8188.
Xiong, Z., He, F., Zhao, D., Barnett, M. O. (2009). Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Research, 43(20), 5171-5179.
Yu, R. Q., Flanders, J. R., Mack, E. E., Turner, R., Mirza, M. B., Barkay, T. (2012). Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments. Environmental Science Technology, 46(5), 2684-2691.
Yavuz, Ö., Altunkaynak, Y., Güzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 37(4), 948-952.
Zhang, C., Zhu, M. Y., Zeng, G. M., Yu, Z. G., Cui, F., Yang, Z. Z., Shen, L. Q. (2016). Active capping technology: a new environmental remediation of contaminated sediment. Environmental Science and Pollution Research, 23(5), 4370-4386.
Zhou, Y., Ma, W. (2019). Heavy Metal Exposure and Children’s Health. In Emerging Chemicals and Human Health, 79-97.
Zhang, C., Zhu, M. Y., Zeng, G. M., Yu, Z. G., Cui, F., Yang, Z. Z., Shen, L. Q. (2016). Active capping technology: a new environmental remediation of contaminated sediment. Environmental Science and Pollution Research, 23(5), 4370-4386.
Zhai, X., Li, Z., Huang, B., Luo, N., Huang, M., Zhang, Q., Zeng, G. (2018). Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Science of the Total Environment, 635, 92-99.
台灣行政院環保署 (2012) 底泥污染來源及傳輸模式調查計畫-以重點河川為例,EPA-100-GA102-02-A232
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58406-
dc.description.abstract人類長期之工業化活動,使得含重金屬之廢水排放在全球造成嚴重的污染問題。底泥作為排入河川之污染物的主要匯集地,往往出現多種超過底泥品質標準限值之污染物,因此開發整治受多重重金屬污染底泥之技術有其必要性。近年來,在污染底泥上鋪設活性材料覆蓋層逐漸被認可為一種經濟有效的現地整治方式,這種整治方式通過減少底泥中污染物向上層水體的釋出,可有效減少潛在污染物對於人體和生態環境的風險。
本研究主要分為兩個部分。其一為水相批次實驗,探討五種材料各自之捕獲五種重金屬的效能。在實驗中以普遍存在於污染底泥中的Cu,Cr,Zn,Ni和Hg為重點研究對象,並根據已有的研究選用碳黑材料,高嶺土,硫化亞鐵,牡蠣殼粉及氫氧基磷灰石作為具有理想潛力的整治材料。研究的第二部分利用微環境系統,模擬真實自然環境下不同的混合式覆蓋層的應用對於抑制多重重金屬之可行性,抑制能力與穩定性。覆蓋層材料的混合比例以第一部分水相吸附實驗之結果為依據。
水相吸附實驗結果顯示,對於Cu,Cr,Zn和Ni來說,氫氧基磷灰石與牡蠣殼粉總體而言呈現最佳的吸附效果,碳黑材料的吸附效果次之;而對於Hg來說,硫化亞鐵和碳黑是最佳的吸附材料。在第二部分的擬環境系統實驗中,以碳黑材料主要作為穩定汞的材料,氫氧基磷灰石與牡蠣殼粉為主要比重的覆蓋層在長期來說對五種金屬及甲基汞的釋出起到最佳的抑制作用。
本研究提供了一種通過合理分配不同吸附材比重來達到有效整治多重污染環境的方法,當應用於實場時,覆蓋層的材料混合比例可根據實際廠址的特點、當地污染物的特性及整治目標做調整,以達到底泥實場整治的最大效益。
zh_TW
dc.description.abstractAs a result of long-term anthropogenic activities, potential toxic metal contaminated wastewater has caused severe pollution globally. Sediments act as the major sinks of contaminants entering into river, resulting in multi-pollutants with concentrations exceeding the limit of guidelines. Recently, capping the contaminated sediments with active materials becomes an economical and effective in-situ remediation choice for lowering the release content of potential toxic metals to overlying water, reducing the potential risks presented to human health and ecological system.
This research is divided into two parts. The first part is the aqueous batch experiments using five adsorbents to capture the five potential toxic metals individually at various concentrations. We focused on investigating the different effectiveness of various adsorbents for capturing Cu, Cr, Zn, Ni and Hg existing in sediments. Kaolinite, carbon black (CB), iron sulfide (FeS), hydroxyapatite (HAP), and oyster shell powder (OSP) were selected as potentially ideal amendments based on previous researches. In the second part, a laboratory-scale, in-situ treatment was conducted by modified six-column microcosm to evaluate the feasibility, inhibition, and stability of different mixed active capping. Five mixing ratios based on various considerations using the five adsorbent materials were tested; the water samples were collected and analyzed every week for 135 days.
In aqueous batch experiments, HAP and OSP showed the largest removal efficiencies towards Ni (OSP: 76.47%), Cr (OSP: 100.00%), Cu (HAP: 98.39%), and Zn (HAP: 64.56%), with CB taking the third place. In contrast, FeS and CB played a more significant role in Hg removal (FeS: 100.00%; CB: 86.40%). In the modified six-column microcosm experiments, results s
howed that capping containing CB could immobilize the release of Hg and methylmercury (MeHg) better than that by FeS. More economical design, namely, with higher portion of OSP in the mixed capping, could not reach comparable effects to those with more HAP for immobilizing Ni, but performed almost the same for the other four metals. All columns with active capping showed greater metal immobilization as compared to the controlled column without capping.
I suggest that when applied to the actual field, the ratio of mixing materials should be adjusted based on the adequate evaluation of site specifications, risks, and remediation goals. It is expected that this technology could be further scaled up in remediation of multi-contaminated sediments.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:14:01Z (GMT). No. of bitstreams: 1
U0001-1307202017191100.pdf: 2315230 bytes, checksum: 99452f738af7f91c91664b33f3ccfa2c (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsChapter 1. Introduction 1
1.1 Motivation 1
1.2 Research objectives 2
Chapter 2. Literature review 4
2.1 Potential toxic metal contaminants 4
2.2 Active capping as a method of sediment remediation 5
2.3 Active materials for capping 6
2.3.1 Kaolinite 7
2.3.2 Iron sulfide (FeS) 8
2.3.3 Carbon black (CB) 8
2.3.4 Hydroxyapatite (HAP) 9
2.3.5 Oyster shell powder (OSP) 10
2.5 Subsequent treatment of capping 11
2.4 Influence factors for potential toxic metal distributions 11
Chapter 3. Materials and methods 14
3.1 Experimental design 14
3.2 Experimental equipment and analytical instruments 16
3.3 Sediment sampling and analyses 18
3.4 Materials preparation 18
3.4.1 Kaolinite, FeS and carbon black (CB) 18
3.4.2 Oyster shell powder (OSP) and hydroxyapatite (HAP) 18
3.5 Physicochemical properties of materials 20
3.5.1 Specific surface area, pore volumes, and pore distribution (BET) 20
3.5.2 Elements analysis (EA) 21
3.6 Aqueous batch experiments of adsorption 21
3.6.1 Solution preparation 22
3.6.2 Adsorption process 22
3.6.3 Adsorption isotherms 23
3.7 Laboratory microcosms 24
3.7.1 Artificial freshwater 24
3.7.2 Sediment incubation 24
3.7.3 Mixed caps design 25
3.7.4 Microcosm design 27
3.7.5 Water sampling and analysis 29
3.8 Sample analysis methods 30
3.8.1 Cold vapor atomic fluorescence spectrophotometer (CVAFS) 30
3.8.2 Total organic carbon (TOC) 31
3.9 Statistical analysis 31
Chapter 4. Results and discussion 32
4.1 Sediment characteristics 32
4.2 Physicochemical properties of sorbents 34
4.3 Aqueous batch adsorption experiments 36
4.4 Laboratory microcosms experiment 40
4.4.1 Results of sediment incubation 40
4.4.2 pH and oxidation reduction potential (ORP) 41
4.4.3 Total organic carbon (TOC) 47
4.4.4 Metal immobilization 49
Chapter 5. Conclusions and suggestions 60
5.1 Conclusions 60
5.2 Recommendations 61
References 62
dc.language.isoen
dc.subject活性覆蓋法zh_TW
dc.subject有毒金屬zh_TW
dc.subject底泥zh_TW
dc.subject現地整治zh_TW
dc.subject廢棄物再生材料zh_TW
dc.subjectactive cappingen
dc.subjecttoxic metalen
dc.subjectsedimenten
dc.subjectin-situ remediationen
dc.subjectrecycled materialsen
dc.title以混合式活性覆蓋材料整治受多重潛在毒性金屬污染底泥以降低環境風險之研究zh_TW
dc.titleUsing Mixed Active Capping to Remediate Multiple Potential Toxic Metal Contaminated Sediment for Reducing Environmental Risken
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee于昌平(Chang-Ping Yu),許正一(Zeng-Yei Hseu),蘇銘千(Ming-Chien Su)
dc.subject.keyword活性覆蓋法,有毒金屬,底泥,現地整治,廢棄物再生材料,zh_TW
dc.subject.keywordactive capping,toxic metal,sediment,in-situ remediation,recycled materials,en
dc.relation.page72
dc.identifier.doi10.6342/NTU202001479
dc.rights.note有償授權
dc.date.accepted2020-07-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1307202017191100.pdf
  未授權公開取用
2.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved