請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58386
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 高成炎 | |
dc.contributor.author | Ko-Chun Yang | en |
dc.contributor.author | 楊克鈞 | zh_TW |
dc.date.accessioned | 2021-06-16T08:13:22Z | - |
dc.date.available | 2016-04-08 | |
dc.date.copyright | 2014-03-21 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-02-14 | |
dc.identifier.citation | [1] Mitri Z, et al., “The HER2 Receptor in Breast Cancer: Pathophysiology, Clinical Use, and New Advances in Therapy,” Chemother Res Pract. 2012;2012:743193. doi: 10.1155/2012/743193. Epub 2012 Dec 20.
[2] Limor Amit, et al., “The Impact of Bevacizumab (Avastin) on Survival in Metastatic Solid Tumors - A Meta-Analysis and Systematic Review,” PLoS One. 2013; 8(1): e51780. [3] Lee KH, et al., “Gefitinib in Selected Patients with Pre-Treated Non-Small-Cell Lung Cancer: Results from a Phase IV, Multicenter, Non-Randomized Study (SELINE),” Tuberc Respir Dis (Seoul). 2012 Dec;73(6):303-11. doi: 10.4046/trd.2012.73.6.303. Epub 2012 Dec 28. [4] NCBI Resource Coordinators, “Database resources of the National Center for Biotechnology Information,” Nucleic Acids Res. 2013 Jan 1;41(D1):D8-D20. doi: 10.1093/nar/gks1189. Epub 2012 Nov 27. [5] Rhodes DR, et al., “ONCOMINE: a cancer microarray database and integrated data-mining platform,” Neoplasia. 2004 Jan-Feb;6(1):1-6. [6] Rhodes DR, et al., “Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles,” Neoplasia, 9(2):166-80, 2007 Feb. [7] Yu W, et al., “Phenopedia and Genopedia: disease-centered and gene-centered views of the evolving knowledge of human genetic associations,” Bioinformatics. 2010 Jan 1;26(1):145-6. doi: 10.1093/bioinformatics/btp618. Epub 2009 Oct 27. [8] Knox C, et al., “DrugBank 3.0: a comprehensive resource for 'omics' research on drugs, ” Nucleic Acids Res. 2011 Jan;39(Database issue):D1035-41. [9] Wishart DS, et al., “DrugBank: a knowledgebase for drugs, drug actions and drug targets,” Nucleic Acids Res, 36(Database issue):D901-6, 2008 Jan. [10] Wishart DS, et al., “DrugBank: a comprehensive resource for in silico drug discovery and exploration,” Nucleic Acids Res, 34(Database issue):D668-72, 2006 Jan [11] Lee HS, et al., “Rational drug repositioning guided by an integrated pharmacological network of protein, disease and drug,” BMC Syst Biol. 2012 Jul 2;6:80. doi: 10.1186/1752-0509-6-80. [12] Lamb J, et al., “The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease,” Science, 313(5795):1929-35, 2006 Sep 29. [13] Stark, C., et al., The BioGRID Interaction Database: 2011 update. Nucleic Acids Res, 2011. 39(Database issue): p. D698-704. [14] Willis, R.C. and C.W. Hogue, Searching, viewing, and visualizing data in the Biomolecular Interaction Network Database (BIND). Curr Protoc Bioinformatics, 2006. Chapter 8: p. Unit 89. [15] Licata, L., et al., MINT, the molecular interaction database: 2012 update. Nucleic Acids Res, 2012. 40(Database issue): p. D857-61. [16] Pagel, P., et al., The MIPS mammalian protein-protein interaction database. Bioinformatics, 2005. 21(6): p. 832-4. [17] Xenarios, I., et al., DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res, 2002. 30(1): p. 303-5. [18] Kerrien, S., et al., The IntAct molecular interaction database in 2012. Nucleic Acids Res, 2012. 40(Database issue): p. D841-6. [19] Goel, R., et al., Human Protein Reference Database and Human Proteinpedia as resources for phosphoproteome analysis. Mol Biosyst, 2012. 8(2): p. 453-63. [20] McDowall, M.D., M.S. Scott, and G.J. Barton, PIPs: human protein-protein interaction prediction database. Nucleic Acids Res, 2009. 37(Database issue): p. D651-6. [21] Chen, J.Y., S. Mamidipalli, and T. Huan, HAPPI: an online database of comprehensive human annotated and predicted protein interactions. BMC Genomics, 2009. 10 Suppl 1: p. S16. [22] Balaji, S., et al., IMID: integrated molecular interaction database. Bioinformatics, 2012. 28(5):p. 747-9. [23] Lee SA, et al., “POINeT: protein interactome with sub-network analysis and hub prioritization,” BMC Bioinformatics, 10:114, 2009 Apr 21. [24] Lee SA, et al., “Ortholog-based protein-protein interaction prediction and its application to inter-species interaction”, BMC Bioinformatics, 9 (Suppl 12):S11, 2008 [25] Punta M, et al., “The Pfam protein families database”, Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301. doi: 10.1093/nar/gkr1065. Epub 2011 Nov 29. [26] Kanehisa M, “KEGG for integration and interpretation of large-scale molecular data sets”, Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14. doi: 10.1093/nar/gkr988. Epub 2011 Nov 10. [27] Lapointe J, et al., “Gene expression profiling identifies clinically relevant subtypes of prostate cancer” , Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):811-6. Epub 2004 Jan 7. [28] Sheikh H, et al., “Impact of genetic targets on prostate cancer therapy” , Adv Exp Med Biol. 2013;779:359-83. doi: 10.1007/978-1-4614-6176-0_17. [29] Thompson M, et al., “Identification of candidate prostate cancer genes through comparative expression-profiling of seminal vesicle”, Prostate. 2008 Aug 1;68(11):1248-56. doi: 10.1002/pros.20792. [30] Zielinski RR, et al., “Targeting the apoptosis pathway in prostate cancer”, Cancer J. 2013 Jan;19(1):79-89. doi: 10.1097/PPO.0b013e3182801cf7. [31] Schweizer MT, Carducci MA, “From bevacizumab to tasquinimod: angiogenesis as a therapeutic target in prostate cancer’, Cancer J. 2013 Jan;19(1):99-106. doi: 10.1097/PPO.0b013e31827e0b86. [32] Zhang L, et al., “Valproic acid inhibits prostate cancer cell migration by up-regulating E-cadherin expression”, Pharmazie. 2011 Aug;66(8):614-8. [33] Sidana A, et al., “Mechanism of growth inhibition of prostate cancer xenografts by valproic acid”, J Biomed Biotechnol. 2012;2012:180363. doi: 10.1155/2012/180363. Epub 2012 Oct 2. [34] Fortson WS, et al., “Histone deacetylase inhibitors, valproic acid and trichostatin-A induce apoptosis and affect acetylation status of p53 in ERG-positive prostate cancer cells”, Int J Oncol. 2011 Jul;39(1):111-9. doi: 10.3892/ijo.2011.1014. Epub 2011 Apr 21. [35] Fernandes SA, et al., “The anti-oestrogen fulvestrant (ICI 182,780) reduces the androgen receptor expression, ERK1/2 phosphorylation and cell proliferation in the rat ventral prostate”, Int J Androl. 2011 Oct;34(5 Pt 1):486-500. doi: 10.1111/j.1365-2605.2010.01109.x. Epub 2010 Sep 27. [36] Mukhopadhyay T, et al., “Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo”, Clin Cancer Res. 2002 Sep;8(9):2963-9. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58386 | - |
dc.description.abstract | 由於開發新藥物成本高、研發時程長,舊藥新用為生醫資訊之研究方向之一。本研究利用ONCOMINE資料庫內的癌症基因表現差異,配合Connectivity Map內的不同藥物處理細胞株產生之基因表現差異資料,藉由Connectivity Map評估具有潛力之藥物,並進一步利用DrugBank、POINeT去分析這些藥物之作用路徑、作用標靶、蛋白質交互作用,以得到較可靠之藥物供後續生物實驗測試。
研究中疾病選擇攝護腺癌,經由ONCOMINE資料庫中取不同門檻值之高低表現量基因,分別輸入Connectivity Map以得到具潛力藥物,共獲得12項候選藥物,其中5項屬於癌症治療用藥(vorinostat,皮膚淋巴癌。tanespimycin、alvespimycin,HSP-90抑制劑。camptothecin、fulvestrant,乳癌),以及1項(alfuzosin)屬於前列腺肥大用藥。查詢候選藥物的Drug Bank直接作用標靶蛋白質,並以POINeT分析疾病高低表現量基因與藥物標靶蛋白。具有S3 排名者有vorinostat之HDAC、HDAC2和fulvestrant之ESR1三個標靶蛋白,但相對於疾病高低表現量基因網路上節點排名為低,表示藥物可能具有療效,但藥物對於整體蛋白質交互作用網路的影響可能較小。 | zh_TW |
dc.description.abstract | Due to the high cost of money and time for new drug development, new application for old drugs is one of the critical directions in bioinformatics research. In the present study, cancer gene expression differences accessed via the database ONCOMINE along with the differences in gene expression by different drugs dealing with cell lines within the Connectivity Map were utilized. Based on the potential drugs assessed by Connectivity Map, DrugBank and POINeT were used to analyze the pathways of drugs and their therapeutic targets as well as protein interactions in order to obtain putative candidate drugs for follow-up biological testing experiments.
Prostate cancer was chosen in this study, and variant volume of gene expressions in different threshold levels retreived via ONCOMINE were keyed in Connectivity Map to obtain 12 potential drug candidates, of which five are associated with cancer treatment medicine (vorinostat, cutaneous lymphoma; tanespimycin, alvespimycin, HSP-90 inhibitors; camptothecin ,fulvestrant, breast cancer), and 1 (alfuzosin) is prostate medication. Querying drug candidates of direct target proteins in Drug Bank and analyzing the performance of the volume of disease genes and drug target proteins using POINeT, the results show as follows: three target proteins are vorinostat of HDAC1, HDAC2 and fulvestrant of ESR1, but the scores of gene network nodes were low relative to the level of performance volume of disease. Thus, it is indicated that the drugs may have effects but may have relatively small impact concerning the overall protein-protein interaction network. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:13:22Z (GMT). No. of bitstreams: 1 ntu-103-R97945020-1.pdf: 3888868 bytes, checksum: 65bcb7796b96a1c7df682e49fa13d907 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iii 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 1 第二章 文獻探討 3 2.1基因表現資料庫 3 2.2疾病相關基因資料庫 4 2.3藥物資料庫 7 2.4藥物反應資料庫 7 2.5蛋白質交互作用資料庫 8 2.6生物註解資料庫 9 第三章 研究流程與方法 12 3.1建立ONCOMINE差異表現基因之蛋白質交互作用網路 13 3.2 Connectivity Map候選藥物分析並建立蛋白質交互作用網路 13 3.3分析已知攝護腺癌藥物標靶蛋白之蛋白質交互作用網路 13 3.4建立攝護腺癌相關基因之蛋白質交互作用網路 14 3.4蛋白質網路分析與藥物評估應用潛力 14 第四章 結果 15 4.1 ONCOMINE攝護腺癌高低表現量基因 15 4.2 Connecttivity Map候選藥物分析 16 4.3 POINeT蛋白質交互作用網路分析 20 4.4攝護腺癌藥物分析 25 第五章 討論 28 第六章 結論 30 參考文獻 31 附錄 35 | |
dc.language.iso | zh-TW | |
dc.title | 基於疾病相關微陣基因群的候選藥物評估 | zh_TW |
dc.title | Putative Candidate Drugs Based on Disease-related Microarray Genes by Protein-protein Interaction Network | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 朱學亭,李盛安 | |
dc.subject.keyword | 新適應症,候選藥物,微陣基因,蛋白質交互作用,生物資訊, | zh_TW |
dc.subject.keyword | New Indication,Candidate Drug,Microarray Gene,Protein-Protein Interaction,Bioinformatics, | en |
dc.relation.page | 41 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-02-14 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 3.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。