Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58371Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 高英哲(Ying-Jer Kao) | |
| dc.contributor.author | Ya-Lin Lo | en |
| dc.contributor.author | 羅雅琳 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:12:52Z | - |
| dc.date.available | 2015-03-09 | |
| dc.date.copyright | 2014-03-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-14 | |
| dc.identifier.citation | [1] K. Wilson. Renormalization group - critical phenomena and kondo problem. Rev.
Mod. Phys., 47,773, 1975. [2] Supriyo Datta. Electronic Transport in Mesoscopic Systems. Cambridge Studies in Semiconductor Physics and Microelectronic Engineering. Cambridge University Press, 2003. [3] Supriyo Datta. Quantum Transport: Atom to Transistor. Cambridge University Press, 2013. [4] J. L. Cardy. Conformal field theory and statistical mechanics, in J. Jacobsen et al. (eds), Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing. Oxford University Press, Oxford, 2010. [5] Sander J. Tans, Michel H. Devoret, Hongjie Dai, Andreas Thess, Richard E. Smalley, L. J. Geerligs, and Cees Dekker. Individual single-wall carbon nanotubes as quantum wires. Nature, 386, 1997. [6] Reinhold Egger and Alexander O. Gogolin. Effective low-energy theory for correlated carbon nanotubes. Phys. Rev. Lett., 79,5082--5085, Dec 1997. [7] C. L. Kane and M. P. A. Fisher. Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas. Phys. Rev. B, 46,15233, 1992. [8] N. J. Tao. Electron transport in molecular junctions. Nat. Nanotech., 1,173 -- 181, 2006. [9] Abraham Nitzan and Mark A. Ratner. Electron transport in molecular wire junctions. Science, 300(5624),1384 -- 1389, May 2003. [10] M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour. Conductance of a molecular junction. Science, 278(5336),252 -- 254, October 1997. [11] X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, and S. M. Lindsay. Reproducible measurement of singlemolecule conductivity. Science, 294(5542),571 -- 574, October 2001. [12] M. Dorogi, J. Gomez, R. Osifchin, R. P. Andres, and R. Reifenberger. Roomtemperature coulomb blockade from a self-assembled molecular nanostructure. Phys. Rev. B, 52(12),9071--9077, Sep 1995. [13] David I. Gittins, Donald Bethell, David J. Schiffrin, and Richard J. Nichols. A nanometre-scale electronic switch consisting of a metal cluster and redoxaddressable groups. Nature, 408,67--69, November 2000. [14] J. G. Kushmerick, D. B. Holt, J. C. Yang, J. Naciri, M. H. Moore, and R. Shashidhar. Metal-molecule contacts and charge transport across monomolecular layers: Measurement and theory. Phys. Rev. Lett., 89(8),086802, Aug 2002. [15] James G. Kushmerick, Jason Lazorcik, Charles H. Patterson, and Ranganathan Shashidhar. Vibronic contributions to charge transport across molecular junctions. Nano Lett., 4(4),639, March 2004. [16] Wenyong Wang, Takhee Lee, Ilona Kretzschmar, and Mark A. Reed. Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. Nano Lett., 4(4),643, March 2004. [17] N B Zhitenev, A Erbe, H Meng, and Z Bao. Gated molecular devices using selfassembled monolayers. Nanotechnology, 14(2),254, 2003. [18] Nicolas Agrait, Carlos Untiedt, Gabino Rubio-Bollinger, and Sebastian Vieira. Onset of energy dissipation in ballistic atomic wires. Phys. Rev. Lett., 88(21),216803, May 2002. [19] X. H. Qiu, G. V. Nazin, and W. Ho. Vibronic states in single molecule electron transport. Phys. Rev. Lett., 92(20),206102, May 2004. [20] R. Egger and A. O. Gogolin. Vibration-induced correction to the current through a single molecule. Phys. Rev. B, 77(11),113405, Mar 2008. [21] N. B. Zhitenev, H. Meng, and Z. Bao. Conductance of small molecular junctions. Phys. Rev. Lett., 88(22),226801, May 2002. [22] Yoram Selzer, Marco A. Cabassi, Theresa S. Mayer, and David L. Allara. Thermally activated conduction in molecular junctions. J. Am. Chem. Soc., 126(13),4052, 2004. [23] Yoram Selzer, Marco A Cabassi, Theresa S Mayer, and David L Allara. Temperature effects on conduction through a molecular junction. Nanotechnology, 15(7),S483, May 2004. [24] M. Di Ventra, S.-G. Kim, S. T. Pantelides, and N. D. Lang. Temperature effects on the transport properties of molecules. Phys. Rev. Lett., 86(2),288--291, Jan 2001. [25] Christian Joachim and Mark A. Ratner. Molecular electronics: Some views on transport junctions and beyond. PNAS, 102(25),8801--8808, 2005. [26] Dvira Segal, Abraham Nitzan, Mark Ratner, and William B. Davis. Activated conduction in microscopic molecular junctions. J. Phys. Chem. B,, 104,2790--2793, 2000. [27] Dvira Segal, Abraham Nitzan, William B. Davis, Michael R. Wasielewski, and Mark A. Ratner. Electron transfer rates in bridged molecular systems 2. a steadystate analysis of coherent tunneling and thermal transitions. J. Phys. Chem. B,, 104,3817--3829, 2000. [28] L. de la Vega, A. Martin-Rodero, N. Agrait, and A. Levy Yeyati. Universal features of electron-phonon interactions in atomic wires. Phys. Rev. B, 73(7),075428, Feb 2006. [29] Urban Lundin and Ross H. McKenzie. Temperature dependence of polaronic transport through single molecules and quantum dots. Phys. Rev. B, 66(7),075303, Aug 2002. [30] R. Gutierrez, S. Mandal, and G. Cuniberti. Dissipative effects in the electronic transport through dna molecular wires. Phys. Rev. B, 71(23),235116, Jun 2005. [31] Seong Ho Choi, BongSoo Kim, and C. Daniel Frisbie. Electrical resistance of long conjugated molecular wires. Science, 320(5882,),1482 -- 1486, June 2008. [32] Qi Lu, Ke Liu, Hongming Zhang, Zhibo Du, Xianhong Wang, and Fosong Wang. From tunneling to hopping: A comprehensive investigation of charge transport mechanism in molecular junctions based on oligo(p-phenylene ethynylene)s. ACS NANO, 3(12),3861--3868, November 2009. [33] Liang Luo and C. Daniel Frisbie. J. Am. Chem. Soc., 132(26),8854--8855, June 2010. [34] Ya-Lin Lo, Shih-Jye Sun, and Ying-Jer Kao. Length- and temperature-dependent crossover of charge transport across molecular junctions. Phys. Rev. B, 84,075106, Aug 2011. [35] Yigal Meir and Ned S. Wingreen. Landauer formula for the current through an interacting electron region. Phys. Rev. Lett., 68(16),2512--2515, Apr 1992. [36] H. Haug and A. P. Jauho. Quantum Kinetics in Transport and Optics of Semiconductors. Springer-Verlag, Berlin, 1997, 2008. [37] O. Entin-Wohlman, Y. Imry, and A. Aharony. Voltage-induced singularities in transport through molecular junctions. Phys. Rev. B, 80(3),035417, Jul 2009. [38] V. Mujica, M. Kemp, and M. A. Ratner. Electron conduction in molecular wires. i. a scattering formalism. The Journal of Chemical Physics, 101(8),6849--6855, 1994. [39] Zsolt Bihary and Mark A. Ratner. Dephasing effects in molecular junction conduction: An analytical treatment. Phys. Rev. B, 72(11),115439, Sep 2005. [40] N. D. Lang and Ph. Avouris. Oscillatory conductance of carbon-atom wires. Phys. Rev. Lett., 81(16),3515--3518, 10 1998. [41] Eldon G. Emberly and George Kirczenow. Electron standing-wave formation in atomic wires. Phys. Rev. B, 60(8),6028--6033, Aug 1999. [42] Yoshihiro Asai and Hidetoshi Fukuyama. Theory of length-dependent conductance in one-dimensional chains. Phys. Rev. B, 72(8),085431, Aug 2005. [43] Thomas Hines, Ismael Diez-Perez, Joshua Hihath, Hongmei Liu, Zhong-Sheng Wang, Jianwei Zhao, Gang Zhou, Klaus Mullen, and Nongjian Tao. Transition from tunneling to hopping in single molecular junctions by measuring length and temperature dependence. J. Am. Chem. Soc., 132(33),11658--11664, 2010. [44] Janez Bonča and S. A. Trugman. Effect of inelastic processes on tunneling. Phys. Rev. Lett., 75(13),2566--2569, Sep 1995. [45] Eldon G. Emberly and George Kirczenow. Landauer theory, inelastic scattering, and electron transport in molecular wires. Phys. Rev. B, 61(8),5740--5750, Feb 2000. [46] A. A. Gogolin, V. I. Melnikov, and E. I. Rashba. Sov. Phys.---JETP, 42,168, 1976. [47] Seong Ho Choi, Chad Risko, M.Carmen Ruiz Delgado, BongSoo Kim, Bredas Jean-Luc, and C. Daniel Frisbie. Transition from tunneling to hopping transport in long, conjugated oligo-imine wires connected to metals. J. Am. Chem. Soc., 132(12),4358--4368, March 2010. [48] M. Magoga and C. Joachim. Conductance and transparence of long molecular wires. Phys. Rev. B, 56(8),4722--4729, Aug 1997. [49] Michael Galperin, Mark A Ratner, and Abraham Nitzan. Molecular transport junctions: vibrational effects. J. Phys.: Condens. Matter, 19(10),103201, 2007. [50] The two terms 'thermally activated conduction' and 'hopping transport' are used interchangeably in the literature. However, for hopping transport to occur, localized states are needed. [51] G. Evenbly and G. Vidal. Algorithms for entanglement renormalization. Phys. Rev. B, 79,144108, Apr 2009. [52] Adolfo Avella and Ferdinando Mancini. Strongly Correlated Systems, volume 176 of Springer Series in Solid-State Sciences. 2013. [53] Robert N. C. Pfeifer, Glen Evenbly, and Guifre Vidal. Entanglement renormalization, scale invariance, and quantum criticality. Phys. Rev. A, 79,040301, Apr 2009. [54] Robert N. C. Pfeifer, Glen Evenbly, and Guifre Vidal. Entanglement renormalization, scale invariance, and quantum criticality. Phys. Rev. A, 79,040301, Apr 2009. [55] Guifre Vidal Glen Evenbly. Quantum criticality with the multi-scale entanglement renormalization ansatz. arXiv:1109.5334, 2011. [56] John L Cardy. Scaling and renormalization in statistical physics. 1996. [57] J. L. Cardy and D. C. Lewellen. Bulk and boundary operators in conformal field theory. Phys. Lett. B, 259,274, 1991. [58] Philippe Di Francesco, Pierre Mathieu, and David Senechal. Conformal field theory. 1997. [59] J. Kogut Kenneth G. Wilson. The renormalization group and the ϵ expansion. Physics Reports, 12,75–199, August 1974. [60] R B Stinchcombe. Ising model in a transverse field. i. basic theory. Journal of Physics C: Solid State Physics, 6(15),2459, 1973. [61] R. J. Elliott, P. Pfeuty, and C. Wood. Ising model with a transverse field. Phys. Rev. Lett., 25,443--446, Aug 1970. [62] P.G. de Gennes. Collective motions of hydrogen bonds. Solid State Communications, 1(6),132 -- 137, 1963. [63] Pierre Pfeuty. The one-dimensional ising model with a transverse field. Annals of Physics, 57(1),79 -- 90, 1970. [64] Elliott Lieb, Theodore Schultz, and Daniel Mattis. Two soluble models of an antiferromagnetic chain. Annals of Physics, 16(3),407 -- 466, 1961. [65] Rodney J Baxter. One-dimensional anisotropic heisenberg chain. Annals of Physics, 70(2),323 -- 337, 1972. [66] Min-Chul Cha and Jong-Geun Shin. Finite-size scaling properties of the onedimensional extended bose-hubbard model. Journal of Korean Physical Society, 56(3),986 -- 989, 2010. [67] G. Evenbly, R. N. C. Pfeifer, V. Pico, S. Iblisdir, L. Tagliacozzo, I. P. McCulloch, and G. Vidal. Boundary quantum critical phenomena with entanglement renormalization. Phys. Rev. B, 82,161107, Oct 2010. [68] Glen Evenbly and Guifre Vidal. A theory of minimal updates in holography. 2013. [69] Kouichi Okunishi. J. Phys. Soc. Jpn., 76,063001, 2007. [70] Ralf Bulla, Theo A. Costi, and Thomas Pruschke. Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys., 80,395--450, 2008. [71] I. Peschel, M. Wang, X.and Kaulke, and K. (Eds.) Hallberg. Density matrix renormalization-- A New Numerical Method in Physics, volume 528 of Lecture Notes in Physics. Springer, 1999. [72] Glen Evenbly and Guifre Vidal. Algorithms for entanglement renormalization: boundaries, impurities and interfaces. 2013. [73] Christian Joachim and Mark A. Ratner. Molecular electronics: Some views on transport junctions and beyond. PNAS, 102(25),8801--8808, 2005. [74] Takahito Ohshiro, Kazuki Matsubara, Makusu Tsutsui, Masayuki Furuhashiand Masateru Taniguchi, and Tomoji Kawai. Single-molecule electrical random resequencing of dna and rna. SCIENTIFIC REPORTS, 2(501), 2012. [75] D. Laroche, G. Gervais, M. P. Lilly, and J. L. Reno. 1d-1d coulomb drag signature of a luttinger liquid. Science, 2014. [76] Hiroyoshi Ishii, Hiromichi Kataura, Hidetsugu Shiozawa, Hideo Yoshioka, Hideo Otsubo, Yasuhiro Takayama, Tsuneaki Miyahara, Shinzo Suzuki, Yohji Achiba, Masashi Nakatake, Takamasa Narimura, Mitsuharu Higashiguchi, Kenya Shimada, Hirofumi Namatame, and Masaki Taniguchi. Direct observation of tomonaga– luttinger-liquid state in carbon nanotubes at low temperatures. Nature, 426,540- -544, 2003. [77] Marc Bockrath, David H. Cobden, Jia Lu, Andrew G. Rinzler, Richard E. Smalley, Leon Balents, and Paul L. McEuen. Luttinger-liquid behaviour in carbon nanotubes. Nature, 397,598, 1999. [78] Zhen Yao, Henk W. Ch. Postma, Leon Balents, and Cees Dekker. Carbon nanotube intramolecular junctions. Nature, 402,273, 1999. [79] Na Young Kim, Patrik Recher, William D. Oliver, Yoshihisa Yamamoto, Jing Kong, and Hongjie Dai. Tomonaga-luttinger liquid features in ballistic single-walled carbon nanotubes: Conductance and shot noise. Phys. Rev. Lett., 99,036802, Jul 2007. [80] Henk W. Ch. Postma, Mark de Jonge, Zhen Yao, and Cees Dekker. Electrical transport through carbon nanotube junctions created by mechanical manipulation. Phys. Rev. B, 62,R10653--R10656, Oct 2000. [81] I. Affleck. Quantum impurity problems in condensed matter physics, in J. Jacobsen et al. (eds), Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing. Oxford University Press, Oxford, 2010. [82] J. M. Luttinger. J. Math. Phys., 4,1154, 1963. [83] C. L. Kane and Matthew P. A. Fisher. Transport in a one-channel luttinger liquid. Phys. Rev. Lett., 68,1220--1223, Feb 1992. [84] A. Furusaki and N. Nagaosa. Single-barrier problem and anderson localization in a one-dimensional interacting electron system. Phys. Rev. B, 47,4631, 1993. [85] E. Wong and I. Affleck. Tunneling in quantum wires: A boundary conformal field theory approach. Nucl. Phys. B, 417,403, 1994. [86] I. Affleck and A.W.W. Ludwig. The kondo effect, conformal field theory and fusion rules. Nucl. Phys. B, 352,849, 1991. [87] Chetan Nayak, Matthew P. A. Fisher, A. W. W. Ludwig, and H. H. Lin. Resonant multilead point-contact tunneling. Phys. Rev. B, 59,15694, 1999. [88] M. Oshikawa, C. Chamon, and I. Affleck. Junctions of three quantum wires. JSTAT, 2006,P02008, 2006. [89] S. Andergassen, T. Enss, V. Meden, W. Metzner, U. Schollwock, and K. Schonhammer. Functional renormalization group for luttinger liquids with impurities. Phys. Rev. B, 70,075102, Aug 2004. [90] Yuji Hamamoto, Ken-Ichiro Imura, and Takeo Kato. Numerical study of transport through a single impurity in a spinful tomonaga�luttinger liquid. Phys. Rev. B, 77,165402, Apr 2008. [91] Axel Freyn and Serge Florens. Numerical renormalization group at marginal spectral density: Application to tunneling in luttinger liquids. Phys. Rev. Lett., 107,017201, Jun 2011. [92] Armin Rahmani, Chang-Yu Hou, Adrian Feiguin, Claudio Chamon, and Ian Affleck. How to find conductance tensors of quantum multiwire junctions through static calculations: Application to an interacting y junction. Phys. Rev. Lett., 105,226803, Nov 2010. [93] G. Vidal. Entanglement renormalization. Phys. Rev. Lett., 99,220405, Nov 2007. [94] Steven R. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69(19),2863--2866, Nov 1992. [95] U. Schollwock. The density-matrix renormalization group. Rev. Mod. Phys., 77(1),259--315, Apr 2005. [96] Armin Rahmani, Chang-Yu Hou, Adrian Feiguin, Masaki Oshikawa, Claudio Chamon, and Ian Affleck. General method for calculating the universal conductance of strongly correlated junctions of multiple quantum wires. Phys. Rev. B, 85,045120, 2012. [97] C. Karrasch and J. E. Moore. Luttinger liquid physics from the infinite-system density matrix renormalization group. Phys. Rev. B, 86,155156, 2012. [98] Sebastian Eggert and Ian Affleck. Magnetic impurities in half-integer-spin heisenberg antiferromagnetic chains. Phys. Rev. B, 46,10866--10883, Nov 1992. [99] Shaojin Qin, Michele Fabrizio, and Lu Yu. Impurity in a luttinger liquid: A numerical study of the finite-size energy spectrum and of the orthogonality catastrophe exponent. Phys. Rev. B, 54,R9643--R9646, Oct 1996. [100] Sebastian Eggert. One-dimensional quantum wires: A pedestrian approach to bosonization. arXiv:0708.0003, 2007. [101] R. J. Baxter. Exactly Solved Models in Statistical Mechanics. 1982. [102] C. N. Yang and C. P. Yang. One-dimensional chain of anisotropic spin-spin interactions. i. proof of bethe's hypothesis for ground state in a finite system. Phys. Rev., 150,321--327, Oct 1966. [103] Jill C. Bonner and Michael E. Fisher. Linear magnetic chains with anisotropic coupling. Phys. Rev., 135,A640--A658, Aug 1964. [104] T. Hikihara and A. Furusaki. Correlation amplitude for the s = 1 2 XXZ spin chain in the critical region: Numerical renormalization-group study of an open chain. Phys. Rev. B, 58,R583--R586, Jul 1998. [105] Sergei Lukyanov. Low energy effective hamiltonian for the {XXZ} spin chain. Nuclear Physics B, 522(3),533 -- 549, 1998. [106] Siddhartha Lal, Sumathi Rao, and Diptiman Sen. Junction of several weakly interacting quantum wires: a renormalization group study. Phys. Rev. B, 66,165327, 2002. [107] S. Chen, B. Trauzettel, and R. Egger. Landauer-type transport theory for interacting quantum wires: Application to carbon nanotube y junctions. Phys. Rev. Lett., 89,226404, Nov 2002. [108] R. Egger, B. Trauzettel, S. Chen, and F. Siano. Transport theory of carbon nanotube y junctions. New Journal of Physics, 5,117, 2003. [109] K.-V. Pham, F. Piechon, K.-I. Imura, and P. Lederer. Tomonaga-luttinger liquid with reservoirs in a multiterminal geometry. Phys. Rev. B, 68,205110, Nov 2003. [110] K. Kazymyrenko and B. Doucot. Regular networks of luttinger liquids. Phys. Rev. B, 71,075110, Feb 2005. [111] Sourin Das and Sumathi Rao. Duality between normal and superconducting junctions of multiple quantum wires. Phys. Rev. B, 78,205421, Nov 2008. [112] Brando Bellazzini, Mihail Mintchev, and Paul Sorba. Quantum wire junctions breaking time-reversal invariance. Phys. Rev. B, 80,245441, Dec 2009. [113] D. N. Aristov, A. P. Dmitriev, I. V. Gornyi, V. Yu. Kachorovskii, D. G. Polyakov, and P. Wlfle. Tunneling into a luttinger liquid revisited. Phys. Rev. Lett., 105,266404, 2010. [114] D. N. Aristov. Constraints on conductances for y-junction of quantum wires. Phys. Rev. B, 83,115446, 2011. [115] D. N. Aristov and P. Wolfle. Transport properties of a y junction connecting luttinger liquid wires. Phys. Rev. B, 84,155426, Oct 2011. [116] Chang-Yu Hou and Claudio Chamon. Junctions of three quantum wires for spin 1 2 electrons. Phys. Rev. B, 77,155422, Apr 2008. [117] I. Safi and H. J. Schulz. Transport in an inhomogeneous interacting onedimensional system. Phys. Rev. B, 52,R17040--R17043, Dec 1995. [118] Dmitrii L. Maslov and Michael Stone. Landauer conductance of luttinger liquids with leads. Phys. Rev. B, 52,R5539--R5542, Aug 1995. [119] D. N. Aristov and P. Wolfle. Chiral y junction of luttinger liquid wires at weak coupling: Lines of stable fixed points. Phys. Rev. B, 86,035137, Jul 2012. [120] Chang-Yu Hou, Armin Rahmani, Adrian E. Feiguin, and Claudio Chamon. Junctions of multiple quantum wires with different luttinger parameters. Phys. Rev. B, 86,075451, Aug 2012. [121] D. N. Aristov and P. Wolfle. Chiral y junction of luttinger liquid wires at strong coupling: Fermionic representation. Phys. Rev. B, 88,075131, Aug 2013. [122] Claudio Chamon, Masaki Oshikawa, and Ian Affleck. Junctions of three quantum wires and the dissipative hofstadter model. Phys. Rev. Lett., 91,206403, Nov 2003. [123] Chang-Yu Hou, Armin Rahmani, Adrian E. Feiguin, and Claudio Chamon. Junctions of multiple quantum wires with different luttinger parameters. Phys. Rev. B, 86,075451, Aug 2012. [124] Giuseppe Mussardo. Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics. 2010. [125] P. Jordan and E. Wigner. Uber das paulische Aquivalenzverbot. Zeitschrift fur Physik, 47, 1928. [126] Fuzhen Zhang. Matrix Theory. Springer, 2011. [127] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University Press, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58371 | - |
| dc.description.abstract | 我們利用了數值以及解析方法研究一維量子系統的傳輸性質,像是分子導線以及多量子導線等量子元件的電子傳輸行為,並考慮了電聲交互作用以及電子與電子間的交互作用。首先,我們考慮了分子導線內包含電子與聲子的交互作用。分子導線是由許多單位元組成,而每個單位元皆與聲子源有局域性交互作用。我們所使用的解析計算主要是透過非平衡格林函數法(NEGF)來研究分子導線的傳導行為。對於基數個單位元的分子線模型,我們發現電導會隨分子線的長度震盪並且震盪週期與外加偏壓有關。當我們考慮外加偏壓的大小非常接近聲子能量時,這種震盪的行為將會消失。對於不考慮電子與聲子交互作用的情況下,我們發現電子傳輸機制的變化,可利用增長分子線的長度使得傳輸機制由穿隧機制過渡到熱活化躍遷機制。接下來我們考慮分子線具備電聲交互作用的情況,我們發現電子傳輸機制主要與熱驅動有關。此時,藉由增加分子線的長度將使得傳輸機制由熱抑制傳導轉變為熱活化傳導機制。
第二,我們考慮另一個模型也就是多量子導線模型其本身據有電電交互作用,特別的是我們所考慮的量子導線皆屬於強交互作用系統。對於利用數值方法研究這種具備強交互作用的多量子導線之量子元件的電子傳輸行為可能遭遇困難。主要的困難之一是為了計算多量子導線間的電導,藉由Kubo 方程式我們了解到可透過計算時變電流與電流間關聯函數來求得電導,而時變問題對於數值模擬將是一大挑戰。其二,理論上我們所考慮的量子導線為無窮長,因此這種無窮大的系統在數值模擬上也是一大挑戰。此外,我們所考慮的系統屬於臨界系統,而此系統可被相應的臨界量子態所描述,而目前的數值模擬方法中,可有效模擬對於擁有尺度不變性的臨界量子態的數值方法為數不多。 有鑑於此,我們希望發展一個數值方法可用於模擬臨界系統之臨界量子態,並研究其傳導特性像是多量子導線的普式電導,而我們所利用的數值方法是架構在多尺度之糾纏度重整化法(MERA) 之上。透過電導以及電流與電流間關聯函數的關係式,多量子導線的普式電導將可利用數值方法求得。我們主要針對兩個量子導線系統,發展特定的數值方法,而此數值方法可用於計算電流與電流間關聯函數及在保角場理論(CFT) 中的primary field 所對應之scaling dimension。我們展示了兩個量子導線元件的泛行為,並利用所發展的數值方法研究量子導線在重整群(RG) 的固定點(fixed points) 的特性,並對其分類。最後,此數值方法有很大的潛力可被推廣應用至更多量子導線的量子元件之研究。 | zh_TW |
| dc.description.abstract | We utilize both analytic and numerical methods to study the electron transport properties with the presence of electron-phonon interactions and electron-electron interactions in low-dimensional systems such as molecular junctions and the arbitrary junctions of multiple quantum wires. First, the weak electron-phonon interaction is present inside a molecular junction, in which each unit is coupled to a local phonon bath, and the non-equilibrium Green's function method (NEGF) is employed. We observe that the conductance oscillates with the molecular chain length and that the oscillation period in odd-numbered chains depends strongly on the applied bias. This oscillatory behavior is smeared out at the bias voltage near the phonon energy. For the phonon-free case, we find a crossover from tunneling to thermally activated transport as the length of the molecule increases. In the presence of the electron-phonon interaction, the transport is thermally driven and a crossover from thermally suppressed conduction to assisted conduction is observed.
Second, it is hard to numerically study the conductance for qunatum multi-wire junctions with strongly interacting leads, especially with critical leads. The difficulty lies on the fact that the conductance is related to the dynamical correlation functions, and it is the properties of an open system. In addition, the critical state with scale invariance is rarely implemented in most of numerical methods. We therefore develop a numerical method to study transport properties in critical systems and the universal conductance of quantum multi-wire junctions based on the so-called scale invariant boundary muti-scale entanglement renormalization ansatz (MERA). Utilizing the key relationship between the conductance tensor and the ground-state correlation function, the universal conductance can be evaluated within the framework of the boundary scale invariant MERA. In particular, we study the Kane and Fisher fixed point of two interacting wires with an impurity. We demonstrate how to construct the boundary MERA to estimate the current-current correlation function and scaling dimensions of primary operators. We identify the universal behavior of the junction. This shows the grand potential of using the boundary MERA to classify the fixed points of the general multi-wire junctions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:12:52Z (GMT). No. of bitstreams: 1 ntu-103-F96222025-1.pdf: 9301456 bytes, checksum: 3b0d9e8749310848e5e73f3fd0c430d2 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Publication list i
口試委員會審定書iii 誌謝v 中文摘要vii Abstract ix List of Figures xv List of Tables xxi 1 Introduction 1 2 Molecular Transport 3 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Model and theoretical method . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 Even-odd effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.2 Length dependence . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.3 Crossover of the conduction mechanism . . . . . . . . . . . . . . 15 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Multi-scale entanglement renormalization ansatz (MERA) 25 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Tensor network state and matrix product state . . . . . . . . . . . . . . . 26 3.3 Construction of the MERA . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4 Causal cone in the MERA . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5 Coarse-graining transformation . . . . . . . . . . . . . . . . . . . . . . . 36 3.6 Measurement of local operators . . . . . . . . . . . . . . . . . . . . . . . 41 3.7 Optimization in the MERA . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.8 Algorithm of the translation invatiant MERA . . . . . . . . . . . . . . . 42 3.9 Scale invariant MERA (SMERA) . . . . . . . . . . . . . . . . . . . . . 46 3.9.1 Optimization of the SMERA . . . . . . . . . . . . . . . . . . . . 47 3.9.2 Algorithm of the SMERA . . . . . . . . . . . . . . . . . . . . . 49 3.10 Scaling dimensions and central charges . . . . . . . . . . . . . . . . . . 51 3.11 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.11.1 The transverse Ising model . . . . . . . . . . . . . . . . . . . . . 57 3.11.2 The XX model . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4 Scale invariant boundary MERA (SBMERA) 67 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2 One-wire model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3 Two-wire model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3.1 Construction of the boundary MERA . . . . . . . . . . . . . . . 81 4.3.2 Boundary truncation tensors and boundary tensors . . . . . . . . 84 4.3.3 Boundary Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 86 4.3.4 Central ascending and descending processes . . . . . . . . . . . . 91 4.3.5 Optimization of central tensors . . . . . . . . . . . . . . . . . . . 91 4.3.6 Algorithm of scale invariant boundary MERA . . . . . . . . . . . 98 4.3.7 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Transport of multi-wire junction 105 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.2 Conductance of multi-wire junctions . . . . . . . . . . . . . . . . . . . . 107 5.3 Luttinger liquids with an impurity . . . . . . . . . . . . . . . . . . . . . 107 5.4 XXZ model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.5.1 Two-point correlation functions and scaling dimensions in bulks . 112 5.5.2 Current-current correlation functions in bulks . . . . . . . . . . . 117 5.5.3 The spin correlation functions in the two-wire junction . . . . . . 120 5.5.4 Universal conductance . . . . . . . . . . . . . . . . . . . . . . . 120 5.5.5 Scaling dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6 Conclusions and future outlook 131 A Application of Landauer-buttiker formula 133 B Jordan-Wigner Transformation 135 B.1 Useful relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 C Logarithms of square matrices 139 | |
| dc.language.iso | en | |
| dc.subject | Luttinger Liquid | zh_TW |
| dc.subject | 電子與電子交互作用 | zh_TW |
| dc.subject | XXZ 模型 | zh_TW |
| dc.subject | 普氏電導 | zh_TW |
| dc.subject | 尺度不變性 | zh_TW |
| dc.subject | 電聲交互作用 | zh_TW |
| dc.subject | 重整群(RG) | zh_TW |
| dc.subject | scale invariance | en |
| dc.subject | Luttinger Liquid | en |
| dc.subject | renormalization group (RG) | en |
| dc.subject | electron-phonon interaction | en |
| dc.subject | electron-electron interaction | en |
| dc.subject | universal conductance | en |
| dc.subject | XXZ model | en |
| dc.title | 一維多量子線系統的量子傳輸性質之理論研究 | zh_TW |
| dc.title | Theoretical study of quantum transport in junctions of one-dimensional interacting quantum wires | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 郭光宇(Guang-Yu Guo),陳柏中,林瑜琤,林豐利,張明強 | |
| dc.subject.keyword | XXZ 模型,Luttinger Liquid,重整群(RG),電聲交互作用,電子與電子交互作用,普氏電導,尺度不變性, | zh_TW |
| dc.subject.keyword | XXZ model,Luttinger Liquid,renormalization group (RG),electron-phonon interaction,electron-electron interaction,universal conductance,scale invariance, | en |
| dc.relation.page | 149 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-02-15 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| Appears in Collections: | 物理學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-103-1.pdf Restricted Access | 9.08 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
