請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58342完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張祖亮 | |
| dc.contributor.author | Yi-Ying Tseng | en |
| dc.contributor.author | 曾怡瑛 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:11:57Z | - |
| dc.date.available | 2016-03-09 | |
| dc.date.copyright | 2014-03-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-17 | |
| dc.identifier.citation | 王世光、伊淑清、李宗奇、馬阿濱、張並彿、康迎昆。1995。苗木失水對生活力的影響。林業科技,20:12-15。
江波、朱錦茹、袁位高、沈愛準、葛永金。2006。容器苗質量評定指標研究。浙江林業科技,26:10-12。 杜佳凌。1998。容器大小對仙客來生育及開花之影響。台灣大學園藝研究所碩士論文。 韋水來。1993。容器構型與容積對大型苗木生長影響之研究。台灣大學園藝研究所碩士論文。 柯勇。2002。植物生理學。第一版。藝軒出版社,台北縣新店市。p.210-242 范貴珠、許博行、張峻德。2002。土壤鹽度對欖李苗木葉綠素螢光反應及呼吸作用之影響,台灣林業科學,17:323-335。 徐錫增、喻方圓。2000。苗木生理與質量研究進展。世界林業研究,13:17-24。 許圳塗。1986。容器苗圃與苗木生產。植物栽培技術。淑馨出版社。 p.143-150 許賢斌。2002。三種臺灣原生闊葉樹於不同水分模式下苗木之生長暨生理生態特性。台灣大學森林學研究所碩士論文。 郭倩文。2003。三種臺灣原生闊葉樹苗於不同水分及養分下苗木之生長暨生理生態特性。台灣大學森林學研究所碩士論文。 喻方圓、徐錫增、Robert D. G.。2003。水分和熱脅迫對5種苗木生長生物量的影響。南京林業大學學報。27(4):10-14。 張守仁。1999。葉綠素螢光動力學參數的意義及討論。植物學通報16(4):444-448。 陳貽竹、李曉萍、夏雨、郭俊彥。1995。葉綠素螢光技術在植物環境脅迫研究中的應用。熱帶亞熱帶植物學報3(4):79-86。 項擎柱、呂金印、徐炳成、李風民、張海波。2006。水分脅迫和種植方式對小麥葉綠素螢光參數的影響。西北農林大學學報34:83-87。 賴明洲。1987年6月。台灣原生景觀樹木植栽手冊。交通部觀光局出版。p.61和p.121。 溫國勝、田海壽、張明如、蔣文偉。2006。葉綠素螢光分析技術在林木培育中的應用。應用生態學報17(10):1973-1977。 褚建民、孟瓶、張勁松、高峻。2008。土壤水分脅迫對歐李幼苗光合及葉綠素螢光特性的影響。林業科學研究。21(3):295-300。 Abrams, M. D.1990. Adaptations and responses to drought in Quercus species in North America. Tree Physiology 7:227-238. Alves, A. A. C. and T. L. Setter. 2004. Response of Cassava leaf area expansion to water deficit: cell expansion and delayed development. Annals of Botany 94:605-613. Barnes, J. D., L. Balaguer, E. Manrique, S. Elvira and A. W. Davison. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlororphylls a and b in lichens and higher plants. Environmental and experimental botany 32(2):85-100. Baquedano F. J., F. Valladares and F. J. Castillo. 2008. Phenotypic plasticity blurs ecotypic divergence in the response of Quercus coccifera and Pinus halepensis to water stress. Eur J Forest Res. 127:495-506. Belkhodja, R., F. Morales, A. Aabadia, J. Gomez-Aparisi, and J. Abadia. 1994. Chlorophyll fluorescence as a possible tool for salinity tolerance screening in Barley (Hordeum vulgare L.). Plant Physiol. 104:667-673. Bertamini, M. and N. Nedunchezian. 2003. Photoinhibition of photosynthesis in mature and young leaves of grapevine (Vitis vinifera L.). Plant Sci. 164:635-644. Bigras, F. J. 2005. Photosynthetic response of white spruce families to drought stress. New forest 29:135-148. Biran, I. and A. Eliassaf.1980. The effect of container size and aeration conditions on growth of roots and canopy of woody plants. Scientia Horti. 12:385-394. Bosque, H. S., R. Lemeur, P. V. Damme and S. E. Jacobsen. 2003. Ecophysiological analysis of drought and salinity stress of Quinoa(Chenopodium Quinoa willd.). Food reviews international 19:111-119. Chiatant, D., A. D. Iorio, S. Scieandra, G. S. Scippa and S. Mazzoleni. 2006. Effect of drought and fire on root development in Quercus pubescens Willd. and Fraxinus ornus L. seedlings. Environmental and Experimental Botany 56:190-197. Da Matta F. M., M. Maestri, P. R. Mosquim, and R. S. Barros. 1997. Photosynthesis in coffee (Coffea arabica and C. canephora) as affected by winter and summer conditions. Plant Sci. 128:43-50. Demmig-Adams B. and Adams III W. W. 1996. The role of the xanthophylls cycle: carotenoids in the protection of photosynthesis. Trends in Plant Science. 1(1): 21-26. Demmig-Adams B., W. W. Adams III, D. H. Barker, B. A. Logan, D. R. Bowlong, and A. S. Verhoeven. 1996. Using chlorophyll fluorescence to assess the fraction of absorbed light allocsted to thermal dissipation of excess excitation. Physiologia Plantarum 98:253-264. Dickson, R. E. and P. T. Tomlinson. 1996. Oak growth, development and carbon metabolism in response to water stress. Annals of Forest Science 53:181-196. Eastman P. A. and E. Camm. 1995. Regulation of photosynthesis in interior spruce during water stress: changes in gas exchange and chlorophyll fluorescence. Tree Physiology. 15: 229-235. Elcan, J. M. and S. R. Pezeshki. 2002. Effects of flooding on susceptibility of Taxodium distichum L. Seedlings to drought. Photosynthetica 40(2):177-182. Esking, M., P. O. Arvidsson, and H. E. Akerlund. 1997. The xanthophyll cycle, its regulation and components. Physiologia Plantarum. 100:806-816. Feierabend, J., C. Schaan, and B. Hertwig. 1992. Photoinactivation of catalase occurs under both high- and low-temperature stress conditions and accompanies photoinhibition of photosystem II. Plant Physiol. 100:1554-1561. Feng, Y. L., K. F. Cao and Z. L. Feng. 2002. Thermal dissipation, leaf rolling and inactivation of PSII reaction centres in Amomum villosum. Journal of Tropical Ecology 18:865-876. Flaxus, J. and H. Medrano. 2002. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany 89:183-189. Fracheboud, Y. and J. Leipner. 2003. The application of chlorophyll fluorescence to study light, temperature, and drought stress. in Practical Applications of Chlorophyll Fluorescence in Plant Biology ed. By DeEll, J. R. and P. M. A. Toivonen. Kluwer Academic Publishers, Boston. P125-150. Genty B., Briantais J. M. and Baker N. R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biocheim Biophys Acta 990:87-92. George, C. P. and Govindjee. 2004. Chlorophyll a fluorescence: a signature of photosynthesis. Dordrecht, London:Springer p.1-82 Gitierrez L., A. Casares , R. Sanchez-Tame and J. Majada. 2002.Early growth, biomass allocation and physiology in three Eucalyptus nitens populations under different water regimes. Forestry 75: 139-148. Greer, D. H. 1995. Effect of daily photon receipt on the susceptibility of dwarf bean(phaseolus vulgaris L.) leaves to photoinhibition of photosynthesis. Planta 197:31-38. Hall, D.O. and K.K. Rao. 1987. Photosynthesis. 4th ed., association with the Institute of Biology, Cambridge. p.37-65. Hegedus, A., S. Erdei, T. Janda, E. Toth, G. Horvath, and D. Dudits. 2004. Transgenic tobacco plants overproducing alfalfa aldode /aldehyde reductase show higher tolerance to low temperature and cadmium streets. Plant Sci. 166:1329-1333. Ismail AM., AE. Hall and EA. Bray. 1994. Drohght and pot size effects on transpiration efficiency and carbon isotope discrimination of cowpea accessions and hybrids. Aust. J. Plant Physiol. 21: 23-35. Jurgen, F., C. Schaan, and B. Hertwig. 1992. Photoinactivation of catalase occurs under both high- and low- temperature stress conditions and accompanies photoinhibition of photosystem Ⅱ. Plant Physiol. 100:1554-1561. Karavatas, S. and Y. Manetas. 1999. Seasonal patterns of photo- system II photochemical efficiency in evergreen sclerophylls and drought and semi-deciduous shrubs under Mediterranean field condition. Photosynthetica 36: 41-49. Keutgen, N., K. Chen, and F. Lenz. 1997. Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. J Plant Physiol. 150:395-400. Krause, G. H. and E. Weis 1984. Chlorophyll fluorescence as a tool in plant physiology. Photosyn. Res. 5:139-157. Krizek, D. T., A. Carmi, R. M. Mirecki, F. W. Snyder and J. A. Bunce. 1985. Comparative effects of soil moisture stress and restricted root zone volume on morphogenetic and physiological responses of soybeen [Glycine max (L.) Merr.]. J. Expt. Bot. 36:25-38. Lichtenthaler, HK. 1996. Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol. 148:4-14. Mattsson, A. 1997. Predicting field performance using seedling quality assessment. New Forests 13: 227–252. McKay, H. M. and I. M. S. White. 1996. Fine root electrolyte leakage and moisture content: indices of Sitka spruce and Douglas-fir seedling performance after desiccat-ion. New Forests 13: 139–162. Maxwell, K., and G. M. Johnson. 2000. Chlorophyll fluorescence?a practical guide. J. of Exp. Bot. 51:659-668. Philip, H., and B. John. 2000. Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecate to UV radiation indicate a dynamic interaction between damage and repair processes. Photosynthesis Research 65(3):219-229. Radoglou, K. and Y. Raftoyannis. 2002. The impact of storage, desiccation and planting date on seedling quality and survival of woody plant species. Forestry75: 179–190. Rohacek, K. and M. Bartak 1999. Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Phtotsynthetica 37(3): 339-363. Ruff, M. S., T. K. Donald, R. M. Mirecki, and D. W. Inouye. 1987. Restricted root zone volume: Influence on growth and development of tomato. J. Amer. Soc. Hort. Sci. 112:763-769. Schreiber, U., W. Bilger, and C. Neubauer 1995. Chlorophyll fluorescence as a nonintrusive indicator for rapid as sessment of in vivo photosynthesis. In: Schulze E. D., M. M. Caldwell, (eds.) Ecophysiology of photo- synthesis. Berlin, Heidelberg: Springer-Verlag. p.49-70. Schreiber U., W. Bilger. and G. Neubauer. 1998. Cholorphyll fluorescence: New instruments for special applications. Photosynthesis: Mechanisms and Effects. 5:4253-4258. Steven J.Crafts-Brandner, and Michael E.Salvucci.2002. Sensitivity of photosynthesis in a C4 plant, Maize, to heat stress. Plant Physiol. 129: 1773–1780. Thomas, D. S. and D. W. Turner. 2001. Banana (Musa sp.) leaf gas exchange and chlorophyll fluorescence in response to soil drought, shading and lamina folding. Sci Hortic. 90:93-108. Wightman, K. E. 1999. Good Tree Nursery Paractices. International Centre for Research in Agroforestry. Kenya. 95pp. Whitcomb, C.Z. and J. D. Williams. 1995. Stair step container for improved root growth. HortScience. 20:66-67. Winkel T., M. Methy. and F. Thenot. 2002. Radiation use efficiency, chlorophyll fluorescence, and reflectance indices associated with ontogenic changes in water-limited Chenopodium quinoa leaves. Photosynthetica. 40(2):227-232. Yu Fang Y. and Robert D. G. 2004. Variable chlorophyll fluorescence in response to water plus heat stress treatments in three coniferous tree seedlings. Journal of Forestry Research 15(1): 24-28. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58342 | - |
| dc.description.abstract | 本試驗於臺大精密溫室進行,以樟樹(Cinnamomum camphora)、臺灣欒樹(Koelreuteria henryi)和鐵冬青(Ilex rotunda)作為試驗樹種材料,目地在探討三樹種以不同的盆器在不同水分和斷根逆境下,以不同持續的時間來檢測其幼苗植株外部型態和葉綠素螢光各參數的變化,本研究將以容器的不同分為兩種:灰黑盆器和火箭盆器;在水分逆境以及斷根處理後各以2天、4天、8天、16天和32天的時間來量測。
結果顯示苗木在三種不同的逆境處理下,樟樹的生長量在處理後未有顯著的差異,在乾旱及淹水處理4天的生長量表現最好。臺灣欒樹在地上部生長量在處理後無顯著的差異,生長量以乾旱及淹水處理4天和8天的表現最佳。鐵冬青的生長量在處理後未有顯著的差異。 苗木在螢光參數的表現,暗適應下的Fv/Fm,樟樹以火箭盆盆器栽種乾旱處理16天和32天明顯低於灰黑盆器栽種乾旱處理;臺灣欒樹以火箭盆盆器栽種乾旱處理16天明顯低於其他處理;鐵冬青以乾旱和淹水處理16天和32天明顯低於其他處理。光適應下個螢光參數的qP和NPQ,樟樹、臺灣欒樹和鐵冬青的處理與對照組無明顯的差異。 在不同的水分逆境處理後,樟樹以乾旱和淹水處理16天及32天受嚴重傷害無法恢復而死亡,以火箭盆淹水處理4天和8天的恢復較佳,在螢光參數均無顯著的差異,顯示樟樹在輕度的逆境下可強化其耐受能力。臺灣欒樹的螢光參數均有恢復的情形,且輕度的逆境可以恢復到正常水準,顯示臺灣欒樹有較高的耐受力。鐵冬青在輕度的逆境,即會造成嚴重傷害無法恢復而死亡,顯示鐵冬青對於水分相當敏感。 以兩種不同的盆器栽種接受不同的逆境,顯示樟樹以火箭盆器栽種表現顯著的是淹水處理4天和8 天;臺灣欒樹火箭盆器栽種以淹水8天表現較佳;鐵冬青以火箭盆器栽種,雖未能降低因逆境受傷的死亡,然而卻可減緩受傷程度。因此,火箭盆器是在培育苗木為成目的最佳育苗容器。 | zh_TW |
| dc.description.abstract | This study investigated three species with different devices in different pots of water and root pruning adversity, with different duration to detect changes in their patterns and seedling plants outside the chlorophyll fluorescence parameters of Camphor tree(Cinnamomum camphora), Flame Gold-rain Tree(Koelreuteria henryi) and Chinese Holly(Ilex rotunda)in water treatments in the greenhouse of NTU . This experiment container is divided into two types: gray pots and pots rocket ; in water stress as well as in 2 days, 4 days, 8 days, 16 days and 32 days after the time to measure root pruning treatment.
The results showed that seedlings at three different stress treatment, the growth of Camphor tree was no significant difference in the post-processing, drought and flooding for four days of growth the best performance. Flame Gold-rain Tree growth aboveground no significant difference in the treatment of drought and flooding in growth for 4 days and 8 days for the best performance. Chinese Holly growth was no significant difference in post-processing. Seedling performance in fluorescence parameters, dark adaptation under Fv / Fm, Camphor tree growth of rocket pots and planted drought is 16 days and 32 days was significantly lower than the gray basin is planted drought; Flame Gold-rain Tree is planted in pots rocket Drought treatment 16 days was significantly lower than other treatments; iron holly to drought and flooding for 16 days and 32 days was significantly lower than other treatments. Under a fluorescent light adaptation parameters qP and NPQ of Camphor tree, Flame Gold-rain Tree and Chinese Holly treatment and control group had no significant difference. After trying out different water stress treatment, Camphor tree to deal with drought and flooding 16 days and 32 days of serious injury and death can not be restored to rocket pots waterlogged 4 and 8 days of recovery is better, the fluorescence parameters are not differences, showing tolerance camphor increase in mild adversity. Fluorescence parameters Flame Gold-rain Tree has picked up the case, and mild stress can be restored to normal levels, indicating a higher Taiwan Luan tree tolerance. Ilex mild adversity, that can cause serious injury and death can not be restored, the display is very sensitive to moisture Chinese Holly. In the face of adversity in different basin is planted in two different display devices Camphor planted rocket pots remarkable performance is flooded for 4 days and 8 days; Flame Gold-rain Tree is planted in pots rocket flooded 8 days fared better; iron holly rocket basin is planted, though failed to reduce deaths due to stress injuries, yet can slow the degree of injury. Therefore, the rocket nurturing seedlings in pots is a purpose for the best nursery containers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:11:57Z (GMT). No. of bitstreams: 1 ntu-103-R96628148-1.pdf: 5801669 bytes, checksum: 521f44f2ab5ddc197145f89293019b2a (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………………….……………….I
英文摘要………………………………………………………………………………III 圖目錄…………………………………………………………………………………..V 表目錄………………………………………………………………..………………VIII 第一章 前言…………………………………………………………………………..1 第二章 前人研究……………………………………………………………………..3 第三章 材料與方法……………………………………………..…….……………..17 第四章 結果…………………………………………………………….……………23 第五章 討論………………………………………………………..……………….106 第六章 結論………………………………………………………...………...…….112 參考文獻…………………………………………………………………..………….114 附錄 | |
| dc.language.iso | zh-TW | |
| dc.subject | 苗木 | zh_TW |
| dc.subject | 火箭盆 | zh_TW |
| dc.subject | 葉綠素螢光 | zh_TW |
| dc.subject | 水分逆境 | zh_TW |
| dc.subject | water stress | en |
| dc.subject | seedlings | en |
| dc.subject | rocket pots | en |
| dc.subject | chlorophyll fluorescence | en |
| dc.title | 樟樹、臺灣欒樹和鐵冬青苗木在不同容器下各種逆境處理對生長之影響 | zh_TW |
| dc.title | The Effects of various stress treatment on the Growth,
in different containers of the seedlings of Cinnamomum camphora, Koelreuteria henryi and Ilex rotunda | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張育森,黃光亮 | |
| dc.subject.keyword | 苗木,火箭盆,葉綠素螢光,水分逆境, | zh_TW |
| dc.subject.keyword | seedlings,rocket pots,chlorophyll fluorescence,water stress, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-02-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 5.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
