Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58351
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃德富(Tur-Fu Huang)
dc.contributor.authorYi-Lin Chiangen
dc.contributor.author蔣易霖zh_TW
dc.date.accessioned2021-06-16T08:12:14Z-
dc.date.available2019-02-25
dc.date.copyright2014-02-25
dc.date.issued2014
dc.date.submitted2014-02-17
dc.identifier.citationAmrani, Y. (2008). 'Targeting TNF-α: A novel therapeutic approach for asthma.' Journal of Allergy and Clinical Immunology 121(1): 5-10.
Barton, B. E. (1996). 'The biological effects of interleukin 6.' Medicinal Research Review16: 87- 109.
Castro-Faria-Neto, H. C. and P. T. Bozza (2007). 'Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis.' Critical care 11: R49.
Chawla, R. K., W. H. Watson and Y. Zhao (1999). 'S-Adenosylmethionine attenuates the lipopolysaccharide-induced expression of the gene for tumour necrosis factor a.' Biochem. J 342: 21-25.
Cho, J. Y. (2012). 'The Pivotal Role of TBK1 in Inflammatory Responses Mediated by Macrophages.' Mediators of Inflammation 2012: 979105.
Cooper, J. A., D. F. Bowen-Pope, E. Raines, R. Ross and T. Hunter (1982). 'Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins.' Cell 31: 263-273.
Crouser, E. D. (2008). 'Mitochondrial mechanisms of sepsis-induced organ failure.' Frontiers in Bioscience 13: 5030-5041.
Deng, X. (2011). 'Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia.' International Immunopharmacology 11: 2194–2199.
Eiro, N. and F. J. Vizoso (2012). 'Inflammation and cancer.' World Journal of Gastrointestinal Surgery 4(3): 62-72.
Freudenberg, M. and C. Galanos (2012). 'BACTERIAL SENSING, CELL SIGNALING, AND MODULATION OF THE IMMUNE RESPONSE DURING SEPSIS.' SHOCK 38(3): 227-242.
Gil, M., D. Gozalbo, H. Goodridge and A. Yanez (2013). 'TLRs control hematopoiesis during infection.' Eur J Immunol 43(10): 2526-2533.
Holvoet, P. (2012). 'Mitochondrial reactive oxygen species and risk of atherosclerosis.' Current Atherosclerosis Reports 14: 264-276.
Jiang, Y., D. I. Beller, G. Frendl and D. T. Graves. (1992). 'Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes.' J. Immunol. 148: 2423-2428.
Karin, M. (2006). 'Nuclear factor-kappaB in cancer development and progression.' Nature 441: 431-436.
Lee, Y. G., S. J. Lee and E. Byeon (2011). 'Functional role of Akt in macrophage-mediated innate immunity.' Frontiers in Bioscience.
Lorenzen I, Trad A and G. J (2011). 'Multimerisation of A disintegrin and metalloprotease protein-17 (ADAM-17) is mediated by its EGF-like domain. .' Biochem Biophys Res Commun 415: 330–336.
Marsh, C. B. and S. Tridandapani (2006). 'Negative regulators of Toll-like receptor 4-mediated macrophage inflammatory response.' Current Pharmaceutical Design.
Matata, B. M. (2009). 'Oxidative stress as a mediator of cardiovascular disease.' Oxidative Medicine and Cellular Longevity 2: 259–269.
Medzhitov, R. (2008). 'Origin and physiological roles of inflammation.' Nature 454: 428-435.
Nakka, V. P., A. Gusain, S. L. Mehta and R. Raghubir (2008). 'Molecular Mechanisms of Apoptosis in Cerebral Ischemia: Multiple Neuroprotective Opportunities.' Mol Neurobiol 37: 7-38.
Pelzer, C. and M. Thome (2011). 'IKKα takes control of canonical NF-κB activation.' Nature Immunology 12: 815–816.
Qureshi, A. A. and D. C. Morison (2005). 'The proteasome: a central regulator of inflammation and macrophage function.' Immunologic Research.
Rocken, M., T. Biedermann, K. Ghoreschi, T. Hai and C. Krenn (2012). 'ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression.' Nature Medicine 18: 128–134.
Ramnatha, R. D., S. W. Ng, A. Guglielmottib and M. Bhatiaa (2008). 'Role of MCP-1 in endotoxemia and sepsis.' International Immunopharmacology 8: 810-818.
Rollins, C. D. a. B. J. (2003). 'Monocyte Chemoattractant Protein-1 (CCL2) in Inflammatory Disease and Adaptive Immunity: Therapeutic Opportunities and Controversies.' Microcirculation 10: 247-257.
Saito, K. (2013). 'Remarkable Role of Indoleamine 2,3-Dioxygenase and Tryptophan Metabolites in Infectious Diseases: Potential Role in Macrophage-Mediated Inflammatory Diseases.' Mediators of Inflammation: 391984.
Schabbauer, G., M. Tencati, B. Pedersen, R. Pawlinski and N. Mackman (2004). 'PI3K-Akt Pathway Suppresses Coagulation and Inflammation in Endotoxemic Mice.' Arterioscler Thromb Vasc Biol 24: 1963-1969.
Scott, E. W. (2011). 'Monocyte Chemotactic Protein-1 Promotes Inflammatory Vascular Repair of Murine Carotid Aneurysms via a Macrophage Inflammatory Protein-1 and Macrophage Inflammatory Protein-2 Dependent pathway.' Circulation 124: 2243-2252.
SD, C., B. JA, V. AJ, T. MC, N. M, P. F, Gerrity R, S. CJ and F. AM (1990). 'Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells.' Proc Natl Acad Sci USA 87: 5134–5138.
Shah, N. S. and T. R. Billiar (1998). 'Role of nitric oxide in inflammation and tissue injury during endotoxemia and hemorrhagic shock.' Environ Health Perspect: 106(Suppl 105): 1139–1143.
Tacke, F. and H. Zimmermann (2014). 'Macrophage heterogeneity in liver injury and fibrosis.' journal of hepatology: pii: S0168-8278(0114)00005-00001.
Ulevitch, R., L. Bibbs, J. Han and J. Lee (1994). 'A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells.' Science 265: 808-811.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58351-
dc.description.abstract敗血症為一常見的全身性發炎重症,其根本源自於免疫系統針對感染或創傷的過度反應。巨噬細胞在發炎反應的啟動中扮演相當重要的角色,被活化的巨噬細胞將會激化許多下游反應,例如類Toll受體的活化,並藉此對抗外在環境的威脅。巨噬細胞的活化同時也會產生許多發炎性細胞激素以及抗發炎細胞激素,這些細胞激素能夠調控發炎狀態下的許多反應,諸如白血球的趨化以及血管內皮通透性增加,然而當免疫反應被過度激化時,可以偵測到血中的細胞激素持續維持在高峰,此類反應被認為是判斷發炎反應是否失去控制的標準之一。數十年來,許多研究報告已經證實多種慢性疾病與長期的發炎有關,例如阿茲海默症、類風濕性關節炎甚至是癌症,而雖然有許多報告針對慢性發炎所導致的疾病,嘗試提出完整或部分的解釋來與治療作連結,臨床上成功應用此一概念的醫療方法仍舊非常少見。目前臨床上對於新世代抗發炎藥物需才孔急,而我們利用細胞激素抑制效果的差異,初步地篩選一系列Benzimidazole類衍生化合物,發現其中的化合物9-2在老鼠巨噬細胞、人類單核細胞被內毒素刺激的情況下有效地抑制細胞激素產生。除此之外,其他發炎相關的調控因子如一氧化氮(NO)、環氧合脢(COX2)同樣也可以被化合物9-2有效地抑制。然而,一重要的調控因子:活性氧類(reactive oxygen species)在細胞中的積累僅有部分能被化合物9-2抑制。為了進一步確認化合物9-2是否具有實際應用的潛力,使用在老鼠腹腔注射致死劑量內毒素的活體實驗來檢視其效果,發現化合物9-2能夠有效提升老鼠24小時內的存活率。以上所述這些效果,其背後的機轉可能來自於促分裂原活化蛋白脢(MAPK)的磷酸化被抑制,此一可能性觀察自ERK1/2、JNK、p38三個MAPK亞型的磷酸化,在細胞實驗中被化合物9-2有效地抑制了。除此之外,另一條被化合物9-2有效抑制的訊息傳遞路徑為NF-κB,其活化需要將抑制性的結合因子IκB降解,而在實驗中能夠觀察到此降解反應同樣被化合物9-2所抑制。綜合以上,我們可得知化合物9-2具有抗發炎功效,能夠抑制部份發炎性調控因子及細胞激素的產生,改善致死性敗血症老鼠的存活率,而此效果極可能來自於化合物9-2對於MAPK、NF-κB路徑的負調控。zh_TW
dc.description.abstractSepsis is a common and severe medical condition characterized as a severe systemic inflammatory response. The core concept of sepsis is that the immune system overreact with the outer threat, whether infection or trauma. At the beginning of inflammation, the macrophage plays a pivotal role and would trigger several signaling such as Toll-like receptor(TLR) activation to counter against the threatening, resulting in release of diverse pro-inflammatory and anti-inflammatory cytokines, which activate further immune response including neutrophil recruitment and vascular permeability increase. For decades, more and more diseases have been found to be related to chronic inflammation, including Alzheimer’s disease, rheumatoid arthritis, atherosclerosis, and even the cancer. Although numerous studies have demonstrated the significance of regulating inflammation, only little clinical applications acquired real success.
Regarding the urge of next generation anti-inflammation agent, we screened a few benzimidazole-based serial derivatives, and found the compound 9-2 demonstrating the concentration-dependent inhibition of cytokine production in LPS stimulated RAW 264.7 macrophage and THP-1 monocyte. Besides, other inflammatory mediators associated with LPS such as nitric oxide production and COX2 protein expression were also found to be suppressed effectively by compound 9-2, yet minor suppression was observed in reactive oxygen species(ROS) production. The in vivo LPS challenge was employed to examine whether compound 9-2 an applicable agent against severe systemic inflammation, and we found apparent improvement in 24-hour survival rate. All these effect might be achieved through the negative regulation of MPAKs, since the phosphorylation of ERK1/2, JNK and p38 were significantly inhibited under the exposure of LPS. Inhibition of IκB degradation was also observed and provided another explanation supporting the previous findings. These results indicate that compound 9-2 regulates LPS associated inflammation through MAPK and NF-κB.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:12:14Z (GMT). No. of bitstreams: 1
ntu-103-R00443020-1.pdf: 1640722 bytes, checksum: 8ff2dda1992b1cf6c30f9c283cec34c9 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目錄
中文摘要…………………………………………………………………………………i
Abstract…………………………………………………………………………………iii
Abbreviation table……………………………………………………………………....ix
Chapter 1 Introduction………………………………………………………………………...........1
1.1 Inflammation……………………………………………………………...1
1.2 Macophage/Monocyte…………………………………………………….2
1.3 Cytokines
1.3.1 Tumor necorsis factor-α (TNF-α) …………………………………3
1.3.2 Interleukin 6 (IL-6) ………………………………………………..5
1.3.3 Monoyte chemotatic protein-1 (MCP-1) ………………………….6
1.4 Reactive oxygen species (ROS)…………………………………………..7
1.5 Lipopolysacchride (LPS) singaling……………………………………….8
1.6 Mitogen-activated protein kinase (MAPK)
1.6.1 ERK1/2…………………………………………………………….9
1.6.2 p38……………………………………………………………….10
1.6.3 JNK………………………………………………………………11
1.7 Sepsis…………………………………………………………………….11
Chapter 2 Materials & Methods
2.0 Reagents and compound…………………………………………………19
2.1 Cell cultures……………………………………………………………...20
2.1.1 Isolation of murine peritoneal macrophage cells…………………20
2.2 Cytokine assays………………………………………………………….21
2.3 Cytotoxic efeect
2.3.1 MTT cell viability assay…………………………………………21
2.3.2 LDH release assay……………………………………………….22
2.4 Nitric oxide assays………………………………………………………23
2.5 ROS measurement………………………………………………………23
2.6 Western blotting analysis……………………………………………….24
2.7 Animal models
2.7.1 LPS challenge…………………………………………………….25
2.7.2 Mice whole blood and plasma collection………………………..25
2.8 Statistical analysis……………………………………………………….26
Chapter 3 Results………………………………………………………………………27
3.1 Screening of a novel synthetic anti-inflammatory compound………….27
3.2 The effects of compound 9-2 on LPS-induced pro-inflammatory TNF-α production in phagocytes………………………………………………27
3.3 The effects of compound 9-2 on LPS-induced pro-inflammatory IL-6 production in phagocytes………………………………………………28
3.4 The effects of compound 9-2 on LPS-induced chemotatic MCP-1 production in phagocytes………………………………………………28
3.5 The inhibitory effects of compound 9-2 on LPS-induced nitric oxide production in murine macrophage cells………………………………..29
3.6 The effects of compound 9-2 on cell viability in RAW 264.7 macrophage cells…………………………………………………………………….29
3.7 The effects of compound 9-2 on cell integrity in THP-1 monocytes and murine macrophage cells……………………………………………….30
3.8 Compound 9-2 rarely inhibits LPS-induced ROS production in RAW 264.7 macrophage cells………………………………………………...31
3.9 The effects of compound 9-2 on the LPS-induced activation of mitogen- activated protein kinases (MAPK)……………………………………..32
3.10 Compound 9-2 inhibits IκB degradation in LPS-activated RAW 264.7 macrophage cells………………………………………………............32
3.11 Compound 9-2 inhibits LPS-induced COX2 and iNOS expression in RAW 264.7 macrophage cells………………………………………….33
3.12 Compound 9-2 showed negligible alternation of LPS-induced Akt/PI3K pathway activation in RAW 264.7 macrophage cells…………………..34
3.13 Compound 9-2 increases survival rate of mice with lethal administration of LPS, but slightlyinhibits cytokines release………………………….34
Chapter 4 Discussion…………………………………………………………………..56
Chapter 5 Conclusion & perspectives…………………………………………………61
Chapter 6 Reference……………………………………………………………………63
dc.language.isoen
dc.title化合物9-2抑制LPS活化噬菌細胞發炎反應之機轉探討zh_TW
dc.titleThe anti-inflammatory mechanisms of 9-2 on lipopolysaccharide- stimulated phagocytesen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee顏茂雄(Mao-Hsiung Yen),楊春茂(Chuen-Mao Yang),鄧哲明(Che-Ming Teng),吳文彬(Wen-Bin Wu)
dc.subject.keyword發炎,嗜菌細胞,內毒素,小分子藥物,敗血症,zh_TW
dc.subject.keywordinflammation,macrophage,endotoxin,synthetic compound,sepsis,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2014-02-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
1.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved