請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58379完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐善慧(Shan-hui Hsu) | |
| dc.contributor.author | Chun-Wei Ou | en |
| dc.contributor.author | 歐俊瑋 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:13:08Z | - |
| dc.date.available | 2019-03-18 | |
| dc.date.copyright | 2014-03-18 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-14 | |
| dc.identifier.citation | [1] Zohuriaan-Mehr JM, Kabiri K. Superabsorbent Polymer Materials: A Review. Iran Polym J 2008;17:451-477.
[2] Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2002;43:3-12. [3] Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 2006; 58:1655-1670. [4] Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 2002;15:569-79. [5] Liu F, Urban M W. Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci. 2010;35:3-23. [6] Zhang Q, Ko N R, Oh J K. Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications. Chem Commun. 2012;48:7542-7552. [7] Hoare T R, Kohane D S. Hydrogels in drug delivery: Progress and challenges. Polymer. 2008;49:1993-2007. [8] Wang Q, Wang C, Du X, Liu Y, Ma L. Synthesis, thermosensitive gelation and degradation study of a biodegradable triblock copolymer. J Macromol Sci, Pure Appl Chem 2003;50:200-207. [9] Chao G T, Qian Z Y, Huang M J, Kan B, Gu Y C, Gong C Y, Yang J L, Wang K, Dai M, Li X Y, Gou M L, Tu M J, Wei Y Q. Synthesis, characterization, and hydrolytic degradation behavior of a novel biodegradable pH-sensitive hydrogel based on polycaprolactone, methacrylic acid, and poly(ethylene glycol). J Biomed Mater Res A. 2008;85:36-46. [10] Zhao S P, Cao M J, Li L Y, Xu W L. Synthesis and properties of biodegradable thermo- and pH-sensitive poly[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels. Polym Degrad Stabil 2010;95:719-724. [11] Darling S B. Directing the self-assembly of block copolymers. Prog Polym Sci 2007;32:1152-1204. [12] Yu L, Chang G, Zhang H, Ding J. Temperature-induced spontaneous sol–gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-Poly(ethylene glycol)-b-Poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. J. Polym. Sci., Part A: Polym. Chem. 2007;45:1122-1133. [13] Ding M, Li J, Tan H, Fu Q. Self-assembly of biodegradable polyurethanes for controlled delivery applications. Soft Matter. 2012;8:5414-5428. [14] Huynh C T, Nguyen M K, Lee D S. Injectable block copolymer hydrogels: achievements and future challenges for biomedical applications. Macromolecules. 2011;44:6629-6636. [15] He C, Kim S W, Lee D S. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release. 2008;217:189-207. [16] Zhang J, Lu Z Y, Sun Z Y. Self-assembly structures of amphiphilic multiblock copolymer in dilute solution. Soft Matter 2013;9:1947-1954. [17] Lee D S, Shim M S, Kim S W, Lee H, Park I, Chang T. Novel Thermoreversible gelation of biodegradable PLGA-block-PEO-block-PLGA triblock copolymers in aqueous solution. Macromol Rapid Commun. 2001;22:587-592. [18] Zou P, Nie L, Feng S, Suo J. Synthesis, micellization and gelation of temperature-responsive star-shaped block copolymers. Polymer Adv Tech. 2013;24:460-465. [19] Dong A, Hou G, Sun D. Properties of amphoteric polyurethane waterborne dispersions II. Macromolecular self-assembly behavior. J Colloid Interface Sci. 2003;266:276-281. [20] Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: From chaperoning engineering to biomedical applications. Chem Rec. 2010;10:366-76. [21] Pelton R. Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci. 2000;85:1-33. [22] Kohjiya S, Ikeday Y, Takesako S, Yamashita S. Drug release behavior from polyurethane gel. Reactive Polymers. 1991;15:165-175. [23] Tanaka Y, Gong J P, Osada Y. Novel hydrogels with excellent mechanical performance. Prog Polym Sci. 2005;30:1-9. [24] Park D, Wu W, Wang Y. A functionalizable reverse thermal gel based on a polyurethane/PEG block copolymer. Biomaterials. 2011;32:777-786. [25] Loh X J, Sng K B C, Li J. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(ε-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Biomaterials. 2008;29:3185-3194. [26] Dayananda K, He C, Lee D S. In situ gelling aqueous solutions of pH- and temperature-sensitive poly(ester amino urethane)s. Polymer. 2008;49:4620-4625. [27] Chu B, and Hsiao BS. Small-angle X-ray scattering of Polymers. Chemical Reviews. 2001;11:1727-1761. [28] 廖巍博,以小角度散射法決定高分子微結構,國立成功大學,化學工程研究所,碩士論文,2001 [29] 陳信龍、鄭有舜,小角度X光散射在高分子奈米結構解析之應用,科儀新知第二十九卷第二期,2007 [30] Sun YS, Jeng US, Huang YS, Liang KS, Lin TL, Tsao CS. Complementary SAXS and SANS for structural characteristics of a polyurethane elastomer of low hard-segment content. Physica B, 2006, 650-652. [31] Waletzko RS, Korley LTJ, Pate BD, Thomas EL, Hammond PT. Role of increased crystallinity in deformation-induced structure of segmented thermoplastic polyurethane elastomers with PEO and PEO-PPO-PEO soft segments and HDI hard segments. Macromolecules. 2009;42:2041-2053. [32] Koberstein JT, Russell TP, Simultaneous SAXS-DSC study of multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules. 1986;19:714-720. [33] Jamshidi K, Hyon SH, Ikada Y. Thermal characterization of polylactides. Polymer. 1988;29:2229-2234. [34] Noble KL. Waterborne polyurethanes. Prog Org Coat. 1997;32:131-136. [35] Zhua Z, Xiea C, Liub Q, Zhena X, Zhenga X, Wua W, Lib R, Dingc Y, Jianga X. The effect of hydrophilic chain length and iRGD on drug delivery from poly(ε-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials. 2011;32:9525-9535. [36] Tande BM, Wagner NJ, Mackay ME, Hawker CJ, Jeong M. Viscosimetric, hydrodynamic, and conformational properties of dendrimers and dendrons. Macromolecules. 2001; 34:8580-8585. [37] Lee KH, Kim HY, Khil MS, Ra YM, Lee DR. Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer. 2013;44:1287-1294. [38] Zhang CY, Lu H, Zhuang Z, Wang XP, Fang QF. Nano-hydroxyapatite/poly(L-lactic acid) composite synthesized by a modified in situ precipitation: preparation and properties. J Mater Sci Mater Med. 2010;12:3077-2083. [39] Coleman MM, Skrovanek DJ, Hu J, Painter PC. Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends. Macromolecules 1988;21:59-65. [40] Tan H, Li J, Guo M, Du R, Xie X, Zhong Y, Fu Q. Phase behavior and hydrogen bonding in biomembrane mimicking polyurethanes with long side chain fluorinated alkyl phosphatidylcholine polar head groups attached to hard block. Polymer. 2005;46:7230-7239. [41] Miller JA, Lin SB, Hwang KKS, Wu KS, Gibson PE, Cooper SL. Properties of polyether-polyurethane block copolymers: effects of hard segment length distribution. Macromolecules. 1985;18:32-44. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58379 | - |
| dc.description.abstract | 本研究結合三種不同的生物可降解型聚酯二元醇類做為聚胺酯材料軟鏈段組成。並以新穎的水性製程合成水性聚胺酯奈米微粒分散液。藉由動態光散射,多角度光散射,穿透式電子顯微鏡與小角度X光散射等分析方法,發現水性聚胺酯奈米微粒(WBPU NP)主要呈現堅實的圓球狀態,並且隨著軟鏈段組成的差異,呈現不同的形狀因子(shape factor)。在軟鏈段分別由80 mol%之與20mol%的組成的WBPU NP中,發現到有一特殊的熱誘導膨潤現象,且在37°C下可見明顯的相變化發生於2分鐘內,並達近450%的飽和含水率。而此自組裝的現象來自高分子鏈段間的次級作用力與軟鏈段結晶度的差異。而此具生物可降解與溫度響應特性的WBPU NPs在未來可被應用於細胞或藥物載體等智慧型可分解的高分子材料。 | zh_TW |
| dc.description.abstract | Waterborne polyurethane (PU) with different compositions of biodegradable oligodios as the soft segment was synthesized as nanoparticles (NPs) in this study. Using dynamic light scattering (DLS), multi-angle light scattering (MALS), transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), we demonstrated that these NPs were compact spheres with different shape factors. The temperature-dependent swelling of the PU NPs in water was distinct. In particular, PU NPs with 80 mol% polycaprolactone (PCL) diol and 20 mol% poly-L-lactic acid (PLLA) diol as the soft segment had significant swelling (~450%) at 37°C. This was accompanied by a sol-gel transition observed for the NP dispersion in about two minutes. The thermally-induced swelling and self-assembly of these NPs were associated with the secondary force and degree of crystallinity, which depended on the soft segment compositions. The thermo-responsiveness of the PU NPs with mixed biodegradable oligodiols may be employed to design smart biodegradable carriers for delivery of cells or drugs near the body temperature. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:13:08Z (GMT). No. of bitstreams: 1 ntu-103-R01549029-1.pdf: 6505853 bytes, checksum: ea077be586b3820f3e4f1733130d2cbd (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 中文摘要 III 英文摘要 IV 目錄 V 圖目錄 IX 表目錄 XI 第一章 文獻回顧 1 1-1. 超吸水高分子 1 1-2. 感應型水膠 1 1-2-1. 溫度敏感型水膠 1 1-2-2. 酸鹼敏感型水膠 2 1-3. 生物可分解型水膠 3 1-4. 自組裝材料 4 1-4-1. 自組裝嵌段共聚物高分子材料 4 1-4-2. 聚胺酯材料於水分散的自組裝行為 5 1-5. 奈米膠 6 1-6. 聚胺酯水膠 7 1-7. 小角度X光散射(Small-angle X-ray scattering) 7 1-8. 研究目的 9 第二章 研究方法 10 2-1. 研究架構 10 2-2. L型聚乳酸二元醇(Poly-L-lactic acid diol, PLLA diol)合成與純化 12 2-2-1. L型聚乳酸二元醇合成 12 2-2-2. L型聚乳酸二元醇純化 13 2-3. L型聚乳酸二元醇物化特性鑑定 13 2-3-1. 傅立葉紅外線光譜分析儀 13 2-3-2. L型聚乳酸二元醇分子量量測 14 2-4. 水性生物可降解聚胺酯軟鏈段熱性質分析 15 2-5. 水性生物可降解聚胺酯(Waterborne biodegradable polyurethane, WBPU)的合成 15 2-5-1. 水性生物可降解聚胺酯之配方設計 15 2-5-2. 水性生物可降解聚胺酯的合成 17 2-6. 實驗材料製備 20 2-6-1. 薄膜製備 20 2-6-2. 乳液製備 20 2-7. 水性生物可降解聚胺酯奈米微粒基礎性質分析 21 2-7-1. 動態光散射(Dynamic light scattering, DLS)分析 21 2-7-2. 非對稱場流分離(Asymmetric flow field-flow fractionation, AFFFF) 儀分析 21 2-8. 水性生物可降解聚胺酯奈米微粒相變化行為研究 21 2-8-1. 動態光散射分析 21 2-8-2. 小角度X光散射(Small-angle light scattering, SAXS)分析 22 2-8-3. 穿透式電子顯微鏡(Transmission electron microscopy, TEM) 22 2-9. 水性生物可降解聚胺酯奈米微粒相變化機制研究 23 2-9-1. X光繞射(X-ray diffraction, XRD)分析 23 2-9-2. 小角度X光散射(Small angle X-ray scattering, SAXS)分析 23 2-9-3. 傅立葉紅外光譜(Fourier transform infrared spectroscopy, FT-IR)儀 23 2-10. 水性生物可降解聚胺酯流變分析(rheology measurement) 24 2-11. 水性生物可降解聚胺酯水膠膨潤率(swelling ratio)測試 24 第三章 結果 25 3-1. 水性生物可降解聚胺酯軟鏈段特性鑑定 25 3-1-1. L型聚乳酸二元醇傅立葉紅外光譜分析 25 3-1-2. L型聚乳酸二元醇核磁共振分析 25 3-1-3. L型聚乳酸二元醇滴定之分子量分析 25 3-1-4. 聚胺酯軟鏈段熱分析 26 3-2. 水性生物可降解聚胺酯奈米微粒基礎性質分析 26 3-2-1. 動態光散射與pH值分析 26 3-2-2. 非對稱場流分離儀分析 26 3-3. 生物可降解水性聚胺酯奈米微粒相變化行為研究 27 3-3-1. 環境酸鹼值對聚胺酯奈米微粒粒徑變化關係 27 3-3-2. 環境溫度對聚胺酯奈米微粒粒徑變化與可逆性分析 27 3-3-3. 環境溫度對聚胺酯奈米微粒介面電位之分析 28 3-3-4. 聚胺酯奈米微粒之小角度X光散射結構分析 28 3-3-5. 聚胺酯奈米微粒之Guinier method分析 28 3-3-6. 聚胺酯奈米微粒之Kratky method分子量分析 29 3-3-7. 聚胺酯奈米微粒之穿透式電子顯微鏡攝影 29 3-4. 生物可降解水性聚胺酯相變化機制研究 30 3-4-1. 可降解水性聚胺酯廣角X光繞射分析 30 3-4-2. 可降解水性聚胺酯模小角X光散射分析 30 3-4-3. 可降解水性聚胺酯傅立葉紅外光譜分析 30 3-5. 生物可降解水性聚胺酯流變性質測試 31 3-6. 生物可降解水性聚胺酯水膠膨潤率測試 31 第四章 討論 32 4-1. 水性可降解聚胺酯軟鏈段特性鑑定 32 4-1-1. L型聚乳酸二元醇傅立葉紅外光譜分析 32 4-1-2. L型聚乳酸二元醇核磁共振分析 32 4-1-3. L型聚乳酸二元醇滴定之分子量分析 32 4-1-4. 聚胺酯軟鏈段熱分析 33 4-2. 水性可降解聚胺酯奈米微粒基礎性質分析 33 4-2-1. 動態光散射分析 33 4-2-2. 非對稱場流分離儀分析 33 4-3. 水性可降解聚胺酯奈米微粒溫感特性鑑定 34 4-3-1. 環境酸鹼值對聚胺酯奈米微粒粒徑變化關係 34 4-3-2. 環境溫度對聚胺酯奈米微粒粒徑變化與可逆性分析 35 4-3-3. 環境溫度對聚胺酯奈米微粒介面電位之分析 36 4-3-4. 聚胺酯奈米微粒之小角度X光散射結構分析 37 4-3-5. 聚胺酯奈米微粒之Guinier method分析 37 4-3-6. 聚胺酯奈米微粒之Kratky method分子量分析 38 4-3-7. 可降解水性聚胺酯奈米微粒之穿透式電子顯微鏡攝影 40 4-4. 生物可降解水性聚胺酯相變化機制研究 41 4-4-1. 可降解水性聚胺酯X光繞射儀分析 41 4-4-2. 可降解水性聚胺酯膜材小角X光散射分析 42 4-4-3. 可降解水性聚胺酯傅立葉紅外光譜分析 42 4-5. 可降解水性聚胺酯流變性質測試 43 4-6. 可降解水性聚胺酯水膠膨潤率測試 43 4-7. 未來展望 44 第五章 結論 46 參考文獻 47 圖表 53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 聚乳酸 | zh_TW |
| dc.subject | 生物可降解 | zh_TW |
| dc.subject | 水性聚胺酯 | zh_TW |
| dc.subject | 非對稱場流分離 | zh_TW |
| dc.subject | 小角度X光散射 | zh_TW |
| dc.subject | poly-L-lactic acid (PLLA) | en |
| dc.subject | biodegradable | en |
| dc.subject | waterborne polyurethane | en |
| dc.subject | asymmetrical flow field-flow fractionation (AFFFF) | en |
| dc.subject | small angle X-ray scattering (SAXS) | en |
| dc.title | 生物可降解型水性聚胺酯之熱感應自組裝行為研究 | zh_TW |
| dc.title | Characterization of biodegradable polyurethane nanoparticles and thermally-induced self-assembly in water dispersion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 童世煌(Shih-Huang Tung),鄭如忠(Ru-Jong Jeng),孫一明(Yi-Ming Sun),胡孝光(Shiaw-Guang Hu) | |
| dc.subject.keyword | 聚乳酸,生物可降解,水性聚胺酯,非對稱場流分離,小角度X光散射, | zh_TW |
| dc.subject.keyword | poly-L-lactic acid (PLLA),biodegradable,waterborne polyurethane,asymmetrical flow field-flow fractionation (AFFFF),small angle X-ray scattering (SAXS), | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-02-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 6.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
