請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58326
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳昭倫 | |
dc.contributor.author | Ming-Che Yang | en |
dc.contributor.author | 楊明哲 | zh_TW |
dc.date.accessioned | 2021-06-16T08:11:28Z | - |
dc.date.available | 2016-10-03 | |
dc.date.copyright | 2014-10-03 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-02-19 | |
dc.identifier.citation | Avise JC (1992) Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 63:62–76.
Avise JC (2000) Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge. Avise JC (2004) Molecular Markers, Natural History and Evolution (second ed.), Sinauer Associates, MA. Bohonak AJ (2002) IBD (Isolation By Distance): a program for analyses of isolation by distance. J Hered 93:153–154. BotsfordLW,HastingsA,Gaines SD(2001)Dependence of sustainability on the configuration of marine reserves and larval dispersal distances. EcolLett 4:144–150. Botton ML (2001) The conservation of horseshoe crab: what can we learn from the Japanese experience? In: Tanacredi J.T. (ed) Limulus in the Limelight. Kluwer Academic/Plenum, New York, pp 41–51. Botton ML, Loveland RE (2003) Abundance and dispersal potential of horseshoe crab (Limulus polyphemus) larvae in the Delaware Estuary.Estuaries 26:1472–1479. Brody SD (1998) An Evaluation of the Establishment Processes for Marine Protected Areas in the Gulf of Maine: Understanding the Role of Community Involvement and Public Participation. Marine State Planning Office Gulf ofMaine Council on the Marine Environment, Augusta,ME, (http://www.gulfofmaine.org/library/mpas/process_eval_0798.PDF) Benzie JAH (2000) The detection of spatial variation in widespread marine species:methods and bias in the analysis of population structure in thecrown of thorns starfish (Echinodermata: Asteroidea) . Hydrobiologia420, 1?4. Benzie JAH, Ballment E, Forbes AT, et al. (2002) Mitochondrial DNA variation in Indo-Pacific populations of the giant tiger prawn, Penaeusmonodon.Molecular Ecology 11, 2553-2569. Briggs JC. 1974. Marine Zoogeography. New York: McGraw-Hill. Chen CP, Yeh HY, Lin PF (2004) Conservation of the horseshoe crab at Kinmen, Taiwan: strategies and practices. BiodiversConserv 13:1889–1904. Chiang TY, Chiang YC, Chen YJ, et al. (2001)Phylogeography of Kandeliacandelin East Asiatic mangroves based on nucleotide variation of chloroplast and mitochondrial DNAs. Molecular Ecology 10, 2697-2710. Chiu HMC, Morton B (1998) The biology, distribution, and status of horseshoe crabs, Tachypleustridentatus and Carcinoscorpiusrotundicauda (Arthroposa: Chelicerata) in Hong Kong: recommendations for conservation and management, Hong Kong. Chiu HMC, Morton B (1999) The biology, distribution, and status of horseshoe carbs, Tachypleustridentatusand Carcinoscorpiusrotundicauda (Arthropoda: Chelicerata) in Hong Kong: recommendations for consevation and management. The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong. Charlesworth D (2003) Effects of inbreeding on the genetic diversity of populations.Proc R SocLond B BiolSci 358:1051–1070. Chatterji A (1994) The Horseshoe Crab-A Living Fossil. Project Swarajya Publication, Cuttack, Orissa, India. Chen CP, Yeh HY, Lin PF (2004) Conservation of the horseshoe crab at Kinmen, Taiwan: strategies and practices. BiodiversConserv 13:1889–1904 Chen CP, Hsieh HL, Chen A, Yeh HY, Lin PF, Wang,W(2009) The conservation network of horseshoe crab Tachypleustridentatus in Taiwan. In: Tanacredi JT, Botton ML, SmithDR (eds) Biology and Conservation of Horseshoe Crabs. Springer, New York, pp 543–559 Chen Q. 2009. Research and the protection for the population of chinese horseshoe grabs in xiamen. Environmental science and management34: (in Chinese, abstract in English) Chenoweth SF, Hughes JM, Keenan CP, Lavery S (1998) When oceans meet: a teleost shows secondary intergradation at an Indian–Pacific interface. Proc R Soc B 265:415–420. Chenoweth, S. F. and Hughes, J. M. 2003. Oceanic interchange and nonequilibrium population structure in the estuarine dependent Indo-Pacific tasselfish, Polynemussheridani. Molecular Ecology 12:2387-2397. Chiu HMC, Morton B (1999) The biology, distribution, and status of horseshoe crabs, Tachypleustridentatus and Carcinoscorpiusrotundicauda (Arthropoda: Chelicerata) in Hong Kong: recommendations for conservation and management. The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong. Chiu HMC, Morton B (2003) The morphological differentiation of two horseshoe crab species, Tachypleustridentatus and Carcinoscorpiusrotundicauda (Xiphosura), in Hong Kong with a regional Asian comparison. J Nat Hist 37:2369–2382. Clark K (1996) Horseshoe crabs and the shorebird connection. In Proceedings of the horseshoe crab forum: status of the resource. University of Delaware, Sea Grant College Program. 60 pp. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. MolEcol 9:1657–1660. Chinzei K, Koike H, Ohba T, Kitazato H, Matsushima Y. 1987. Secular changes in the oxygen isotope ratios of mollusc shells during the Holocene of Central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 61:155-166 Cowen RK (2002) Larval dispersal and retention and consequences for population connectivity. In: Sale PF (ed) Ecology of Coral Reef fishes: Recent Advances. Academic Press, Paris, pp 149–170. Crandall ED, Frey MA, Grosberg RK, Barber PH. Contrasting demographic history and phylogeographical patterns in two Indo-Pacific gastropods. Mol Ecol.2008;17:611-626. Crowley TJ, North GR (1991) Paleoclimatology. Oxford University Press, New York. Crandall ED, Jones ME, Munoz MM, Akinronbi MV, Erdmann B, Barber PH. Comparative phylogeography of two sea stars and their ectosymbionts within the Coral Triangle. Mol Ecol. 2008;17:5276-5290. DeMartini EE (1993) Modeling the potential of fishery reserves for managing Pacific coral reef fishes. Fish Bull 91:414–427. Drummond AJ, Ho SYW, Phillips MJ &Rambaut A (2006) PLoS Biology 4, e88. Dynesius M and Jansson R 2000. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. _/ Proc. Natl. Acad. Sci. USA 97: 9115_/9120. Edwards SV, Beerli P (2000) Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. EvolIntJOrgEvol 54:1839–1854. Ekman S. 1953.Zoogeography of the Sea. London: Sidgwick and Jackson Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1:47–50. Fisher DC (1984) The Xiphosurida: archetypes of bradytely? In: Eldredge N, Stanley SM (eds) Living Fossils. Springer, New York, pp 196–213. Frankham R, Ballou JD, Briscoe DA (2005) Introduction to Conservation Genetics. Cambridge University Press, Cambridge.Phylogeography, Demographic History, and Reserves Network 179 GEPA (2004) Guangdong province ocean action project (in Chinese). Guangdong Environment Protection Agency. (http://202.116.0.134:82/gate/big5/lgxy.jnu.edu.cn/eec/Article/ShowArticle.asp?ArticleID=68 ) Grimm V, Reise K, StrasserM(2003) Marine metapopulations: a useful concept? Helgoland Mar Res 56:222–228. Grogan WN (2004) A mid-Atlantic study of the movement patterns and population distribution of the American horseshoe crab (Limulus polyphemus). MS Thesis. Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Gue’nette ST, Pitcher TJ (1999) An age-structured model showing the benefits of marine reserves against overexploitation. Fish Res 39:295–303. Hsieh HL, Chen CP (2009) Conservation program for the Asian horseshoe crab Tachypleustridentatus in Taiwan: Characterizing the microhabitat of nursery grounds and restoring spawning grounds. In: Tanacredi JT, BottonML, SmithDR(eds) Biology and Conservation of Horseshoe Crabs. Springer, New York, pp 417–438 Hu JY, Kawamura H, Hong HS, QiY(2000) Areview on the currents in the South China Sea: seasonal circulation, South China Sea Warm Current and Kuroshio intrusion. J Oceanogr 56:607–624. Huang Q, Lin Z, Yu H, Lia HS (2002) Fujian Pingtan horseshoe crab special reserve highly demanded. Environ Fujian 19:14–16 (in Chinese). Hudson RR, Boos DD, Kaplan NL (1992) A statistical test for detecting geographic subdivision.MolBiolEvol 9:138–151 Itow T (1993) Crisis in the Seto Inland Sea: the decimation of the horseshoe crab. In: EMECS Newslett 3:10–11. Kawahara D (1982). Investigations on ecology of horseshoe crab larvae. Aquabiology 4(5), 380–382 (In Japanese). Kelly RP, Palumbi SR: Genetic structure among 50 species of the Northeastern Pacific intertidal community. PLoS One 2010, 5:e8594. Khan RA (2003) Observations on some aspects of the biology of horse-shoe crab, Carcinoscorpiusrotundicauda (Latreille) on mud flats of Sunderban estuarine region. Rec ZoolSurv India 101:1–23 King TL, Eackles ME, Spidle AP, Brockman HJ (2005) Regional differentiation and sex biased dispersal among populations of the horseshoe crab Limulus polyphemus. Trans Am Fish Soc 134:441–465. Koehn RK, Newell RIE, Immerman F (1980) Maintenance of an aminopeptidase allele frequency cline by natural selection. Proc Nat AcadSci US 77:5385–5389. Koike H. 1986. 'Prehistoric Hunting Pressure and Paleobiomass: An Environmental Reconstruction and Archaeozoological Analysis of a JomonShellmound Area'. University of Tokyo. Retrieved 11 December 2011. -Habu:73, 191, 193, 255. Kramer R, van Schaik C, Johnson J (eds) Last Stand: Protected Areas and the Defense of Tropical Biodiversity. Oxford University Press, New York, pp 15–35. Kristoffersen, Y. 1978. Sea-floor spreading and the early opening of the North Atlantic. Earth Planet. Sci. Letters 38:273–290. Kumar S, Dudley J, Nei M, Tamura K. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9: 299-306. Lambeck K, Esat TM, Potter E (2002) Links between climate and sea levels for the past three million years. Nature 419:199–206. Lind CE, Evans BS, Taylor JJU, Jerry DR. Population genetics of a marine bivalve,Pinctada maxima, throughout the Indo-Australian Archipelago shows differentiation and decreased diversity at range limits. Mol Ecol. 2007;16:5193-5203. Lavery S, Moritz C, Fielder DR (1996) Indo-Pacific population structure and evolutionary history of the cocnut crab Birguslatro. Molecular Ecology 5, 557-570. Lessios HA, Kessing BD, Pearse JS (2001) Population structure and speciation in tropical seas: Global phylogeography of the sea urchin Diadema.Evolution 55, 955-975. Lessios HA, Kessing BD, Robertson DR (1998) Massive gene flow across the world's most potent marine biogeographic barrier. Proceedings of the Royal Society of London Series B-Biological Sciences 265, 583-588. Liu JX, Gao TX, Wu SF, Zhang YP (2007) Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelonhaematocheilus (Temminck& Schlegel, 1845). MolEcol 16:275–288. Maggs CA, Castilho R, Foltz D, Henzler C, Jolly MT, Kelly J, Olsen J, Perez KE, Stam W, Vainola R, Viard F, Wares J: Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 2008, 89 Marko PB, Hoffman JM, Emme SA, McGovern TM, Keever CC, Cox LN: The ‘Expansion-Contraction’ model of pleistocene biogeography: rockyshores suffer a sea change? MolEcol 2010, 19:146-169. Mikkelsen T (1988) The Secret in the Blue Blood. Science Press Beijing. Mittelbach, G.G., Schemske, D.W., Cornell, H.V., Allen, A.P., Brown, J.M., Bush, M.B. et al. (2007). Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett., 10, 315–331. Miyazaki, J.I., K. Sekiguchi and T. Hirabayashi, 1987. Application of an improved method of two-dimensional electrophoresis to the systematic study of horseshoe crabs. Biol. Bull., 172: 212-224. Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York. Nei M, Maruyama T, Chakaraborty R (1975) The bottleneck effect and genetic variability in populations.Evolution 29:1–10. Nishida, S. and H. Koike 2009. Genetic structure of Japanese populations of Tachypleustridentatus by mtDNA AT-Rich region sequence analysis. Nylander, J. A. A. 2004.MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. Obst et al. Obst M, Faurby S, Bussarawit S, Funch P. (2012) Molecular phylogeny of extant horseshoe crabs (Xiphosura, Limulidae) indicates Paleogene diversification of Asian species. Molecular Phylogenetics and Evolution. 2012;62:21–26. Orti G, Pearse D, Avise JC (1997) Phylogenetic assessment of length variation at a microsatellite locus. Proc Nat AcadSci USA 94:10745–10749. Palumbi SR (1992) Marine speciation on a small planet. Trends EcolEvol 7:114–118. Palumbi SR (1994) Genetic divergence, reproductive isolation and speciation in the sea.Annu Rev EcolSyst 25:547–572. Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves.EcolAppl 13:S146–S158. Palumbi SR (2004) Marine reserves and ocean neighborhoods: the spatial scale of marine populations and their management. Ann Rev Environ Res 29:31–68. Palumbi SR, Gaines SD, Leslie H, Warner RR (2003) New wave: high-tech tools to help marine reserve research. Frontiers EcolEnv 1:73–79. Pierce JC, Tan G, Gaffney PM (2000) Delaware Bay and Chesapeake Bay populations of the horseshoe crab Limulus polyphemus are genetically distinct. Estuaries 23:690–698. Polacheck T (1990) Year round closed areas as amanagementtool.NatResour Mode l 4:327–354. Roberts CM, Hawkins JP (1997) How small can a marine reserve be and still be effective? Coral Reefs 16:150. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. MolBiolEvol 9:552–569. Rudloe A, Rudloe J (1981) The changeless horseshoe crab. Nat Geogr 159:562–572. Sala-Bozano M, Ketmaier V, Mariani S: Contrasting signals from multiplemarkers illuminate population connectivity in a marine species. MolEcol 2009, 18:4811-4826. Saunders NC, Kessler LG, Avise JC (1986) Genetic variation and geographic differentiation in mitochondrial DNA of the horseshoe crab, Limulus polyphemus. Genetics 112:613–627. Scheltema RS (1986) On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of problems. Bull Mar Sci 39:290–322. Selander RK, Yang SY, Lewontin RC, JohnsonWE(1970) Genetic variation in the horseshoe crab (Limulus polyphemus), a phylogenetic ‘‘relic’’. Evolution 24:402–414. Shuster CN (1982) A pictorial review of the natural history and ecology of the horseshoe crab Limulus polyphemus, with reference to other Limulidae. In: Bonaventura J, Bonaventura C, Tesh S (eds) Physiology and Biology of Horseshoe Crabs: Studies on Normal and Environmentally Stressed Animals. Alan R. Liss, New York, USA, pp 1–52. Shuster CN (2003) ‘‘Horseshoe Crab Reserve.’’ Marine Protected Area (MPA) Process Review: Case Studies of Five MPA Establishment Processes. National Marine Protected Areas Center and NOAA Coastal Services Center, USA. Sekiguchi K, Sekiguchi HS, Nakamura K, Sen TK, Sugita H (1976) Morphological variation and distribution of a horseshoe crab, Tachypleusgigas, from the Bay of Bengal and the Gulf of Siam. ProcJpnSocSystZool 12:13–20. Sekiguchi K and Sugita H (1980) Systematics and hybridization in the four living species of horseshoe crabs.Evolution 34:712–718. Sekiguchi K (1988) Biology of Horseshoe Crabs.Science House, Tokyo. Shanks AL, Grantham BA, Carr MH (2003) Propagule dispersal distance and the size and spacing of marine reserves. EcolAppl 13:S159–S169. Shishikura F and SekiguchiK.Comparative studies on horseshoe crab coagulogens.J. Exp. Zool., 206 (1978), pp. 241–246 Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562. Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations.Evolution 47:264–279. Sokoloff A (1978) Observations on populations of the horseshoe crab Limulus (=Xiphosura) polyphemus. Res PopulEcol (Kyoto) 19:222–236. Sponaugle S, Cowen RK, Shanks A, Morgan SG, Leis JM, et al. (2002) Predicting selfrecruitment in marine populations: biophysical correlates and mechanisms. Bull Mar Sci 70(Suppl.1): 341–375. Stormer (1955) Arthopoda 2:Merostomata. In: Treatise on invertebrate Paleontology (ed. Moore RC), pp. 4- 41. Lawrence, Ks., Kansas. Tamura K, Dudley J, Nei M, Kumar S. 2007.MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.Molecular Biology and Evolution 24: 1596-1599. Templeton AR, Crandall KA, Sing CF (1992) Acladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. Cladogram estimation. Genetics 132:619–633. Terborgh J, van Schaik CP (1997) Minimizing species loss: the imperative of protection. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. Walls EA (2002) A horseshoe crab (Limulus polyphemus) demographic study. MS Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA. Weng ZH, Xiao ZQ, Xie YJ, Hong SG. 2008. Construction of the nature reserve for horseshoe crab, TachypleustridentatusLeach in Xiamen. Journal of Jimei University (Natural Science) 13: (in Chinese, abstract in English) Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354 Xia X (2000) Phylogenetic Relationship Among Horseshoe Crab Species: Effect of Substitution Models on Phylogenetic Analyses. Systematic Biology 49,87-100. Xu X, Oda M (1999) Surface-water evolution of the eastern East China Sea during the last 36,000 years. Mar Geol 156:285–304. Yamasaki T, Makioka T, Saito J (1988) Morphology. In: Sekiguchi K (ed) Biology of Horseshoe Crabs. Science House, Tokyo, pp 69–132. Yang MC, Chen CA, Heish HL, Chen CP (2007) Population subdivision of the tri-spine horseshoe Crab, Tachypleustridentatus, in Taiwan Strait. ZoolSci 24:219–224 Yang MC, Hsieh HL, Chen CP, Chen CA, 2009a. “Is a living fossil about to golocally extinct? No mitochondrial genetic variation in horseshoe crab juveniles Tachypleustridentatus at Haomeiliao Nature Reserve, Budai, Taiwan ”, Zool Stud, 48(6), 737. Yang MC, Chen CA, Hsieh HL, Chen CP. 2009b. Phylogeography, demographic history, and conservation of horseshoe crab, Tachypleustridentatus, in the South and East China Seaboards. In: Tanacredi JT, Botton ML, Smith DR (eds) Biology and Conservation of Horseshoe Crabs. Springer, New York, pp 163–181 Zhang JB, Cai ZP, Huang LM (2006) Population genetic structure of crimson snapper Lutjanuserythropterus in East Asia, revealed by analysis of the mitochondrial control region. ICES J Mar Sci 63:693–704. Zhang, QY, Hu SX, Zhou CY, Lv T, Bai JK. 2009. New occurrence of Xiphosura in China. Progress in Nature Science 19, 1090–3. (in Chinese). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58326 | - |
dc.description.abstract | 印度西太平洋具有高度海洋生物多樣性,不同物種間的公同性研究有助於瞭解此一區域海洋生物多樣性形成機制。鱟是具有古老演化史的海洋節肢動物,世界上共有四種,其中三種(三棘鱟Tachypleus tridentatus、巨鱟T. gigas、圓尾鱟Carcinoscorpius rotundicauda)廣泛分布於印度西太平洋地區,且其具有重要的海岸生態與經濟價值。然而,棲地流失與族群衰退亦有必要研究其遺傳連通性及族群動態以作為保育依據。在我的論文中有,有主要三個目標:(1)應用地理親緣學研究三種印度西太平洋鱟的種化機制及其遷徙路徑(第二章中探討);(2)比較古氣候及古地質變遷對於西北太平洋的三棘鱟及印尼馬來群島的巨鱟族群動態史的影響(第三章);(3)將遺傳連通性作為設計鱟在東海及難中國海北部海洋保護區網絡及其他保育措施的依據(第四章)。
首先以粒線體細胞色素c氧化酵素(COI)及AT-rich region,分別作為分析三種鱟種間及種內親緣關係的材料。根據化石及生物地理學紀錄,作為亞洲鱟與美洲鱟(Limulus polyphemus) 共同祖先的分化時間點依據,再利用COI序列的遺傳變異定年出圓尾鱟及另兩種亞洲鱟的分化時間約為兩千四百五十萬年前至三千三百六十萬年前之間;而同屬的兩種鱟三棘鱟及巨鱟分化時間則為兩千零五十萬年至兩千七百六十萬年間。而不管以COI或是以AT-rich region親緣分析的結果顯示,三棘鱟相較於巨鱟譜系都較淺近。而巨鱟種內的親緣關係中,除了分化程度較三棘鱟高,亦形成兩個系群,其中一個系群純由印度洋族群所組成,且較為古老,顯示巨鱟源自於印度洋。而以族群分化係數(FST)分析,結果則顯示巨鱟在印度洋及太平洋的族群間亦有顯著差異。 粒線體DNA AT-rich region遺傳變異另外也用於遺傳連通性及族群動態的分析上,採集自大陸沿岸及台灣海峽的三棘鱟共有114隻個體,而日本則有296隻樣本。藉由貝氏天際線點圖(Bayesian Skyline plot)分析結果顯示,在其3萬5千前來的族群歷史中,歷經上次最大冰期過後除日本族群外的西北太平洋有效族群數開始緩慢成長;而日本族群則自上次日本小冰期過後(約三千五百年前至四千五百年前)才有鱟的遷入。而許多日本鱟族群具有極低的遺傳多樣性,可能是因與其他西北太平洋族群之間缺乏遺傳連通性(族群間之FST有顯著差異)引起。 不同空間尺度的遺傳連通性及族群動態可有助於測量海洋生物的擴散能力,並可藉此瞭解族群是否存在因棲地衰退所造成的危機,並以此作為擬定保育行動的依據。而本論文也分析三棘鱟在東海及難中國海北部的遺傳連通性,以選擇較適合的海洋保護區位置及間距來設計海洋保護區網絡;此一分析也可作為西北太平洋海洋生物的區域性保育措施的參考。 | zh_TW |
dc.description.abstract | The Indo-West-Pacific region (IWP) hosts the highest marine biodiversity on earth. The concordance among different species can be used to deduct the common mechanism that forms the IWP marine biodiversity. The horseshoe crab is an ancient marine arthropod, which has a wide geographic distribution cross the IWP and a long evolutionary history and importance in costal ecosystem and economics. However, loss of habitats and population degradation urged the need to study genetic connectivity and population demography for conservation. In my PhD dissertation there are three aims to be addressed: (1) To apply with phylogeographic methods of three species of horseshoe crabs (Tachypleus tridentatus, T. gigas, and Carcinoscorpius rotundicauda) probing in the speciation mechanism of the colonization routes (Chapter 2). (2) To compare how the effect of paleoclimate and paleogeology change on historical demography between two species horseshoe crab, T. tridentatus in the northwestern Pacific and T. gigas in the Indo-Malay Archipelago (Chapter 3). (3) To transfer the pattern of the genetic connectivity into design of reserves network and other conservation actions for horseshoe crabs along East and northern South China Sea (Chapter 4).
Phylogenetic relationship of three species of horseshoe crabs was revealed by mitochondrial (mt) COI, and AT-rich region. Based on dating Asian horseshoe crabs and Atlantic horseshoe crab (Limulus polyphemus) by fossil and biogeographic records of common ancestor and genetic variation of COI sequence, there were deep divergence at 24.7 ~33.6 million year ago (mya) between C. rotundicauda and two Tachypleus species, and 20.3~ 27.6 mya between T. gigas and T. tridentatus. The phylogenetic trees constructed by each marker all exhibited that only T. tridentatus had shallow genealogy relative to T. gigas. The deep divergent phylogeny of might be due to more isolation created by complicated sea basins and plate tectonic in Indo-Malay Archipelago than northwestern Pacific and also indicated the southern origin of Asian horseshoe crab according to the basal lineage in Indian Ocean. Pairwise difference (FST) also indicated that there was a significant differentiation between Indian and Pacific T. gigas populations. Genetic variation of mt AT-rich region was examined for genetic connectivity and demography of 114 T. tridentatus individuals from Mainland China coast and Taiwan Strait, and 296 individuals from Japan coast. There was gradual growth in effective population size of horseshoe crab in Mainland China and Taiwan Strait after Last Glacial Maxima during the past 35 thousands years ago by using Bayesian Skyline plot, while horseshoe crabs began to colonize after last minor glacial period to Japan (3500~4500 years ago). The extremely low of genetic diversity in most Japan populations could result from loss of genetic connectivity measured by FST from other populations in the northwestern Pacific. Based on genetic connectivity and historical demography in different spatial scale, it improve the measurement of the dispersal capacity of marine organism and realizing the risk and gain the information of conservation actions for those marine organism with lower dispersal capacity like horseshoe crab could sensitive to surfer from habitat degradation. A greater understanding of genetic connectivity could be used to realize the dispersal pattern and apply for reserve network design of T. tridentatus in East China Sea and north South China Sea. This dissertation also provides a conservation awareness to build a baseline for marine organisms, which are especially facing habitat deconstruction in the northwestern Pacific. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:11:28Z (GMT). No. of bitstreams: 1 ntu-103-D93241007-1.pdf: 2565230 bytes, checksum: e90ed1f9d306909936283a3c8e4dca64 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | Acknowledgment……………………………………….........…………...……….…..i
中文摘要……………………………………………………...…………..……….….ii Abstract ……………………………………………………...…………..……….......vi List of Tables....……………….………………..………...……………………….....viii List of Figures………………….…………………………...………………..….…....ix Chapter 1 General Introduction……………………………………..…………………1 Chapter 2 Evolutionary history of three species of horseshoe crabs in the Indo-West Pacific.…………………………………………………...…………….…..14 Chapter 3 Demographic history of Tachypleustridentatus and T. gigasin the Indo-West Pacific.……………………….………………………………………..….28 Chapter 4 Genetic connectivity and design of reserves network of Tachypleustridentatus in the East and South China Seaboards….………45 Chapter 5 General discussion and conclusion…………………………………..……62 References……………….……….……..…………..…………………………….….66 Appendixes……………….……….……..…………..………….……………………83 | |
dc.language.iso | en | |
dc.title | 印度西太平洋鱟之演化史與保育遺傳 | zh_TW |
dc.title | Evolutionary History and Conservation Genetics of
Horseshoe Crabs in the Indo-West Pacific | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 戴昌鳳,陳章波,謝蕙蓮,陳國勤 | |
dc.subject.keyword | 鱟,印度西太平洋,演化史,地理親緣,保育遺傳,海洋保護區網絡, | zh_TW |
dc.subject.keyword | horseshoe crab,Indo-West Pacific,evolutionary history,phylogeography,conservation genetics,marine reserve network, | en |
dc.relation.page | 83 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-02-19 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。