請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58331完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 姜延年(Yan-Nian Jiang),朱有田(Yu-Ten Ju) | |
| dc.contributor.author | Yi-Hung Li | en |
| dc.contributor.author | 李一泓 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:11:37Z | - |
| dc.date.available | 2017-03-21 | |
| dc.date.copyright | 2014-03-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-17 | |
| dc.identifier.citation | 戈福江。1953。臺灣之豬。臺灣銀行季刊 5:50-66。
王政騰。2000。畜試黑豬一號審定書。行政院農業委員會畜產試驗所,臺南縣。 王政騰。2002a。畜試花斑豬保種品系審定書。行政院農業委員會畜產試驗所,臺南縣。 王政騰。2002b。畜試迷彩豬保種品系審定書。行政院農業委員會畜產試驗所,臺南縣。 王政騰。2006。蘭嶼小耳豬保種品系審定書。行政院農業委員會畜產試驗所,臺南縣。 王政騰。2008。桃園豬保種品系審定書。行政院農業委員會畜產試驗所,臺南縣。 王穎、李壽先、銀琬春、王佳琪。2002。臺灣梅花鹿遺傳基因分析之研究。保育研究第122 號。內政部。 王穎。2004。臺灣野豬(Sus scrofa taivanus)在農地之危害與被利用與養殖之現況調查。國立臺灣師範大學,臺北市。 王穎。2005。臺灣野豬(Sus scrofa taivanus)與人之衝突現況與保育研究。行政院農業委員會林務局主管科技計畫94年度期末報告,臺北市。 池雙慶。2001。畜牧要覽-養豬篇(增修版),第29-31頁,第74-83頁。中國畜牧學會,臺中市。 宋永義、李登元、劉瑞珍、陳聯民、黃添美、徐淑芳。1988。改良臺灣小耳種豬為實驗動物,第118-134頁。第一屆家畜禽遺傳育種研討會專輯,臺北市。 宋永義、黃添美、李登元。1986。開發本省小耳種豬為實驗動物之研究:諸生理值。國立臺灣大學農學院研究報告 26(1):45-54。 李登元、宋永義。1979。小型豬選育:Ⅲ. 本省小耳種豬近親配種之近親系選拔。中國畜牧學會會誌 8(3-4):109-113。 李登元、宋永義、劉瑞珍。1976。小型豬選育:I. 臺灣省本地小耳種豬性能之初步觀察報告。中國畜牧學會會誌5(1-2):39-42。 李登元、宋永義、陳聯民。1977。小型豬選育:II. 本省小耳種豬自飼與手飼之生長發育比較。中國畜牧學會會誌6(3-4):1-5。 李登元、宋永義、黃添美。1980。小型豬選育:Ⅳ. 本省小耳種豬近親配種之近親系選拔﹝續﹞。中國畜牧學會會誌9(3-4):153-156。 李登元、宋永義、黃添美。1982。小型豬選育:V. 本省小耳種豬近親配種之近親系選拔﹝續﹞。中國畜牧學會會誌11(1-2):41-44。 吳幸如。1993。臺灣野豬棲地利用及行為之研究。碩士論文,國立臺灣師範大學生物學研究所,臺北市。 吳宗育。2008。以粒線體序列分析桃園豬、蘭嶼豬遺傳歧異度與其他外來豬種間之親源關係。碩士論文,國立臺灣大學動物科學技術學研究所,臺北市。 沈瑩。1998。臨海水土誌。中央民族大學出版社。 邱敏勇。2002。臺灣新石器時代豬的畜養和狩獵-利用牙齒標準區分家豬和野豬的研究。中央研究院歷史語言研究所集刊 73:271-299。 林俊義。1985。臺灣哺乳類的動物地理初探。野生動物保育論文專集,第1-9頁。臺灣大學動物生態研究室,臺北市。 林婷婷。2007。關渡草澤地小麝鼩 (鼩形目:尖鼠科) 的婚配制度。碩士論文,國立臺灣大學生態學與演化生物學研究所,臺北市。 邱仕炎、曾憲斌、鄭森淵。1982。臺灣畜牧獸醫事業-養豬篇,第71-84頁,第129-141頁。臺灣省政府農林廳,南投縣。 林德育、顏念慈、蔡金生、張秀鑾、戴謙。1993。桃園豬生長、體型與繁殖性狀之觀察。畜產研究 26:335-343。 堀川安市。1931。臺灣哺乳動物圖說。臺灣博物學會。 陳兼善。1969。臺灣脊椎動物誌(下冊)。臺灣商務印書館,台北市。 許晉賓、詹嬿嫆、黃憲榮、陳計志、王治華、吳明哲、張秀鑾。2008。家畜新品種-高畜黑豬完成選育。中國畜牧學會會誌37 (增刊):185。 張秀鑾、黃鈺嘉、吳明哲、李世昌。1998。豬經濟性狀測定與品種改良,第7-30頁,第82-83頁。臺灣省畜產試驗所,臺南縣。 黃英豪。2008。高畜黑豬品種審定書。行政院農業委員會畜產試驗所,臺南縣。 黃英豪。2010。賓朗豬保種品系審定書。行政院農業委員會畜產試驗所,臺南縣。 黃傳景。2004。利用排遺DNA 標定法探討金門地區水獺之族群遺傳結構與雌雄播遷模式之差異。碩士論文,國立臺灣大學生態學與演化生物學研究所,臺北市。 曾啟明。1991。本省豬隻改良工作之發展。養豬協會會刊 22:19-22。 楊天樹。1995。臺灣養豬之產業發展歷程。中國畜牧學會會誌24:23-29。 詹嬿嫆、許晉賓、黃憲榮、李錦足、王治華、吳明哲、張秀鑾。2006。多產豬種培育:Ⅸ. 高畜黑豬之選育現況。中國畜牧學會會誌35 (增刊):149。 蒔田德義。1965。臺灣在來豬桃園種とBerkshire 種との品種雜種の育種遺傳學的研究,第1-75頁。靜岡大學農學部畜產學教室。 趙榮台、方國運。1988。臺灣野豬的生物學初探。林試所研究報告季刊 3(1):353-362。 鄭丕留。1986。中國豬品種誌,第131-136頁。上海科學技術出版社,上海市。 戴謙、張秀鑾、黃鈺嘉、顏念慈。1997。臺灣本地種之性能及種原利用。畜產研究 30(3):215-229。 Abdelkrim, J., M. Pascal, and S. Samadi. 2005. Island colonization and founder effects: the invasion of the Guadeloupe islands by ship rats (Rattus rattus). Mol. Ecol. 14:2923-2931. Avise, J. C., J. Arnond, R. M. Ball, E. Bermingham, T. Lamb, J. E. Neigel, C. A. Reeb, and N. C. Saunders. 1987. Intraspecific phylogeography – the mitochondrial-DNA bridge between population-genetics and systematics. Ann. Rev. Ecol. System. 18: 489-522. Banks, M. A., W. Eichert, and J. B. Olsen. 2003. Which genetic loci have greater population assignment power? Bioinformatics 19:1436-1438. Bjornstad, G., and K. H. Roed. 2002. Evaluation of factors affecting individual assignment precision using microsatellite data from horse breeds and simulated breed crosses. Anim. Genet. 33:264-70. Blott, S. C., J. L. Williams, and C. S. Haley. 1999. Discriminating among cattle breeds using genetic markers. Heredity 82:613-619. Bokonyi, S. 1974. History of Domestic Mammals in Central and Eastern Europe. Akademiai Kiado, Budapest. Bond, J. M., E. M. Veenendaal, D. D. Hornby, and A. J. Gray. 2002. Looking for progenitors: a molecular approach to finding the origins of an invasive weed. Biol. Invas. 4:349-357. Botstein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331. Brown, D. M., R. A. Brenneman, K. P. Koepfli, J. P. Pollinger, B. Mila, N. J. Georgiadis, E. E. Louis, G. F. J. Grether, D. K. Jacobs, and R. K. Wayne. 2007. Extensive population genetic structure in the giraffe. BMC Biology. DOI: http://www.biomedcentral.com/1741-7007/5/57. Brown, W. M., M. J. George, and A. C. Wilson. 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 76:1967-1971. Caratti, S., L. Rossi, B. Sona, S. Origlia, S. Viara, G. Martano , C. Torre, and C. Robino. 2010. Analysis of 11 tetrameric STRs in wild boars for forensic purposes. Forensic Sci. Int. Genet. 4:339-342. Carr, M. R. 1996. PRIMER User Manual. plymouth routines in multivariate ecological research. Plymouth Marine Laboratory, Plymouth. Cavalli-sforza, L. L. and A. W. F. Edwards. 1969. Phylogenetic analysis: models and estimation procedure. Amer. J. Hum. Genet. 19:233-257. Chang, W. H., H. P. Chu, Y. N. Jiang, S. H. Li, Y. Wang, C. H. Chen, K. J. Chen, C. Y. Lin, and Y. T. Ju. 2009. Genetic variation and phylogenetics of Lanyu and exotic pig breeds in Taiwan analyzed by nineteen microsatellite markers. J. Anim. Sci. 87:1-8. Clop, A., M. Amills, J. L. Noguera, A. Fernandez, J. Capote, M. M. Ramon, L. Kelly, J. M. Kijas, L. Andersson, and A. Sanchez. 2004. Estimating the frequency of Asian cytochrome B haplotypes in standard European and local Spanish pig breeds. Genet. Sel. Evol. 36(1):97-104. Clutton-Brock, J. 1999. A Natural History of Domesticated Mammals, Second Edn. Cambridge University Press, Cambridge. Cornuet, J. M., S. Piry, G. Luikart, A. Estoup, and M. Solignac. 1999. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153:1989-2000. Darwin, C. 1868. The Variation of Animals and Plants under Domestication. John Murray, London. Davies, N., F. X. Villablanca, and G. K. Roderick. 1999. Determining the source of individuals: Multilocus genotyping in nonequilibrium population genetics. Trends Ecol. Evol. 14:17-21. Dawid, I. B., and A. W. Blackler. 1972. Maternal and cytoplasmic inheritance of mitochondrial DNA in Xenopus. Dev. Biol. 29:152-161. El Mousadik, A., and R. J. Petit. 1996. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92:832-839. Evanno, G, S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14:2611-2620. Fang, M., X. Hu, T. Jiang, M. Braunschweig, L. Hu, Z. Du, J. Feng, Q. Zhang, C. Wu, and N. Li. 2005. The phylogeny of Chinese indigenous pig breeds inferred from microsatellite markers, Anim. Genet. 36:7-13. Ferreira, E., L. Souto, A. V. M. Soares, and C. Fonseca. 2009. Genetic structure of the wild boar population in Portugal: Evidence of a recent bottleneck. Mamm. biol. 74:274-285. Guo, S. W., and E. A. Thompson. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361-372. Giuffra, E., J. M. H. Kijas, V. Amarger, O. Carlborg, J. T. Jeon, and L. Andersson. 2000. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154:1785-1791. Gongora, J., P. Fleming, P. B. S. Spencer, R. Mason, O. Garkavenko, J. N. Meyer, C. D., J. H. Lee, and C. Moran. 2004. Phylogenetic relationships of Australian and New Zealand feral pigs assessed by mitochondrial control region sequence and nuclear GPIP genotype. Mol. Phylogenet. Evol. 33:339-348. Goodman, S. J. 1997. RstCalc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Mol. Ecol. 6:881-885 Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm Accessed February 12, 2011. Goudet, J. 2004. PCAGEN [computer program]. Available from http://www2.unil.ch/popgen/softwares/pcagen.htm Accessed February 15, 2011. Gray, R. D., A. J. Drummond, and S. J. Greenhill. 2009. Language phylogenies reveal expansion pulses and pauses in Pacific settlement. Science 323:479-483. Guinand, B., K. T. Scribner, A. Topchy, K. S. Page, W. Punch, and M. K. Burnham-Curtis. 2004. Sampling issues affecting accuracy of likelihood-based classification using genetical data. Environ. Biol. Fish. 69:245-259. Hartl, D. A., and A. G. Clark. 1997. Principles of Population Genetics. 3rd ed. Sinauer Associates Inc., Sunderland, MA. Hein, J., and J. Stφvlbaek. 1996. Combined DNA and protein alignment. Methods Enzymol. 266:402-418. Hongo, H., N. Ishiguro, T. Watanobe, N. Shigehara, T. Anezaki, V. T. Long, D. V. Binh, N. T. Tien, and N. H. Nam. 2002. Variation in mitochondrial DNA of Vietnamese pigs: relationships with Asian domestic pigs and Ryukyu wild boars. Zoolog. Sci. 19:1329-1335. Huang, L. G., X. L. Wang, J. T. Ou, C. H. Guo, X. C. Li, F. Wang, and X. L. Zheng. 2005. Genetic analysis of 32 microsatellite loci in 13 families of Wuzhishan pig by multiplex PCR and gene scanning technique. Yi Chuan 27(1):70-74. Jiang, Y. N., C. Y. Wu, C. Y. Huang, H. P. Chu, M. W. Ke, M. S. Kung, S. H. Li, K. Y. Li, Y. Wang, and Y. T. Ju. 2008. Inter-population and intra-population maternal lineage genetics of Lanyu pig (Sus scrofa) by analysis of mitochondrial cytochrome b and control region sequences. J. Anim. Sci. 86:2461–2470. Jones, G. S., B. L. Lim, and J. H. Crose. 1971. A key to the mammals of Taiwan. Chinese J. Microbiol. 2:47-65. Kacirek, S. L., K. M. Irvin, P. I. Dimsoski, S. J. Moeller, M. E. Davis, and H. C. Hines. 1998. Variation at microsatellite loci in the Large White, Yorkshire and Hampshire breeds of swine. Proceedings of the 6th World Congress on Genetics Application to Livestock Production. 23:640–643. Kim, T. H., K. S. Kim, B. H. Choi, D. H. Yoon, G. W. Jang, K. T. Lee, H. Y. Chung, H. Y. Lee, H. S. Park, and J. W. Lee. 2005. Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. J. Anim. Sci. 83:2255–2263. Kimura, M., and J. F. Crow. 1964. The number of alleles that can be maintained in a finite population. Genetics 49:725–738. King, J. W. B. 1991. Pig breeds of the world: Their distribution and adaptation. Page 51-63. In World Animal Science, B8-Genetic Resources of Pig, Sheep and Goat. K. Maijala (Ed.), Elsevier. Koskinen, M. T. 2003. Individual assignment using microsatellite DNA reveals unambiguous breed identification in the domestic dog. Anim. Genet. 34:297–301. Krzanowski, W. 1987. Principles of Multivariate Analysis, a User’s Perspective. Clarendon Press, Oxford. Kumar, S., K. Tamura, and M. Nei, 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment briefings. Bioinformatics 5:150-163. Kuroda, N. 1935. Formosan mammals preserved in the collection of Marquis Yamashina. J. Mamm. 16:277-291. Langella, M. 1999. Populations 1.2.30: Population genetic software (individuals or population distances, phylogenetic trees). http://bioinformatics.org/*tryphon/populations/. Accessed 10 Mar. 2009. Larson, G., K. Dobney, U. Albarella, M. Fang, E. Matisoo-Smith, J. Robins, S. Lowden, H. Finlayson, T. Brand, E. Willerslev, P. Rowley-Conwy, L. Andersson, and A. Cooper. 2005. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307:1618-1621. Larson, G., T. Cucchi, M. Fujita, E. Matisoo-Smith, J. Robins, A. Anderson, B. Rolett, M. Spriggs, G. Dolman, T. H. Kim, N. T. D. Thuy, E. Randi, M. Doherty, R. A. Due, R. Bollt, T. Djubiantono, B. Griffin, M. Intoh, E. Keane, P. Kirch, K. T. Li, M. Morwood, L. M. Pedrina, P. J. Piper, R. J. Rabett, P. Shooter, G. V. den Bergh, E. West, S. Wickler, J. Yuan, A. Cooper, and K. Dobneybc. 2007. Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania. Proc. Natl. Acad. Sci. USA 104(12): 4834-4839. Larson, G., R. Liu, X. Zhao, J. Yuan, D. Fuller, L. Barton, K. Dobney, Q. Fan, Z. Gu, X. H. Liu, Y. Luo, P. Lv, L. Andersson, and N. Li. 2010. Patterns of East Asian pig domestication, migration, and turnover revealed by modern and ancient DNA. Proc. Natl. Acad. Sci. USA 107(17):7686–7691. Li, Y. C., A. B. Korol, T. Fahima, A. Beiles and E. Nevo. 2002. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol. 11:2453-2465. Marshall, T. C., J. Slate, L. E. B. Kruuk, and J. M. Pemberton. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7:639-655. Mason, I. L. 1988. A World Dictionary of Livestock Breeds Types and Varieties. Third Edition. Page 194. C.A.B. International, Wallingford. Maudet, C., G. Luikart, and P. Taberlet. 2002. Genetic diversity and assignment tests among seven French cattle breeds based on microsatellite DNA analysis. J. Anim. Sci. 80:942-950. Mcrae, B. H., P. Beier, L. E. Dewald, L. Y. Huynh, and P. Keim. 2005. Habitat barriers limit gene flow and illuminate historical events in a wide-ranging carnivore, the American puma. Mol. Ecol. 14:1965-1977. Megens, H. J., R. Crooijmans, M. S. Cristobal, X. Hui, N. Li, and M. A. M. Groenen. 2008. Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genet. Sel. Evol. 40:103-128. Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York. Nei, M., and S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, Oxford. Nechtelberger, D., C. Kaltwasser, I. Stur, J. N. Meyer, G. Brem, M. Mueller, and S. Mueller. 2001. DNA microsatellite analysis for parentage control in Austrian pigs. Anim. Biotech. 12:141-144. Novembre, J., and S. Ramachandran. 2011. Perspectives on human population structure at the cusp of the sequencing era. Annu. Rev. Genomics Hum. Genet. 12:245-274. Piry, S., A. Alapetite, J. M. Cornuet, D. Paetkau, L. Baudouin, and A. Estoup. 2004. GeneClass2: A software for genetic assignment and first-generation migrant detection. J. Hered. 95:536-539. Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945-959. Porter, V. 1993. Pigs. A Handbook to the Breeds of the World, Helm Information Ltd., Near Robertsbridge. Rannala, B., and J. L. Mountain. 1997. Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. USA 98:9197-9201. Raymond, M., and F. Rousset. 1995. Genepop (version 3.4): population genetics software for exact tests and ecumenicism. J. Heredity 896:248-249. Reed, T. E. 1973. Number of gene loci required for accurate estimation of ancestral population proportions in individual human hybrids. Nature 244:575-576. SanCristobal, M., C. Chevalet, C. S. Haley, R. Joosten, A. P. Rattink, B. Harlizius, M. A. M. Groenen, Y. Amigues, M.-Y. Boscher, G. Russell, A. Law, R. Davoli, V. Russo, C. Desautes, L. Alderson, E. Fimland, M. Bagga, J. V. Delgado, J. L. Vega-Pla, A. M. Martinez, M. Ramos, P. Glodek, J. N. Meyer, G. C. Gandini, D. Matassino, G. S. Plastow, K. W. Siggens, G. Laval, A. L. Archibald, D. Milan, K. Hammond, and R. Cardellino. 2006. Genetic diversity within and between European pig breeds using microsatellite markers. Anim. Genet. 37:189-198. Scandura, M., L. Iacolina, B. Crestanello, E. Pecchioli, M. F. Di Benedetto, V. Russo, R. Davoli, M. Apollonio, and G. Bertorelle. 2008. Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable? Mol. Ecol. 17:1745-1762. Schaal, B. A. 1980. Measurement of gene flow in lupinus-texensis. Nature 284:450-451. Schaffner, W., G. Kunz, H. Daetwyler, J. Telford, H. O. Smith, and M. L. Birnstiel. 1978. Genes and spacers of cloned sea urchin histone DNA analyzed by sequencing. Cell 14:655-671. Scherf, B. D. 2000. World Watch List for Animal Diversity, 3rd edn., FAO, Rome. Slatkin, M. 1985. Rare alleles as indicators in gene flow. Evolution 39:53-65. Slatkin, M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457-462. Souza, C. A., S. R. Paiva, R. W. Pereira, S. E. Guimaraes, W. M. Jr Dutra, L. S. Murata, and A. S. Mariante. 2009. Iberian origin of Brazilian local pig breeds based on Cytochrome b (MT-CYB) sequence. Anim. Genet. 40(5):759-762. Stevens, J. 1986. Applied Multivariate Statistics for the Social Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates. Lawrence Erlbaum Associates, New Jersey. Tadano, R., M. Nishibori, and M. Tsudzuki. 2008. High accuracy of genetic discrimination among chicken lines obtained through an individual assignment test. Anim. Genet. 39:567–571. Takezaki, N., and M. Nei. 1996. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144(1):389-399. Ueno, S., N. Tomaru, H. Yoshimaru, T. Manabe, and S. Yamamoto. 2002. Size-class differences in genetic structure and individual distribution of Camellia japonica L. in a Japanese old-growth evergreen forest. Heredity 89(2):120-126. Vernesi, C., B. Crestanello, E. Pecchioli, D. Tartari, D. Caramelli, H. Hauffe, and G. Bertorelle. 2003. The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): A microsatellite analysis. Mol. Ecol. 12:585-595. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Fritjers, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407-4414. Watanobe, T., N. Okumura, N. Ishiguro, M. Nakano, A. Matsui, M. Sahara, and M. Komatsu. 1999. Genetic relationship and distribution of the Japanese wild boar (Sus scrofa leucomystax) and Ryukyu wild boar (Sus scrofa riukiuanus) analysed by mitochondrial DNA. Mol. Ecol. 8:1509-1512. Watanobe, T., N. Ishiguro, M. Nakano, H. Takamiya, A. Matsui, and H. Hongo. 2002. Prehistoric introduction of domestic pigs onto the Okinawa Islands: ancient mitochondrial DNA evidence. J. Mol. Evol. 55:222-231. Weir, B. S., and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38:1358-1370 Williams, J. G., A. R. Kubelik, K. J. Livak, J. A. Rafalski, S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531-6535. Wright, S. 1943. Isolation by distance. Genetics 28:114-138. Wright, S. 1951. The genetic structure of populations. Ann. Eugen 15:323-354. Wright, S. 1978. Evolution and Genetics of Populations, Vol. 4. Variability within and among Natural Populatons. Univ. of Chicago Press, Chicago. Wu, C. Y., Y. N. Jiang, H. P. Chu, S. H. Li, Y. Wang, Y. H. Li, Y. Chang and Y. T. Ju. 2007. The Type I Lanyu pig has a maternal genetic lineage distinct from Asian and European pigs. Anim. Genet. 38:499-505. Xu, Y. C., Z. C. Pan, Z. R. Xu, S. H. Yang, Y. Jin, and S. Y. Bai. 2001. Status of microsatellites as genetic markers in cervids. J. Forest. Res. 12:55-58. Yang, S. L., Z. G. Wang, B. Liu, G. X. Zhang, S. H. Zhao, M. Yu, B. Fan, M. H. Li, T. A. Xiong, and K. Li. 2003. Genetic variation and relationships of eighteen Chinese indigenous pig breeds. Genet. Sel. Evol. 35:657-671. Yeh, F. C., R. C. Yang, and T. Boyle. 1999. POPGENE (Version 1.31): Microsoft Window-bases freeware for population genetic analysis, University of Alberta and the Centre for International Forestry Research. Edmonton, AB. Yue, G. H., P. Beeckmann, and H. Geldermann. 2002. Mutation rates at swine microsatellite loci. Genetica 114:113–119. Yue, G. H., P. Beeckmann, H. Bartenschlager, G. Moser, and H. Geldermann. 1999. Rapid and precise genotyping of porcine microsatellites. Electrophoresis 20:3358-3363. Zhang, Z. 1986. Pig Breeds in China. Page 235. Shanghai Scientific and Technical Publishers, Shanghai. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58331 | - |
| dc.description.abstract | 臺灣原生豬種計有臺灣野豬、桃園豬、蘭嶼小耳豬等;臺灣野豬為臺灣山區分布最廣泛的中大型野生動物,在全臺各地的林地內幾乎皆可看到其活動痕跡。過去對於臺灣野豬之研究大多偏向於在山區出現之頻率或是對人類農作物破壞等。微衛星標記為目前公認最具資訊之族群遺傳研究工具,而粒線體為母系遺傳,其cytochromeb 區域適合做為探討族群間之差異程度。2007 年起自宜蘭、南投、花蓮、高雄、台東及屏東地區收集臺灣野豬樣本,以PCR 增幅微衛星標記以及粒線體cytochrome b 區域後進行分析。經比對粒線體D-loop 序列後,排除帶有非臺灣野豬(蘭嶼小耳豬或其他圈養之家豬之粒線體序列)之個體,以73 頭進行微衛星標記分析。cytochrome b 分析全長1140 bp 後共19 個單倍型(haplotype),由遺傳結構對照其地理分布,可見大多單倍型具有其地理獨特性。微衛星分析之RST 值在不同地區間為0.0056∼0.1643,除屏東地區外,其他不同地區間之分化程度不高(0.0056∼0.0812),基因交流為其可能原因,而屏東地區與南投、花蓮與宜蘭地區分化程度高於高雄、台東地區之原因可能為其地理距離影響基因交流所致。根據粒線體以及微衛星之屬性,可推測臺灣野豬母豬較具有地域性,而公豬則會遷徙導致發生基因交流情形。蘭嶼小耳豬在1980 年自蘭嶼引入畜產試驗所台東種畜繁殖場後,除保留原始族群外,亦選育具有花斑體表之花斑豬與白色體表之賓朗豬,以因應國內對生醫研究用實驗動物之需求。此外,國內各機構亦利用品種雜交互補性,育成兼具本土特色與外來種優勢之合成豬種,先後計有臺灣大學畜牧系 (動物科學技術學系前身) 之李宋豬 (3/4 蘭嶼小耳豬,1/4 藍瑞斯)、畜產試驗所之畜試黑豬一號 (1/4 桃園豬,3/4 杜洛克)、臺東種畜繁殖場之迷彩豬 (1/2 蘭嶼小耳豬,1/2 杜洛克) 與高雄種畜繁殖場之高畜黑豬(1/2 梅山豬,1/2 杜洛克),而舉凡此等合成豬種之商業行銷、遺傳品質監控與繁殖管理勢需予以重視。以19 個微衛星標記分析上述各豬種間之Cavalli-Sforza chord distances 介於0.333∼0.799,遺傳分化指數 (FST value) 介於0.168∼0.502,後者顯示各豬種間皆具有中等程度以上之分化,即各純種與合成豬種皆有獨特之遺傳組成。全部樣本另經分派檢定(assignment test),以19 組微衛星標記分析結果顯示所有個體落在其本身所屬豬種內之正確率為99.4%,並以各標記遺傳分化指數(FST)、期望雜合度以及對偶基因數目進行排序,以蘭嶼小耳豬及其相關族群的數據集(dataset)計算上述三種數值並依高低挑選不同數目之標記進行分派測驗,可發現在依照較高期望雜合度下,使用9 個微衛星標記即可達到99.7% 之高正確率。故本研究所建立之微衛星資料足可辨識豬隻之品種,並能據以應用於豬群之遺傳管理。 | zh_TW |
| dc.description.abstract | The indigenous pigs in Taiwan included Formosan wild boar, Taoyuan pig and Lanyu pig. Formosan wild boars extensively distributes in wild of Taiwan. At past, the studies of Formosan wild boars were focused on their distributions, behavior and the conflict with human. The genetic study in Formosan wild boars was scarce. PCR-based DNA approaches including AFLP, sequences and microsatellites were widely used for studying population structure and biodiversity of pigs (Sus scrofa). In these molecular markers, mitochondrial cytochrome b sequence which was maternal inherited was suitable for differeitiation between populations. Microsatellite markers with highest polymorphism were commonly used in population structure studies of wildlife and livestock. One of the purposes of present study is to investigate genetic structure and their phylogeographic relationships based on the cytochrome b sequences and polymorphisms of microsatellite loci. Since 2007, Seventy-three blood or muscle tissue of Formosan wild boars were collected from mountain areas located in Yilan, Nantou, Hualian, Kaohsiung, Taitung and Pintung. All of 19 haplotypes of cytochrome b sequences were confirmed. Almost haplotypes were appeared in specific areas. Nineteen microsatellite markers which were recommended by International Society of Animal Genetics(ISAG) and Food and Agriculture Organization(FAO) were selected and used to examine in this study. RST values between different populations (range from 0.1643 to 0.0056) indicated existing population differentiations and the correlation between their genetic structures and geographical locations. Together these results, we suggest the sow Formosan wild boars were regional and the male Formosan wild boars migrated to occur the gene flow. Besides, long geographical distance form south to north Taiwan might cause their higher genetic differentiation.
In domestric pigs, Lanyu and Taoyuan are indigenous breeds in Taiwan. The Spotty Lanyu and Binlang Lanyu were generated from inbreeding program of Lanyu breed. Many synthetic pig breeds were generated by crossing Taiwan indigenous pigs with exotic pigs to increase their applications and values. The synthetic pig breeds are including Lee-Sung (a hybrid of Lanyu and Landrance), TLRI Black Pig No.1 (a hybrid of Taoyuan and Duroc), Mitsai Lanyu (a hybrid of Lanyu and Duroc), and Kaohsiung Animal Propagation Station Black pig (KHAPS, a hybrid of Taoyuan and Meishan). To the aim of population management refered by genetic information, it is essential to monitor their genetic quality and breeding program based on molecular information. In addition, to establish the database including the genetic structure and the array of individual genetic distance among the indigenous, exotic and synthetic pig breeds in Taiwan is required for the purpose. Nineteen microsatellite markers were applied to construct the genetic database. Cavalli-Sforza chord distances in different breeds were between 0.333 to 0.799. The FST values (genetic differential index) were between 0.168 to 0.502, indicating medium differentiation among all breeds. The genetic database, genetic structure, the array of genetic variation and differentiation among these pig breeds were constructed based on 19 microsatellite markers. The microsatellite genetic information established from this study will be applied to diagnosis and identify the individual lineage of pigs and for population genetic management. To obtain high accuracy assignment of individual to their own origin, microsatellite markers were selected by the ranking of high heterozygosity, allelic number (K) or D-scores which were calculated based on power of discriminatory from all fourteen population database. In the assignment using the Bayesian methods, 99.4% accuracy assignment was obtained when using more than 9 markers with most high hetrozygosity, allelic number or high D-score. A very high performance assignment (99.7% correct assignment), 9 microsatellite markers with most heterozygous and rich allele numbers were selected based on the genotyping information only from Lanyu, its derived lines and derived synthetic breeds, was obtained to fit the purpose. The microsatellite genetic information provided by this study will be useful to obtain high performance assignment and identify an individual lineage to their origin, and apply for further genetic management and decrease the cost of DNA tracking of Lanyu, its derived lines and derived synthetic breeds. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:11:37Z (GMT). No. of bitstreams: 1 ntu-103-D93626003-1.pdf: 5393175 bytes, checksum: 6862ef225ecd18ac04b7d35deb6c68b4 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄 ……………………………………………………………………3
前言……………………………………………………………………16 壹、文獻檢討……………………………………………………………20 一、豬種介紹………………………………………………………20 (一) 野豬(Sus scrofa)的起源與亞洲家豬馴化………20 (二) 臺灣野豬………………………………………………21 (三) 臺灣本地豬種與引種歷史……………………………22 (四) 亞洲品種………………………………………………26 (五) 歐洲品種………………………………………………27 (六) 合成豬種………………………………………………28 二、分子遺傳標記及其應用……………………………………29 (一) 分子遺傳標記的演進、優缺點與應用……………29 (二) 粒線體分子標記……………………………………31 (三) 單一核苷酸多形性的運用…………………………32 (四) 微衛星標記…………………………………………32 三、研究動機與目的………………………………………………36 貳、材料與方法……………………………………………………38 一、樣本收集…………………………………………38 二、DNA抽取………………………………………………38 三、Cytochrome b DNA片段擴增與序列分析………………40 四、聚合酶鏈反應……………………………………………41 五、資料分析…………………………………………………41 參、結果…………………………………………………………………48 一、臺灣野豬族群遺傳結構分析 ……………………………48 (一) 臺灣野豬微衛星標記多形性估算…………………48 (二)不同地區臺灣野豬微衛星標記多形性與FIS 值估算…………………………………………………………48 (三) 臺灣野豬族群結構估算…………………………49 (四) 不同地區臺灣野豬遺傳距離估算及建構NJ tree…50 (五) 臺灣野豬微衛星標記基因頻率主成分分析…………51 (六)臺灣野豬RST分化值與地理位置關係………………51 (七) 臺灣野豬粒線體cytochrome b DNA多形性、分化值與地理位置關係……………………………………………52 二、臺灣原生與外來豬種遺傳結構分析…………………………53 (一) 352個畜養個體之19 組微衛星標記多樣性指標值估算…………………………………………………………53 (二) 各豬種之19 組微衛星標記多樣性指標值估算……54 (三) 各豬種間遺傳距離估算及多元尺度分析…………55 (四) 各豬種間FST分化值估算……………………………57 三、個體分派檢定平臺建立……………………………………58 (一)以19 組微衛星標記進行分派測驗……………58 (二)依照多形性指數以不同數目微衛星標記進行分派測驗………………………………………………………59 (三)蘭嶼小耳豬與其相關豬種微衛星標記多形性指數估算…………………………………………………………60 (四)依照蘭嶼小耳豬與其相關豬種多形性指數以不同數目微衛星標記進行分派測驗…………………………………62 (五)臺灣黑豬分派檢測……………………………63 肆、討論…………………………………………………………65 一、微衛星標記多形性探討…………………………………65 二、臺灣野豬遺傳多形性與族群結構………………………65 (一) 臺灣野豬微衛星標記之多形性……………………65 (二) 臺灣野豬的微衛星標記之遺傳分化………………66 (三) 臺灣野豬的cytochrome b之遺傳分化………………67 (四) 臺灣野豬親源地理關係……………………………68 (五) 臺灣野豬與其他豬種間之關係……………………69 三、臺灣原生豬種……………………………………………69 (一) 蘭嶼小耳豬與其相關豬種微衛星標記之多形性…69 (二) 蘭嶼小耳豬與其相關豬種及其他豬種間微衛星標記之差異……………………………………………………71 (三) 以微衛星標記進行分派測驗對於豬種鑑別之正確性………………………………………………………72 (四) 本研究解析臺灣黑豬遺傳結構所揭露之訊息…………………………………………………………73 (五) 影響微衛星標記分派測驗於豬種鑑別之正確性因素…………………………………………………………74 四、本研究及開發的方法對臺灣原生豬種族群保育管理的重要性……………………………………………………………75 伍、結論………………………………………………………………76 陸、參考文獻……………………………………………………………77 柒、表與圖………………………………………………………………92 表1. 73 頭臺灣野豬之19 組微衛星標記多形性…………92 表2. 6 個地區臺灣野豬之19 組微衛星多形性………………93 表3. 6 個地區臺灣野豬Cavalli-Sforza and Edward chord遺傳距離………………………………………………………94 表4. 6 個地區臺灣野豬RST分化值……………………………95 表5. 臺灣野豬cytochrome b 序列單倍型的地理分布統計…96 表6. 352 頭畜養豬種樣本之19 組微衛星標記多形性………97 表7. 各豬種之19 組微衛星標記基本資料及多形性…………98 表8. 使用19 組微衛星標記計算14 個畜養族群之Cavalli-Sforza chord遺傳距離及FST族群分化值………99 表9. 使用19 組微衛星標記對14 個畜養族群進行分派測驗結果………………………………………………………100 表10. 使用14 個族群以及6 個蘭嶼小耳豬相關豬種(台東種畜繁殖場蘭嶼小耳豬、臺灣大學蘭嶼小耳豬、花斑豬、賓朗豬、迷彩豬及李宋豬)計算各指標值(FST、HE、K以及Dscore)於19 組微衛星標記之數值及按數值高低進行排序…………………………………………………101 表11. 使用14 個族群以及6 個蘭嶼小耳豬相關豬種計算各指標值(FST、HE、K以及Dscore)於不同微衛星標記數目下之分派測驗正確率……………………………………102 表12. 臺灣黑豬分派測驗結果……………………………103 圖1. 73頭臺灣野豬採樣位置及各地點樣本數量……………104 圖2. 以Structure軟體進行臺灣野豬結構分析………………105 圖3. 以Structure軟體進行臺灣野豬結構分析後計算之delta K值…………………………………………………………106 圖4. 臺灣野豬6 個族群之Structure分群結果地理位置圖…107 圖5. 臺灣野豬個體之Structure分群結果地理位置圖………108 圖6. 19 組微衛星標記使用Cavalli-Sforza chord distances架構6個地區之臺灣野豬Neighbor-Joining親源關係樹……109 圖7. 6 個地區臺灣野豬使用19 組微衛星標記進行主成分分析……………………………………………………110 圖8. 6 個地區臺灣野豬使用19 組微衛星標記計算RST分化值架構之Neighbor-Joining親源關係樹與採樣地區地理位置比較……………………………………………………111 圖9. 臺灣野豬樣本於進行cytochrome b分析時按照採樣地理位置分群……………………………………………112 圖10. 臺灣野豬cytochrome b序列單倍型變異點…………113 圖11. 臺灣野豬cytochrome b 單倍型的Medium-Joining網絡分析圖…………………………………………………114 圖12. 14 個畜養族群之多元尺度分析………………………115 圖13. 使用19 組微衛星標記對於14 個畜養族群計算族群間Cavalli-Sforza Edward chord遺傳距離架構之Neighbor-Joining親源關係樹……………………116 圖14. 臺灣黑豬與其他豬種之類源關係圖…………………117 圖15. 臺灣黑豬與其他豬種之個體類源關係圖……………118 捌、附錄………………………………………………………………119 附錄1. 各豬種之相對關係……………………………………119 附錄2. 73 頭臺灣野豬樣本資料……………………………120 附錄3. 本研究使用之19 組微衛星標記引子序列、PCR黏合溫度及引子標記之螢光物…………………………………122 附錄4. 19 組微衛星標記毛細管電泳後之波形……………123 附錄5. 19 組微衛星標記於各畜養豬種之對偶基因分布及頻率………………………………………………………………128 附錄6. 各地區臺灣野豬之19組微衛星標記多形性………147 附錄7. 各畜養豬種之19 組微衛星標記多形性……………153 附錄8. 使用14 個族群以及6 個蘭嶼小耳豬相關族群計算各多樣性指標值(FST、HE、K以及Dscore)於不同微衛星標記數目下之分派測驗正確率………………………167 | |
| dc.language.iso | zh-TW | |
| dc.subject | 親源關係 | zh_TW |
| dc.subject | 豬 | zh_TW |
| dc.subject | 微衛星 | zh_TW |
| dc.subject | microsatellite | en |
| dc.subject | phylogenetic relationship | en |
| dc.subject | pig | en |
| dc.title | 臺灣野豬與臺灣商用豬種之親源關係研究 | zh_TW |
| dc.title | The phylogenetic study of Formosan wild boar and
commercial pig breeds | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王穎(Ying Wang),李壽先(Shou-Hsien Li),翁國精(Guo-Jing Weng),黃木秋(Mu-Chiou Huang) | |
| dc.subject.keyword | 豬,微衛星,親源關係, | zh_TW |
| dc.subject.keyword | pig,microsatellite,phylogenetic relationship, | en |
| dc.relation.page | 167 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-02-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 5.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
