請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58349完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王偉仲 | |
| dc.contributor.author | Chi-Hao Li | en |
| dc.contributor.author | 李其澔 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:12:10Z | - |
| dc.date.available | 2014-03-09 | |
| dc.date.copyright | 2014-03-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-17 | |
| dc.identifier.citation | [1] Ray-Bing Chen, Dai-Ni Hsieh, Ying Hung, and Weichung
Wang. Optimization latin gypercube designs by particle swarm. Staticstics and Computing, pages 1-14, 2012. [2] Ray-Bing Chen, Yen-Wen Hsu, and Weichung Wang. Central composite discrepancy-based uniform designs for irregular experimental regions. 2012. [3] Karel Crombecq, Eric Laermans, and Tom Dhaene. Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling. European Journal of Operational Research, 214(3):683-696, 2011. [4] Danel Draguljic, Thomas J Santner, and Angela M Dean. Noncollapsing space-filling designs for bounded nonrectangular regions. Technometrics 54(2):169-178, 2012. [5] NR Draper and I Guttman. Response surface designs in flexible regions. Journal of the American Statistical Association, 81(396):1089-1094, 1986. [6] Russell Eberhart and James Kennedy. A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on, pages 39-43. IEEE, 1995. [7] Kai-Tai Fang. The uniform design: application of number- theoretic methods in experimental design. Acta Math. Appl. Sinica, 3:363-372, 1980. [8] Kai-Tai Fang, Dennis KJ Lin, Peter Winker, and Yong Zhang. Uniform design: theory and applications. Technometrics, 42(3):237-248, 2000. [9] Kai-Tai Fang, Chang-Xing Ma and Peter Winker. Center l2- discrepancy of random sampling and latin hypercube design, and construction of uniform designs. Mathematics of Computation, 71(237):274-296, 2002. [10] Ying Hung. Adaptive probability-based latin hypercube designs. Journal of the American Statistical Association, 106(493), 2011. [11] Ying Hung, Yasuo Amemiya, and Chien-Fu Jeff Wu. Probability-based latin hypercube designs for slid- rectangular regions. [12] Mark E Johnson, Leslie M Moore, and Donald Ylvisaker. Minimax and maximin distance designs. Journal of statistical planning and inference, 26(2):131-148, 1990. [13] Dennis KJ Lin, Chris Sharpe, and Peter Winker. Optimiazed u-type designs on flexible regions. Computation Statistics & Data Analysis, 54(6):1505-1515, 2010. [14] Michael D McKay, Richard J Beckman, and William J Conover. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2):239-245, 1979. [15] Douglas C Montgomery. Design and analysis of experiments, volume 7. Wiley New York, 1984. [16] Max D Morris and Toby J Mitchell. Exploratory designs for computational experiments. Journal of statistical planning and inference, 43(3):381-402, 1995. [17] Roger R Schmidt, EE Cruz, and M Iyengar. Challenges of data center thermal management. IBM Journal of Research and Development, 49(4.5):709-723, 2005. [18] Timothy W Simpson, Dennis KJ Lin, and Wei Chen. Sampling strategies for computer experiments: design and analysis. International Journal of Reliability and Applications, 2 (3):209-240, 2001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58349 | - |
| dc.description.abstract | Uniformity of experimental designs is an important issue in computer experiments recent years. To reduce the cost of handling experiment, we need to find usable designs effectively and effeciently. A design with good space-filling and non-collapsing properties may help us get the most information under some specific cost. Since a lot amount of real problems require grid discretization, based on the framework of the discrete particle swarm optimization (DPSO), we try several strategies and propose several applied methods to discuss the multi-objective issue, and will illustrate it by handling experiments on several regular and irregular feasible domains by some DPSO-based algorithms. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:12:10Z (GMT). No. of bitstreams: 1 ntu-103-R00221027-1.pdf: 631067 bytes, checksum: be2b94d7eb0968a42338fb4038d31db1 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝---i
Table of Content---ii List of Figures---iv List of Tables---v 中文摘要---vi Abstract---vii 1 Introduction---1 2 Problem Formulation and Algorithms---4 2.1 Uniform Design and Objective Criteria---4 2.1.1 The Feasible Domain and Grid Discretization---5 2.1.2 Space-filling Property and the Maximin Pairwise Distance---6 2.1.3 Non-collapsing Property and the Projected Distance---9 2.2 Methods and Algorithms---11 2.2.1 Discrete Particle Swarm Optimization (DPSO)---12 2.2.2 A-DPSO (DPSO with Aggrgated Criteiron)---14 2.2.3 P-DPSO (DPSO with Penalty Criterion)---17 2.2.4 C-DPSO (Conditioned DPSO)---18 3 Numerical Results and Discussion---22 3.1 Experimental Regions---22 3.2 Tuning Parameters---25 3.3 Comparison of the DPSO-based Algorithms---26 3.3.1 Linear Constraint for n=10 and K=2,4 (Domain D_1 and D_2)---28 3.3.2 Semi-circle/ball for n=10, K=2,3---30 3.3.3 Linear Constraint and Semi-Circle, n=50, K=2---32 3.3.4 Flexible Region for m=9999, 2, 1, 0.5, 0.3, K=2 ---33 3.4 Discussion---38 3.4.1 The Solution Set---38 3.4.2 The design size n and the dimensionality K---39 3.4.3 Further Investigation if C-DPSO and P-DPSO---39 4 Real Application---42 5 Conclusion and Future Works---47 Appendix---48 Bibliography---58 | |
| dc.language.iso | en | |
| dc.subject | 試驗設計 | zh_TW |
| dc.subject | 離散粒子群演算法 | zh_TW |
| dc.subject | 均勻性質 | zh_TW |
| dc.subject | 無摺疊性質 | zh_TW |
| dc.subject | 電腦實驗 | zh_TW |
| dc.subject | Space-filling | en |
| dc.subject | Non-collapsing | en |
| dc.subject | Discrete Particle Swarm Optimization | en |
| dc.subject | Computer Experiment | en |
| dc.subject | Uniform Experimental Designs | en |
| dc.title | 使用離散粒子群演算法尋找最佳無摺疊均勻實驗設計 | zh_TW |
| dc.title | Using Discrete Particle Swarm Optimization to Find Optimal Non-collapsing and Space-filling Experimental Designs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳瑞彬,陳素雲 | |
| dc.subject.keyword | 電腦實驗,試驗設計,均勻性質,無摺疊性質,離散粒子群演算法, | zh_TW |
| dc.subject.keyword | Computer Experiment,Space-filling,Uniform Experimental Designs,Non-collapsing,Discrete Particle Swarm Optimization, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-02-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 616.28 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
