Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58340
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周綠蘋
dc.contributor.authorKai-Chao Hsuen
dc.contributor.author許凱超zh_TW
dc.date.accessioned2021-06-16T08:11:53Z-
dc.date.available2016-02-25
dc.date.copyright2014-02-25
dc.date.issued2014
dc.date.submitted2014-02-17
dc.identifier.citation1. Hsing, A.W. and A.P. Chokkalingam, Prostate cancer epidemiology. Front Biosci., 2006. 1(11): p. 1388-413.
2. Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics, 2013. CA Cancer J Clin., 2013. 63(1): p. 11-30.
3. 國民健康局, 民國99年癌症登記報告. 2013: 國民健康局.
4. TCOG攝護腺癌研究委員會, 攝護腺癌診治共識. 2003: 國家衛生研究院.
5. Cuello, C., et al., Prostate cancer diagnosis and treatment, 2010, Google Patents.
6. Verma, S. and A. Rajesh, A clinically relevant approach to imaging prostate cancer: review. AJR Am J Roentgenol, 2011. 196(3 Suppl): p. S1-10 Quiz S11-4.
7. Catalona, W., et al., Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. The Journal of urology, 1994. 151(5): p. 1283-1290.
8. Marberger, M., et al., New treatments for localized prostate cancer. Urology, 2008. 72(6): p. S36-S43.
9. Shoskes, d.a., Phytotherapy in chronic prostatitis. Urology, 2002(60): p. 35–37.
10. Wilt, T.J., et al., Phytotherapy for benign prostatic hyperplasia. Public Health Nutr, 2000. 3(4A): p. 459-72.
11. Wilt, T., et al., Cernilton for benign prostatic hyperplasia. Cochrane Database Syst Rev 2000b, 1998. 2.
12. Reid, G., et al., Cranberry juice consumption may reduce biofilms on uroepithelial cells: pilot study in spinal cord injured patients. Spinal Cord, 2001. 39(1): p. 26-30.
13. Buck, A., R. Rees, and L. Ebeling, Treatment of chronic prostatitis and prostatodynia with pollen extract. British journal of urology, 1989. 64(5): p. 496-499.
14. Rugendorff, E., et al., Results of treatment with pollen extract (CerniltonR N) in chronic prostatitis and prostatodynia. British journal of urology, 1993. 71(4): p. 433-438.
15. D, S., Use of the bioflavonoid quercetin in pa- tients with long-standing chronic prostatitis. J Am Neutraceut Assoc, 1999. 2: p. 18 –21.
16. Patil, B.S., et al., Bioactive compounds: historical perspectives, opportunities, and challenges. Journal of agricultural and food chemistry, 2009. 57(18): p. 8142-8160.
17. Cook, N. and S. Samman, Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. The Journal of Nutritional Biochemistry, 1996. 7(2): p. 66-76.
18. Lamson, D.W. and M. Brignall, Antioxidants and cancer, part 3: quercetin. Alternative medicine review: a journal of clinical therapeutic, 2000. 5(3): p. 196.
19. Terao, J., Dietary flavonoids as antioxidants. Forum Nutr., 2009. 61: p. 87-94.
20. Youdim, K.A., B. Shukitt-Hale, and J.A. Joseph, Flavonoids and the brain: interactions at the blood–brain barrier and their physiological effects on the central nervous system. Free Radical Biology and Medicine, 2004. 37(11): p. 1683-1693.
21. Glass, C.K. and J.L. Witztum, Atherosclerosis: the road ahead. Cell, 2001. 104(4): p. 503-516.
22. Murota, K., et al., Antioxidant capacity of albumin-bound quercetin metabolites after onion consumption in humans. The journal of medical investigation: JMI, 2007. 54(3-4): p. 370-374.
23. Pedersen, B.K. and M. Febbraio, Muscle-derived interleukin-6—a possible link between skeletal muscle, adipose tissue, liver, and brain. Brain, behavior, and immunity, 2005. 19(5): p. 371-376.
24. Liu, J., et al., The inhibitory effect of quercetin on IL-6 production by LPS-stimulated neutrophils. Cell Mol Immunol, 2005. 2(6): p. 455-460.
25. Cho, S.-Y., et al., Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-κB pathway in lipopolysaccharide-stimulated macrophage. Molecular and cellular biochemistry, 2003. 243(1-2): p. 153-160.
26. Kempuraj, D., et al., Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. British journal of pharmacology, 2005. 145(7): p. 934-944.
27. Kempuraj, D., et al., Inhibitory effect of quercetin on tryptase and interleukin-6 release, and histidine decarboxylase mRNA transcription by human mast cell-1 cell line. Clinical and Experimental Medicine, 2006. 6(4): p. 150-156.
28. Yu, Y.-B., et al., Effects of triterpenoids and flavonoids isolated from Alnus firma on HIV-1 viral enzymes. Archives of pharmacal research, 2007. 30(7): p. 820-826.
29. Plaper, A., et al., Characterization of quercetin binding site on DNA gyrase. Biochemical and biophysical research communications, 2003. 306(2): p. 530-536.
30. Xing, N., et al., Quercetin inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Carcinogenesis, 2001. 22(3): p. 409-414.
31. Yuan, H., Y. Pan, and C.Y. Young, Overexpression of c-Jun induced by quercetin and resverol inhibits the expression and function of the androgen receptor in human prostate cancer cells. Cancer letters, 2004. 213(2): p. 155-163.
32. Yuan, H., A. Gong, and C.Y. Young, Involvement of transcription factor Sp1 in quercetin-mediated inhibitory effect on the androgen receptor in human prostate cancer cells. Carcinogenesis, 2005. 26(4): p. 793-801.
33. Kim, W.K., et al., Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. The Journal of nutritional biochemistry, 2005. 16(3): p. 155-162.
34. Granado-Serrano, A.B., et al., Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). The Journal of nutrition, 2006. 136(11): p. 2715-2721.
35. Murphy, A.B., et al., Chronic prostatitis: management strategies. Drugs, 2009. 69(1): p. 71-84.
36. Vijayababu, M., et al., Quercetin-induced growth inhibition and cell death in prostatic carcinoma cells (PC-3) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression. Journal of cancer research and clinical oncology, 2005. 131(11): p. 765-771.
37. Kumar, R., et al., Synergistic chemoprotective mechanisms of dietary phytoestrogens in a select combination against prostate cancer. The Journal of Nutritional Biochemistry, 2011. 22(8): p. 723-731.
38. Dreyfuss, G., et al., hnRNP proteins and the biogenesis of mRNA. Annual review of biochemistry, 1993. 62(1): p. 289-321.
39. Jean-Philippe, J., S. Paz, and M. Caputi, hnRNP A1: The Swiss Army Knife of Gene Expression. International journal of molecular sciences, 2013. 14(9): p. 18999-19024.
40. Hutchison, S., et al., Distinct sets of adjacent heterogeneous nuclear ribonucleoprotein (hnRNP) A1/A2 binding sites control 5′ splice site selection in the hnRNP A1 mRNA precursor. Journal of Biological Chemistry, 2002. 277(33): p. 29745-29752.
41. Dallaire, F., et al., Heterogeneous nuclear ribonucleoprotein A1 and UP1 protect mammalian telomeric repeats and modulate telomere replication in vitro. Journal of Biological Chemistry, 2000. 275(19): p. 14509-14516.
42. He, Y. and R. Smith, Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cellular and molecular life sciences, 2009. 66(7): p. 1239-1256.
43. Ding, J., et al., Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA. Genes & development, 1999. 13(9): p. 1102-1115.
44. Barraud, P. and F.H.-T. Allain, Solution structure of the two RNA recognition motifs of hnRNP A1 using segmental isotope labeling: how the relative orientation between RRMs influences the nucleic acid binding topology. Journal of biomolecular NMR, 2013. 55(1): p. 119-138.
45. Görlach, M., et al., Interaction of the RNA-binding domain of the hnRNP C proteins with RNA. The EMBO journal, 1992. 11(9): p. 3289.
46. Nadler, S.G., et al., Interactions of the A1 heterogeneous nuclear ribonucleoprotein and its proteolytic derivative, UP1, with RNA and DNA: evidence for multiple RNA binding domains and salt-dependent binding mode transitions. Biochemistry, 1991. 30(11): p. 2968-2976.
47. Siomi, H. and G. Dreyfuss, A nuclear localization domain in the hnRNP A1 protein. The Journal of cell biology, 1995. 129(3): p. 551-560.
48. REBANE, A., A. AAB, and J.A. STEITZ, Transportins 1 and 2 are redundant nuclear import factors for hnRNP A1 and HuR. Rna, 2004. 10(4): p. 590-599.
49. Pollard, V.W., et al., A novel receptor-mediated nuclear protein import pathway. Cell, 1996. 86(6): p. 985-994.
50. Allemand, E., et al., Regulation of heterogenous nuclear ribonucleoprotein A1 transport by phosphorylation in cells stressed by osmotic shock. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(10): p. 3605-3610.
51. David, C.J., et al., HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature, 2009. 463(7279): p. 364-368.
52. Patry, C., et al., Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer research, 2003. 63(22): p. 7679-7688.
53. Paton, W.D., A theory of drug action based on the rate of drug-receptor combination. Proceedings of the Royal Society of London. Series B. Biological Sciences, 1961. 154(954): p. 21-69.
54. Sebille, B., et al., Separation procedures used to reveal and follow drug—protein binding. Journal of Chromatography B: Biomedical Sciences and Applications, 1990. 531: p. 51-77.
55. Klotz, I.M., Physicochemical aspects of drug‐protein interactions: a general perspective. Annals of the New York Academy of Sciences, 1973. 226(1): p. 18-35.
56. Vuignier, K., et al., Drug–protein binding: a critical review of analytical tools. Analytical and bioanalytical chemistry, 2010. 398(1): p. 53-66.
57. Monti, S., et al., Structure and properties of licochalcone A–human serum albumin complexes in solution: a spectroscopic, photophysical and computational approach to understand drug–protein interaction. Physical Chemistry Chemical Physics, 2008. 10(44): p. 6597-6606.
58. Torreri, P., et al., Biomolecular interactions by surface plasmon resonance technology. Ann Ist Super Sanità, 2005. 41(4): p. 437-441.
59. Velázquez‐Campoy, A., et al., Isothermal titration calorimetry. Current Protocols in Cell Biology, 2004: p. 17.8. 1-17.8. 24.
60. Habauzit, D., J. Chopineau, and B. Roig, SPR-based biosensors: a tool for biodetection of hormonal compounds. Analytical and bioanalytical chemistry, 2007. 387(4): p. 1215-1223.
61. Rich, R.L. and D.G. Myszka, Why you should be using more SPR biosensor technology. Drug Discovery Today: Technologies, 2004. 1(3): p. 301-308.
62. Wilson, W.D., Analyzing biomolecular interactions. Science, 2002. 295(5562): p. 2103-2105.
63. http://www.biacore.com/lifesciences/index.html.
64. Huber, W. and F. Mueller, Biomolecular interaction analysis in drug discovery using surface plasmon resonance technology. Current pharmaceutical design, 2006. 12(31): p. 3999-4021.
65. Senthilkumar, K., et al., Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3). Cell Biochemstry and Function, 2011. 29(2): p. 87-95.
66. Bergström, G. and C.-F. Mandenius, Orientation and capturing of antibody affinity ligands: Applications to surface plasmon resonance biochips. Sensors and Actuators B: Chemical, 2011. 158(1): p. 265-270.
67. Shamoo, Y., et al., Crystal structure of the two RNA binding domains of human hnRNP A1 at 1.75 A resolution. Nature Structural Biology, 1997. 4(3): p. 215-22.
68. Fang, R., et al., Design and characterization of protein-quercetin bioactive nanoparticles. Journal of nanobiotechnology, 2011. 9: p. 19-19.
69. Lee, B.J., et al., Rules for nuclear localization sequence recognition by karyopherin beta 2. Cell, 2006. 126(3): p. 543-58.
70. Imasaki, T., et al., Structural basis for substrate recognition and dissociation by human transportin 1. Molecular cell, 2007. 28(1): p. 57-67.
71. Wang, G., et al., Binding of quercetin to lysozyme as probed by spectroscopic analysis and molecular simulation. Journal of fluorescence, 2011. 21(5): p. 1879-1886.
72. Rasoulzadeh, F., et al., Fluorescence quenching study of quercetin interaction with bovine milk xanthine oxidase. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009. 72(1): p. 190-193.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58340-
dc.description.abstract槲黃素(Quercetin)是一種普遍存在於蔬果和穀物中的類黃酮化合物,在許多研究中指出,可以誘導攝護腺癌細胞凋亡並抑制癌細胞的生長,具有選擇性的殺死癌細胞而不影響到正常細胞。本實驗室在先前的研究結果中,利用化學蛋白體學的技術找出槲黃素的標靶蛋白,發現hnRNP A1(heterogeneous nuclear ribonucleoprotein A1)與槲黃素具有結合作用,hnRNP A1具有往返於細胞核和細胞質之間的能力,能將mRNA帶出細胞核。hnRNP A1的N端有兩段能與RNA結合的區域,RRM (RNA-recognition motifs);而C端則是一個M9 domain,經由Transportin (Trn1)的結合進出細胞核的訊號序列。正常功能中hnRNP A1將mRNA運送出細胞核後,hnRNP A1會從細胞質再回到細胞核。本實驗室在先前的研究發現,當細胞處理槲黃素後,hnRNP A1會漸漸堆積在細胞質中,並且影響抗凋亡蛋白的mRNA轉譯,使細胞走向凋亡。因此本研究希望利用表面電漿共振方法(Surface plasmon resonance)找出槲黃素與hnRNP A1結構上的哪一區域的親和力較高,進而得知槲黃素與hnRNP A1的結合位置。除了全長的表現質體外,我們將hnRNP A1依結構區域劃分三個區域,建構出N-terminal、middle region、C-terminal的表現質體,利用大腸桿菌表現四個重組蛋白,經由鎳離子管柱純化出具有His-tag 的重組蛋白,並使用質譜儀確認表現的蛋白質身份。為了得到更純的蛋白質,我們接著使用膠體過濾層析純化並且分析蛋白質的原態分子量。最後使用SPR生物感測儀分析槲黃素分別與這四個重組蛋白的親和力。槲黃素與hnRNP A1 全長蛋白的親和力為8.88 μM、hnRNP A1 N端為90.34 μM、hnRNP A1中段則沒有結合的訊號、hnRNP A1 N端的親和力為1.69 μM,由此可得知槲黃素與hnRNP A1的最佳結合位置在C端區域。zh_TW
dc.description.abstractQuercetin, one of the most abundant flavonoids, is ubiquitous in plants. In many studies, quercetin was shown to inhibit cells growth and induction of apoptosis in prostate cancer cells. Moreover, quercetin selectively kills prostate cancer cells, but does not affect the viability of prostate normal epithelial cells. By chemical proteomics approach, we have identified hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1) as a direct target of quercetin. Previous studies indicate hnRNP A1 has ability of shuttle from nucleus and cytoplasm, mostly, binding mRNA out of nucleus. Upon quercetin treatment, quercetin binds to hnRNPA1 and hampers its returning back to nucleus resulting in accumulation of hnRNPA1 in the cytoplasm. Thus, cells are attempting towards apoptosis by eventually transporting to stress granules in the quercetin treatment.
In this study, our main purpose is to figure out which region of hnRNP A1 get higher affinity with quercetin by using surface plasmon resonance assay, and further find out the quercetin binding sites of hnRNP A1. According to the structure information of hnRNP A1, we constructed three truncated proteins of hnRNP A1: N-terminal region, middle region, and C-terminal region. We used E.coli expression system to express four recombinant proteins including full length of hnRNP A1, then purified His-tag recombinant proteins by Ni2+ affinity column. LC-MS/MS was used to further confirm the sequence identity. The recombinant proteins were further purified by gel-filtration using HiLoad Superdex 16/60 FPLC column, and the result indicated that all purified proteins are monomeric forms. Finally, we investigated the affinity between quercetin and each of those four recombinant proteins by using SPR. The affinity of quercetin and full length of hnRNP A1 is 8.88 μM, N-terminal region is 90.34 μM, the middle region shows no signal, and C-terminal region is 1.69 μM. Our result indicates that the quercetin binding site of hnRNP A1 is on the C-terminl region.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:11:53Z (GMT). No. of bitstreams: 1
ntu-103-R99442013-1.pdf: 2021005 bytes, checksum: fe58c607589939d949793ba815dd8848 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 ........................................................................................................................ i
謝誌 ............................................................................................................................................... ii
摘要 .............................................................................................................................................. iii
Abstract ....................................................................................................................................... iv
第一章 導論 ................................................................................................................................. 1
第一節 攝護腺癌之現況 ........................................................................................................ 1
1.1 攝護腺癌之流行病學 ................................................................................................... 1
1.2 攝護腺癌之症狀、診斷及治療 ................................................................................... 1
第二節槲黃素(quercetin) ...................................................................................................... 2
2.1 攝護腺疾病之中草藥療法(phytotherapy) ................................................................... 2
2.2 類黃酮(flvonoid)中的槲黃素(quercetin) ..................................................................... 3
2.3 槲黃素之功效 ............................................................................................................... 4
2.3.1 抗氧化 .................................................................................................................................................. 4
2.3.2 抗發炎 .................................................................................................................................................. 4
2.3.3 抗微生物 .............................................................................................................................................. 5
2.3.4 抗癌 ...................................................................................................................................................... 5
第三節槲黃素之目標蛋白 .................................................................................................... 6
第四節 hnRNP A1 結構及功能 ............................................................................................. 6
4.1 hnRNP A1 之功能 .......................................................................................................... 6
4.2 hnRNP A1 之結構 .......................................................................................................... 7
4.2.1 hnRNP A1 之N 端RRM Domain ...................................................................................................... 7
4.2.2 hnRNP A1 之中段RGG box ............................................................................................................... 8
4.3.3 hnRNP A1 之C 端 M9 domain 與F-peptide ................................................................................... 8
第五節藥物與蛋白質結合之親和力分析............................................................................. 8
5.1 表面電漿共振感測儀(surface plasmon resonance, SPR) .......................................... 10
第六節研究動機與策略 ...................................................................................................... 12
第二章 實驗材料 ....................................................................................................................... 14
第一節 大腸桿菌及質體 ...................................................................................................... 14
第二節 藥品 .......................................................................................................................... 14
第三節 試劑組 ...................................................................................................................... 16
第四節 重要儀器裝置 .......................................................................................................... 16
viii
第三章實驗方法 ....................................................................................................................... 18
第一節 hnRNP A1 各段(N-terminal、middle region、C-terminal)之質體建構 (plasmid
construction) .......................................................................................................................... 18
1.1 引子設計 (primer design) .......................................................................................... 18
1.2 聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) ............................................... 18
1.3 洋菜凝膠電泳 (Agarose gel electrophoresis) ............................................................ 19
1.4 DNA 電泳產物之回收 (Gel extraction) ..................................................................... 20
1.5 DNA 電泳產物之回收 (Gel extraction) ..................................................................... 20
1.6 限制酶水解 (Reaction of restriction enzyme) ........................................................... 21
1.7 與pET28a 質體之接合反應 (Ligation with pET28a plasmid) .................................. 22
1.8 轉型作用 (Transformation) ......................................................................................... 22
1.9 以colony PCR 之方式篩選轉型基因庫 (Colony PCR screening) ............................ 23
1.10 DNA 定序 (DNA sequencing) .................................................................................. 23
1.11 製備勝任細胞 (Preparation of competent cells) ....................................................... 23
第二節重組蛋白質之表現與純化 ...................................................................................... 24
2.1 利用大腸桿菌表現hnRNP A1 之重組蛋白質 .......................................................... 24
2.2 重組蛋白hnRNP A1 的純化 ....................................................................................... 25
2.3 重組蛋白hnRNP A1 之透析(dialysis) ....................................................................... 26
2.3.1 hnRNP A1 full length 及hnRNP A1 N-terminal ............................................................................. 26
2.3.2 hnRNP A1 middle region 及hnRNP A1 C-terminal ....................................................................... 26
2.4 重組蛋白hnRNP A1 之定量 ...................................................................................... 27
2.5 十二烷基磺酸鈉-聚丙烯醯胺膠電泳法 (Sodium dodecyl sulfate -polyacrylamide
gel electrophoresis, SDS-PAGE ) ....................................................................................... 27
2.5.1 膠體玻璃之架設 ................................................................................................................................ 27
2.5.2 配置聚丙烯醯胺膠體 (Preparation of polyacrylamide gel) .......................................................... 28
2.5.3 蛋白質樣品的處理 (sample preparation) ...................................................................................... 29
2.5.4 電泳之操作 ........................................................................................................................................ 30
2.5.5 電泳膠片之染色與脫色 (Protein staining and destaining) ............................................................ 30
2.6 以質譜儀鑑定重組膜蛋白質之身份 ......................................................................... 31
2.6.1 膠體原位酵素切割 (In-gel digestion) ............................................................................................. 31
2.6.2 質譜儀分析 (Analysis by mass spectrometry) ................................................................................ 32
2.7 膠體過濾層析 (Gel-filtration chromatography) ........................................................ 32
第三節表面電漿共振生物感測器 (Surface plasmon resonance biosensor) .................. 33
3.1 儀器控制及分析軟體 ................................................................................................. 33
ix
3.2 微通道清洗 ................................................................................................................. 33
3.3 蛋白質固定化 ............................................................................................................. 33
3.3.1 選擇適當pH 值做為蛋白質固定條件 (pH scouting) .................................................................... 33
3.3.2 蛋白質固定化(Protein immobilization) .......................................................................................... 34
3.3.3 親和力分析 ........................................................................................................................................ 34
3.3.3-1 藥物及緩衝液配置 ................................................................................................................... 34
3.3.3-2 藥物親和力分析 ....................................................................................................................... 34
溶液校正Solvent correction ............................................................................................................. 35
藥物結合分析 ................................................................................................................................... 35
第四章實驗結果 ....................................................................................................................... 36
第一節 hnRNP A1 及各段基因之質體建構 ....................................................................... 36
第二節 hnRNP A1 各段基因之重組蛋白質表現及純化 ................................................... 36
2.1 誘導重組蛋白表現 ..................................................................................................... 36
2.2 重組蛋白純化 ............................................................................................................. 37
2.2.1 His-tag-hnRNP A1 full length 純化 .................................................................................................. 37
2.2.2 His-tag-hnRNP A1 N-terminal 純化 ................................................................................................. 38
2.2.3 His-tag-hnRNP A1 middle region 純化 ............................................................................................ 38
2.2.4 His-tag-hnRNP A1 C-terminal 純化 ................................................................................................. 39
2.2.5 重組蛋白身份鑑定 ............................................................................................................................ 39
2.2.6 膠體過濾層析(Gel-filtration chromatography) .............................................................................. 39
第三節 SPR 生物感側儀偵測槲黃素與hnRNP A1 之親和力 .......................................... 40
3.1 蛋白質固定化 ............................................................................................................. 40
3.2 槲黃素與hnRNP A1 及其個區段之親和力分析 ...................................................... 41
第五章討論 ............................................................................................................................... 42
第一節 實驗討論 .................................................................................................................. 42
第二節 槲黃素與hnRNP A1 C-terminal region 的結合分析 ........................................... 43
第三節 研究總結與未來展望 .............................................................................................. 46
第六章 參考文獻 ....................................................................................................................... 48
圖表 ............................................................................................................................................. 54
附錄 ............................................................................................................................................. 72
dc.language.isozh-TW
dc.subject表面電漿共振zh_TW
dc.subject槲黃素zh_TW
dc.subjecthnRNP A1zh_TW
dc.subjectQuercetinen
dc.subjecthnRNP A1en
dc.subjectsurface plasmon resonanceen
dc.title利用表面電漿共振生物感測儀分析槲黃素與hnRNP A1結合位置及親和力zh_TW
dc.titleDetermine the quercetin binding sites and binding affinity of hnRNP A1 by surface plasmon resonanceen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.coadvisor詹迺立
dc.contributor.oralexamcommittee徐駿森
dc.subject.keyword槲黃素,hnRNP A1,表面電漿共振,zh_TW
dc.subject.keywordQuercetin,hnRNP A1,surface plasmon resonance,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2014-02-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved