請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58303
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉瓊如 | |
dc.contributor.author | Jin-Wei Shen | en |
dc.contributor.author | 沈金緯 | zh_TW |
dc.date.accessioned | 2021-06-16T08:10:48Z | - |
dc.date.available | 2019-03-21 | |
dc.date.copyright | 2014-03-21 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-03-12 | |
dc.identifier.citation | [1] Artin, E. (1997). Galois Theory, Dover.
[2] Burnside, W. S. (2011). The Theory of Equations, Panton. [3] Dickson, L. E. (1903). Introduction to The Theory of Algebraic Equa- tions, John Wiley and Sons. [4] Edwards, H. M. (1984). Galois Theory, Springer-Verlag. [5] Galois, E. (1897). Oeuvres Mathematiques d'Evariste Galois, Gauthier- Villars et ls. [6] Hungerford, T. W. (1980). Algebra, Springer-Verlag. [7] Kline, M. (1990). Mathematical Thought from Ancient to Modern Times, Oxford University Press. [8] Sawyer, W. W. (2011). Prelude to Mathematics, Dover. [9] Tignol, J. P. (2001). Galois' Theory of Algebraic Equations, World Sci- enti c. [10] van der Waerden, B. L. (1991). Algebra, Springer-Verlag. [11] Weyl, H. (1983). Symmetry, Princeton University Press. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58303 | - |
dc.description.abstract | 本文回顧了Galois 最有名的論文,Premier Memoire。我們期望利用現代的
數學語言及工具走過Galois 及其前輩們所走過的路。其關鍵在於將Lagrange 的未定係數的方程式論延伸到一般係數的情形;並且在這個脈絡下引出體、(有限)群、Galois 預解形(Resolvent) 、Galois 群的定義。 市面上Galois 理論的相關出版物已汗牛充棟,而我們的目標在於定義Galois 群其的歷史源流及其構造的困難之處。而這一切都被年輕的Galois 完美解決了。 | zh_TW |
dc.description.abstract | In this paper we study the original idea of the group of substitutions of an algebraic equation with either literal or numerical coefficients. The group of substitutions of the proposed roots or, equivalently, the group of automorphisms of the minimal splitting field containing the proposed roots, is the core of the theory of algebraic equation and is one of the motivations to the development of the modern
abstract group and the field theory. Although there are various publications of theory of algebraic equations and (finite) Galois theory. Our goal is the historical background of the definition of a Galois group and the difficulties of explicit constructing them, which was solved by then young Galois. The main obstacle of extending the theory from literal equations to arbitrary equations (literal or numerical) can be traced back to the work of Lagrange; and it is exactly Galois who solved the problem by his genius inventions of the Galois resolvent and the Galois group. In this paper we will inspect computation details of the algebraic solutions so that we can be fully motivated to see how subtle the definition of a Galois group is made. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:10:48Z (GMT). No. of bitstreams: 1 ntu-103-R99221023-1.pdf: 677362 bytes, checksum: 95671db69b0e69041e9f77e2557116ca (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書……………………………………………………………… i
序言………………………………………………………………………………. ii 中文摘要………………………………………………………………………… iv 英文摘要…………………………………………………………………………. v 第一章 Introduction…………………………………………………………….. 1 第二章 Preliminary…………………………………………………………….. 3 第三章 Basic Lemmas………………………………………………………….. 3 第四章 Galois’ Presentation of Groups……………………………………….. 7 第五章 Radical Extensions……………………………………………………. 14 參考文獻…………………………………………………………………….…… 21 | |
dc.language.iso | en | |
dc.title | 伽羅瓦第一論文之探討 | zh_TW |
dc.title | A Survey of Galois' Premier Memoire | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 洪萬生,張海潮 | |
dc.subject.keyword | 代數方程式的根式解,群論,體論,自同構,數學史, | zh_TW |
dc.subject.keyword | Radical solutions of algebraic equations,group theory,field theory,automorphisms,history of mathematics, | en |
dc.relation.page | 21 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-03-12 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 661.49 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。