請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58310
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林金福(King-Fu Lin) | |
dc.contributor.author | Chun-Han Hsiao | en |
dc.contributor.author | 蕭鈞瀚 | zh_TW |
dc.date.accessioned | 2021-06-16T08:10:59Z | - |
dc.date.available | 2019-03-21 | |
dc.date.copyright | 2014-03-21 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-03-05 | |
dc.identifier.citation | 1. World in Transition - Towards Sustainable Energy Systems, German Advisory Council on Global Change, 2003,http://www.wbgu.de/wbgu_jg2003_kurz_engl.html
2. 蔡松雨, 工業材料雜誌 2010;284:100-100 3. 郭哲瑋、張仁銓、謝東坡、莊佳智、蔡松雨,工業材料雜誌 2010;284:101-109 4. W. Hoffmann, Solar Energy Materials & Solar Cells 2006;90:3285–3311 5. B. O’Regan and M. Gratzel, Nature 1991;353:737-740 6. H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya , Nature 1976;261:402-403 7. C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, Journal of the American Ceramic Society 1997;80:3157–3171 8. 李佳樺, 工業材料雜誌 2011;292:94-99 9. 劉佳怡,太陽光電技術發展觀測,工研院產業經濟與趨勢研究中心(IEK),2007 10. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson,Chem. Rev. 2010;110:6595-6663 11. M. Gratzel, ”Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry 2004;164:3-14 12. 王麗萍、蔡松雨,工業材料雜誌 2010;280:143-153 13. M. Gratzel, ”Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorganic Chemistry 2005;44(20):6841-6851 14. M.K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel, ”Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, The Journal of Physical Chemistry B 2003;107:8981-8987 15. 張仕欣,工業材料雜誌 2005;225:91-101 16. Hagfeldt, M. Gratzel, Chem. Rev. 1995;95:49-68 17. K. Kalyanasundaram, M. Gratzel, Coord. Chem. Rev. 1998;177:347-414 18. S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Gratzel, A. J. Frank, J. Phys. Chem. B 1997;101:2576-2582 19. M. K. Nazeeruddin, M. Gratzel, J. Am. Chem. Soc. 1993;115:6382-6390 20. S. Ito, N.C. Ha, G. Rothenberger, P. Liska, P. Comte, S. Zakeeruddin, P. Pe’chy, M. Nazeeruddin, M. Gratzel, Chemical Communications 2006;38:4004–4006 . 21. P. V. Kamat, I. Bedja, S. Hotchandani, L. K. Patterson, J. Phys. Chem. 1996;100:4900-4908 22. H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, S. E. Lindquist, J. Phy. Chem. B 1997;101:2598-2601 23. Bedja, S. Hotchandani, P. V. Kamat, J. Phys. Chem. 1994;98:4133-4140 24. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, M. Gratzel, J. Am. Chem. Soc. 1993;115:6382-6390 25. R. Amadelli, R. Argazzi, C. A. Bignozzi, F. Scandola, J. Am. Chem. Soc. 1990;112:7099-7103 26. Kohle, S. Ruile, M. Gratzel, Inorg. Chem. 1996;35:4779-4787 27. M. Gratzel, Nature 2001;414:338-344 28. V. Shklover, M. K. Nazeeruddin, S. M. Zakeeruddin, C. Barbe, A. Kay, T. Haibach, W. Steurer, R. Hermann, H. U. Nissen, M. Gratzel, Chem. Mater. 1997;9:430-439 29. N. G. Park, J. van de Langemaat, A. J. Frank, J. Phys. Chem. B 2000;104:8989-8994 30. X. Bokhimi, A. Morales, M. Aguilar, J.A. Toledo-Antonio, F. Pedraza, International Journal of Hydrogen Energy 2001;26:1279–1287 31. D. Reyes-Coronado, G. Rodr’ıguez-Gattorno, M.E.-Pesqueira, C. Cab, R. de Coss1, G. Oskam, Nanotechnology 2008;19:145605 32. B. Sun, A. V. Vorontsov, P. G. Smirniotis, Langmuir 2003;19:3151-3156 33. D. M. Antonelli, J. Y. Ying, Angew. Che. Int. Edit. 1995;18:2014-2017 34. S. D. Burnside, V. Shklover, C. Barbe, P. Comte, F. Arendse, K. Brooks, M. Gratzel, Chem. Mater. 1998;10:2419-2425 35. J. Weidmann, T. Dittrich, E. Konstantinova, I. Lauermann, I. Uhlendorf, F. Koch, Sol. Energy Mater. Sol. Cells 1999; 56:153-165 36. C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, J. Am. Cera. Soc. 1997;80:3157-3157 37. E.A. Barringer, H.K. Bowen,Langmuir 1895;1:420–428 38. J.H. Jean , T. A. Ring,Langmuir 1986;2:251–255 39. J.-L. Look, C.F. Zukoski,Journal of the American Ceramic Society 1992;75(6):1587–1595 40. J.-L. Look ,C.F. Zukoski, Journal of the American Ceramic Society 1995;78 (1):21-32 41. V.J. Nagpal, R.M. Davis, J.S. Riffle, Colloids and Surfaces 1994;87:25–31 42. Q. Xu, M.J. Gieselmann, M.A. Anderson,Polymeric Materials: Science and Engineering 1989;61:889–893 43. M.A. Anderson, M.J. Gieselmann, Q. Xu,Journal of Membrane Science 1988; 39: 243–258 44. C. Lijzenga, V.T. Zaspalis, K. Keizer, A.J. Burrgraaf, K.P. Kumar, C.D. Ransjin, Key Engineering Materials 1991;61&62:379–382 45. D. Vorkapic , T. Matsoukas,Journal of the American Ceramic Society 1998; 81(11):2815–2820 46. G.P. Smestad,Solar Energy Materials and Solar Cells 1998;55:157-178 47. 蔡松雨,工業材料雜誌 2007;241:103-110 48. L. M. Goncalves , V. de Zea Bermudez , H. A. Ribeiro ,A. M. Mendes , Energy & Environmental Science 2008;1:655-667 49. Takurou N. Murakami , Michael Gratzel, Inorganica Chimica Acta 2008; 361:572–580 50. 林筱莉,' 利用聚苯胺/多層奈米碳管/石墨烯複合材料製作染料敏化太陽能電池對電極之製程及性能研究',台灣大學高分子科學與工程研究所 碩士論文 2013 51. 閔庭輝、姬梁文、陳文瑞、陳胤維、邱騰震,科儀新知 2007;5(28):22-30 52. P. Pechy, F. P. Rotzinger, M. K. Nazeeruddin, O. Kohle, S. M. Zakeeruddin, R. Humphry-Baker, M. Gratzel, J. Chem. Soc., Chem. Commun. 1995:65-66 53. 葉素敏,工業材料雜誌 2007;248:162-168 54. 童永樑,工業材料雜誌 2008;255:109-123 55. S.W. Rhee, W. Kwon, Korean Journal of Chemical Engineering 2011;28: 1481-1494 56. I.A. Courtney, J.R. Dahn, Journal of The Electrochemical Society 1997;144(6):2045-2052 57. J. Rostalski, D.Meissner,Solar energy materials and solar cells 2000;61:87-95 58. 陳頤承、郭昭顯、陳俊亨,工業材料雜誌 2008;258:249-256 59. http://www.wacom-ele.co.jp/products/solar/normal/ 60. M. Gratzel, Acc. Chem. Res. 2009;42:1788-1798 61. J. Bard, “Electroanalytical Chemistry a Series of Advances”, Vol.4, 1970 62. J. R. Macdonald, “Impedance Spectroscopy Emphasizing Solid Materials and Systems”,1987 63. 文克剛,' 可交聯光敏劑與雙成份離子溶液電解質在染敏太陽能電池光電性質之研究',台灣大學高分子科學與工程研究所 碩士論文 2010 64. Duffy N, Peter L, Rajapakse R, Wijayantha K.,The Journal of Physical Chemistry B 2000;104:8916-8919 65. S. Iijima, Nature 1991;354:56-58 66. Jourent, C.; Maser, W.K.; Bernier, P.; Loiseau, A.; de la Chapelle, M. L.; Lefrant, S.; Deniard, P.;Lee, R.; Fischer, J.E. Nature 1997;388:756-758 67. Patrick Brown, Kensuke Takechi, Prashant V. Kamat, The Journal of Physical Chemistry C 2008;112:4776-4782 68. Tae Young Lee , P.S. Alegaonkar , Ji-Beom Yoo, Thin Solid Films 2007;515:5131-5135 69. 葉珈妏,' 陰離子物理吸附多層奈米碳管在染敏太陽能電池光電極之應用',台灣大學高分子科學與工程研究所 碩士論文 2012 70. 鄧翔允,' 聚丙烯丁酯共聚物及其奈米複合材料在膠態光敏型太陽能電池上的應用',台灣大學材料科學與工程學研究所 碩士論文 2008 71. 林佩儀,' 帶丙烯酸基離子液體聚合物及其奈米碳管複合物在染料敏化太陽能電池電解質上的應用',台灣大學材料科學與工程學研究所 碩士論文 2010 72. 崔孟晉,工業材料雜誌 2008;257:185-193 73. H. Matsumoto, T. Matsuda, T. Tsuda, R. Hagiwara, Y. Ito, Y. Miyazaki, Chem. Lett. 2001:26-27 74. P. Wang, S.M. Zakeeruddin, J.E. Moser, M. Gratzel, J. Phys. Chem. B 2003; 107:13280-13285 75. L.M. Goncalves , V. de Z. Bermudez , H. A. Ribeiro ,A. M. Mendes,“Dye-sensitized solar cells: A safe bet for the future”,Energy & Environmental Science 2008;1:655-667 76. R. Hagiwara, T. Hirashige, T. Tsuda, Y. Ito, J. Fluorine Chem. 1999;99:1 77. S.M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt,Journal of the American Chemical Society 2010;132:16714–16724 78. P. Wang, S. M. Zakeeruddin,I. Exnar, M. Gratzel, Chemical Communications 2002;8:2972-2973 79. N. Mohmeyer , D. Kuang, P. Wang, H. W. Schmidt, S. M. Zakeeruddin, M. Gratzel,Journal of Materials Chemistry 2006;16:2978-2983 80. H. Matsui,K. Okada, T. Kawashima, T. Ezure,N. Tanabe, R. Kawano,M. Watanabe,Journal of Photochemistry and Photobiology A: Chemistry 2004;164:129-135 81. F. Nogueira, J. R. Durrant, and M. A. De Paoli, Adv. Mater 2001;13:826 82. T. C. Wei, C. C. Wan, Y. Y. Wang, Sol. Energy Mater. Sol. Cells2007; 91:1892-1892 83. P. J. Li, J. H. Wu, M. L. Huang, S. C. Hao, Z. Lan, Q. H. Li, S. J. Kang, Electrochim. Acta 2007;53:903-908 84. 翁頂翔,' 高分子及其蒙托石奈米複合材料在膠態光敏型太陽能電池上的應用',台灣大學材料科學與工程學研究所 碩士論文 2007 85. C. W. Tu, K. Y. Liu, A. T. Chien, C. H. Lee, K. C. Ho, K. F. Lin, Euro. Polym. J. 2008;44:608-614 86. 蔡朝伊,' 聚丙烯酸甲酯共聚物與其奈米複合材料在膠態染料敏化太陽能電池上之應用',台灣大學材料科學與工程學研究所 碩士論文 2008 87. In Chun, Byunghong Lee, Jiaqing He, Robert P. H. Chang, Mercouri G. Kanatzidis, Nature 2012;485:486-489 88. 羅喬嶽,' 以含羥基釕金屬染料與奈米碳管改良之固態染料敏化太陽能電池製作及性質研究',台灣大學材料科學與工程學研究所 碩士論文2012 89. 陳文照、曾春風、游信和,2009,材料科學與工程導論,台北:高立 90. http://plc.cwru.edu/tutorial/enhanced/files/polymers/therm/therm.htm,please refer to Polymers & Liquid Crystals Introduction Web site 91. http://terms.naer.edu.tw/detail/1327629/,取自:國家教育研究院網站 92. U. Bach, D. Lupo, J. E. Moser, F. Weissortel, J. Salbexk, H. Spreitzer and M. Gratzel, Nature 1998;395:583-583 93. Yu-Hsun Chang,King-Fu Lin, Composites Science and Technology 2014;90:174-179 94. http://www.polymersource.com/Resources/Thermal-analysis.pdf 95. 杜其瑋,' 高分子及其蒙脫石奈米複合材料在膠態光敏型太陽能電池上的應用',台灣大學高分子科學與工程研究所 碩士論文 2006 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58310 | - |
dc.description.abstract | 由於目前固態染料敏化太陽能電池的效率普遍不高,加上具有可撓曲性的太陽能電池已成為趨勢,為了提升效率,考量電子的傳導機制,本研究希望利用低玻璃轉移溫度的高分子,來製作軟質固態電解質,除了藉由良好的離子流動特性來提高效率外,期許能應用於可撓曲電池元件。因此,我們利用Butyl acrylate(BA)與帶有羧酸基的單體Acrylic acid(AA)、Methacrylic acid(MAA)以無乳化劑聚合方法聚合出共聚高分子。透過DSC儀器分析證實上述共聚物的玻璃轉移溫度均低於室溫25℃,屬於具離子性軟質共聚高分子,並將這些共聚高分子應用於DSSC的電解質中,製成軟質固態電解質。
實驗第一部分:改變三種BA與AA、BA與MAA單體之間的比例,製成軟質固態電解質後,其DSSC在1.5AM 100mW/cm2太陽光照射下,實驗結果發現在P(BA1-co-AA1)的系統中,其光電轉換效率可達3.29±0.09%,開路電壓與短路電流分別為0.65±0.05V和9.01±0.10 mA/cm2。在P(BA1-co-MAA1)的系統中,其光電轉換效率可達3.71±0.06%,開路電壓與短路電流分別為0.68±0.05 V和 11.11±0.12 mA/cm2。 實驗第二部分:由於利用具離子性高分子共聚物作為軟質固態電解質的DSSC,效率不及於膠態與液態電解質,因此第二部分將藉由引入MWCNT來改質上述軟質固態電解質。實驗結果發現,添加MWCNT於上述軟質固態電解質可提升光電轉換效率,在P(BA3-co-AA2)的系統中,當加入0.3 wt%的MWCNT時,其光電轉換效率可提升至5.09±0.08%,開路電壓與短路電流分別提升至0.70±0.09 V和13.27±0.12 mA/cm2。在P(BA3-co-MAA2)的系統中,加入0.3 wt%的MWCNT,光電轉換效率可提升至5.15±0.11%,開路電壓與短路電流分別提升至0.72±0.05 V和12.55±0.09 mA/cm2。顯示添加0.3 wt%的MWCNT,開路電壓與短路電流均大幅提升,軟質固態電解質的導電度也顯著增加,由DSC測試結果發現P(BA3-co-AA2)的系統當加入0.3 wt%的MWCNT時,Tg由9.89℃降到6.90℃。而在P(BA3-co-MAA2)的系統,Tg由15.48℃降到-0.79℃。顯然MWCNT可經由羧基陽離子-π作用力吸附P(BA3-co-AA2)的AA鏈段和P(BA3-co-MAA2)的MAA鏈段,不但降低共聚物的Tg而且可以增加MWCNT在軟質固態電解質的分散性。透過SEM及TEM照片證實MWCNT在軟質固態電解質的分散性相當好,因此可以提供一個很好的電解質氧化還原電子傳遞的管道。 | zh_TW |
dc.description.abstract | The power conversion efficiency of solid-state dye-sensitized Solar Cells (DSSCs) reported in the recent literature is still low and the flexible solar cells is deemed to be the trend of future. Therefore, to improve the power conversion efficiency of solid-state DSSCs and achieve the goal of flexibility, this research tried to use the copolymers with the glass transion temperatures lower than the room temperature to fabricate the soft solid-state electrolytes for DSSC. We used butyl acrylate (BA) to copolymerize with two kinds of monomers containing carboxylic acid group, acrylic acid (AA) and methacrylic acid (MAA), through emulsifier-free emulsion polymerization. The glass transion temperatures of resulting copolymers measured by differential scanning calorimetry (DSC) were all below room temperature (25℃). Then we used these soft copolymers to prepare the soft solid-state electrolyte for DSSCs.
In the first part of this resreach, we changed the molar ratio of BA and AA (MAA) monomers for copolymerization. By using 1.5AM 100mW/cm2 sunlight, we found the power conversion efficiency of DSSC using P(BA1-co-AA1) electrolyte system was 3.29±0.09%, and its open circuit voltage (Voc) and short circuit current density (Jsc) were 0.65±0.05V and 9.01±0.10 mA/cm2. Whereas, the DSSC using P(BA1-co-MAA1) electrolyte system had power conversion efficiency of 3.71±0.06%, open circuit voltage value of 0.68±0.05 V , and short circuit current density of 11.11±0.12 mA/cm2. In the second part of this research, due to lower power conversion efficiency for the DSSCs using ionic copolymer systems as a solid-state electrolyte compared to liquid and gelled-type electrolytes, we incorporated MWCNT with above soft solid-state electrolyte to increase the electric conductivity. The results showed that the DSSCs using P(BA1-co-AA1) system containing 0.3 wt% MWCNT had the best performance with the power conversion efficiency increasd to 5.09±0.08%. Voc and Jsc were 0.70±0.09 V and 13.27±0.12 mA/cm2 respectively. Moreover, the DSSCs with P(BA1-co-MAA1) system containing 0.3 wt% MWCNT also showed the best result with the power conversion efficiency increased to 5.15±0.11%. Voc and Jsc were 0.72±0.05 V and 12.55±0.09 mA/cm2 respectively. Apparently, addition of 0.3wt% MWCNT to the solid-state electrolyte increased both Voc and Jsc and also elevated the electric conductivity. The glass transion temperature of P(BA3-co-MAA2) measured by DSC decreased from 9.89℃to 6.90℃ by adding 0.3wt% MWCNT . The glass transion temperature of P(BA3-co-MAA2) containing 0.3wt% MWCNT also decreased from 15.48℃ to -0.79℃. It implies that MWCNT could adsorb the AA segment of P(BA3-co-AA2) and MAA segment of P(BA3-co-MAA2) through carboxylic cationic-π interaction. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:10:59Z (GMT). No. of bitstreams: 1 ntu-103-R00527017-1.pdf: 11302903 bytes, checksum: 82d4d5d5ceb4c0731596450c10b7bac1 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract v 圖目錄 xi 表目錄 xxi 第一章 緒論 1 1-1 前言 1 1-2 染料敏化太陽能電池 3 1-3 染料敏化太陽能電池產業未來研發方向 4 1-4 文獻回顧與探討 4 1-4-1染料敏化太陽能電池簡介及其競爭力 4 1-4-2染料敏化太陽能電池工作原理 5 1-4-3透明導電基板 9 1-4-4染料敏化太陽能電池之工作電極 10 1-4-5染料敏化太陽能電池之對電極 13 1-4-6 染料敏化太陽能電池之染料 14 1-4-7染料敏化太陽能電池的量測技術與輸出特性 16 1-4-7.1太陽光模擬光源 16 1-4-7.2太陽能電池光電轉換效率的計算 18 1-4-7.3交流阻抗(AC Impedance)分析原理 20 1-4-7.4Intensity Modulated photocurrent spectroscopy(IMPS)簡介 23 1-4-7.5 Intensity Modulated photovoltage spectroscopy(IMVS)簡介 24 1-4-7.6電壓下降與電量收集法 25 1-4-8奈米碳管簡介 26 1-4-8.1奈米碳管之特性 26 1-4-8.3奈米碳管在染料敏化太陽能電池之應用 28 1-4-9染料敏化太陽能電池之電解質 29 1-4-9.1液態電解質 29 1-4-9.2離子液體 30 1-4-9.2膠態電解質 31 1-4-9.3固態電解質 32 1-4-10 玻璃轉移溫度簡介 33 1-5研究目的與實驗架構 35 第二章 實驗設備與方法 37 2-1實驗材料 37 2-2 實驗儀器與設備 39 2-3高分子材料製備 40 2-4染料敏化太陽能電池製作 41 2-4-1 FTO導電玻璃的清洗 41 2-4-2 ITO導電玻璃的清洗 41 2-4-3二氧化鈦鍍液製備 42 2-4-4染料溶液製備 42 2-4-5二氧化鈦電極(工作電極)製備 42 2-4-6白金對電極製備 43 2-4-7高分子軟質固態電解質製備 44 2-4-9太陽能電池元件封裝 45 2-5太陽能電池光電化學測試 45 2-5-1光電流-電壓特徵曲線(Photocurrent-Voltage Characterization) 45 2-5-2交流阻抗分析(AC Impedance) 46 2-5-3 IMPS與IMVS之量測 47 2-5-4開環電壓衰退的瞬態與電量收集之量測 47 2-5-5元件長效性測試 48 2-6太陽能電池元件導電度測量 48 2-7共聚高分子性質與試片製作 48 2-7-1DSC測試條件以及樣品製備 48 2-7-2 SEM試片製作 49 2-7-3 NMR樣品製備 49 2-7-4 GPC樣品製備 49 2-7-5 TEM試片製作 49 第三章 結果與討論 50 3-1高分子共聚物之性質測定 50 3-1-1 NMR圖譜分析 50 3-1-3 GPC測量分析 65 3-1-4 DSC熱性質分析 66 3-1-5 SEM表面型態觀察分析 73 3-1-6 TEM觀察分析 78 3-1-7軟質固態電解質導電度分析 82 3-2軟質固態電解質應用於DSSC之元件分析 93 3-2-1引言 93 3-2-2光電轉換效率分析 93 3-2-3交流阻抗分析 113 3-2-4 IMPS/IMVS分析 135 3-2-5電壓衰退及電量分析 145 3-2-6 DSSC元件長效性分析 154 第四章 結論 162 第五章 參考資料 164 附錄 170 | |
dc.language.iso | zh-TW | |
dc.title | 以聚電解質/奈米碳管複合材料製作軟質固態電解質在染料敏化太陽能電池上之應用 | zh_TW |
dc.title | Fabrication of Soft Solid-State Electrolyte with Polyelectrolytes/Multi-walled Carbon Nanotubes for Dye-sensitized Solar Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 何國川(Kuo-Chuan Ho),廖文彬(Wen-Bin Liau) | |
dc.subject.keyword | 聚丁基丙烯酸酯,染料敏化太陽能電池,多層奈米碳管,軟質,固態電解質, | zh_TW |
dc.subject.keyword | Poly(butyl acrylate),dye sensitized solar cell,multi-walled carbon nanotube,soft,solid-state electrolyte, | en |
dc.relation.page | 172 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-03-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 11.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。