Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58301
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃建璋(Jian-Jang Huang)
dc.contributor.authorYi-Chun Shenen
dc.contributor.author沈奕君zh_TW
dc.date.accessioned2021-06-16T08:10:45Z-
dc.date.available2019-07-22
dc.date.copyright2014-07-22
dc.date.issued2014
dc.date.submitted2014-03-19
dc.identifier.citation[1]Chen, C. P., P. H. Lin, et al. (2010). 'Investigation of light absorption properties and acceptance angles of nanopatterned GZO/a-Si/p(+)-Si photodiodes.' Nanotechnology 21(21): 215201.
[2]Wei Wei, Guang-Hui Ma, Gang Hu, Di Yu, Tom Mcleish, Zhi-Guo Su and Zhe-Yu Shen. (2008). “Preparation of Hierarchical Hollow CaCO3 Particles and the Application as Anticancer Drug Carrier” J. AM. CHEM. SOC. (130): 15808–15810.
[3]Kim, D.-S., J.-E. Park, et al. (2006). 'An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes.' Sensors and Actuators B: Chemical 117(2): 488-494.
[4]Reyes, P. I., C.-J. Ku, et al. (2011). 'ZnO thin film transistor immunosensor with high sensitivity and selectivity.' Applied Physics Letters 98(17): 173702.
[5]B.K. Sohn, C.S. Kim. (1996). “A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen.” Sens. Actuators B 34: 435–440.
[6]Allen, B. L., P. D. Kichambare, et al. (2007). 'Carbon Nanotube Field-Effect-Transistor-Based Biosensors.' Advanced Materials 19(11): 1439-1451.
[7]X.D. Wang, J.H. Song, C.J. Summers, J.H. Ryou, P. Li, R.D. Dupuis, Z.L. Wang, 'Density-Controlled Growth of Aligned ZnO Nanowires Sharing a Common Contact: A Simple, Low-Cost, and Mask-Free Technique for Large-Scale Applications,'J. Phys. Chem. B 110 (2006) 7720.
[8]http://www.ncbi.nlm.nih.gov/books/NBK27144/#325
[9]X. Chen, G.J. Cheng, S.J. Dong., ' Amperometric tyrosinase biosensor based on a sol–gel-derived titanium oxide–copolymer composite matrix for detection of phenolic compounds,' Analyst 126 (2001) 1728.
[10]N I Goldstein, M Prewett, K Zuklys, et al. (1995). “Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model.” Clinical Cancer Research 1: 1311-1318.
[11]Jennifer Rubin Grandis, Mona F. Melhem, William E. Gooding, Roger Day, Valerie A. Holst, Marilyn M. Wagener, Stephanie D. Drenning, David J. Tweardy. (1998). “Levels of TGF-a and EGFR Protein in Head and Neck Squamous Cell Carcinoma and Patient Survival.” National Cancer Institute 90(11): 824-832.
[12]Krunks, M., A. Katerski, et al. (2008). 'Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array.' Solar Energy Materials and Solar Cells 92(9): 1016-1019.
[13]C. Lee, T. Lee, S. Lyu, Y. Zhang, H. Ruh, and H. Lee,'Field emission from well-aligned zinc oxide nanowires grown at low temperature,' Appl. Phys. Lett. 81, 3648 (2002).
[14]Farre, M. and D. Barcelo (2003). 'Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis.' TrAC Trends in Analytical Chemistry 22(5): 299-310
[15]You Wang, Hui Xu, Jianming Zhang and Guang Li. (2008). “Electrochemical Sensors for Clinic Analysis” Sensors 8: 2043-2081
[16]Tuan Vo-Dinh • Brian Cullum. (2000). “Biosensors and biochips: advances in biological and medical diagnostics” Fresenius J Anal Chem 366 :540–551
[17]Chen, K.-I., B.-R. Li, et al. (2011). 'Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation.' Nano Today 6(2): 131-154.
[18]Choi, A., K. Kim, et al. (2010). 'ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode.' Sensors and Actuators B: Chemical 148(2): 577-582.
[19]Alexey P. Soldatkin, Jean Montoriol, William Sant, Claude Martelet a, Nicole Jaffrezic-Renault. (2002). “Creatinine sensitive biosensor based on ISFETs and creatinine deiminase immobilised in BSA membrane” Elsevier Science 58 351–357
[20]Reyes, P. I., C.-J. Ku, et al. (2011). 'ZnO thin film transistor immunosensor with high sensitivity and selectivity.' Applied Physics Letters 98(17): 173702.
[21]Wanekaya, A. K., W. Chen, et al. (2006). 'Nanowire-Based Electrochemical Biosensors.' Electroanalysis 18(6): 533-550.
[22]Allen, B. L., P. D. Kichambare, et al. (2007). 'Carbon Nanotube Field-Effect-Transistor-Based Biosensors.' Advanced Materials 19(11): 1439-1451.
[23]Chen, K.-I., B.-R. Li, et al. (2011). 'Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation.' Nano Today 6(2): 131-154.
[24]Jin Suk Kim, Won Il Park, Chul-Ho Lee and Gyu-Chul Yi. (2006). “ZnO Nanorod Biosensor for Highly Sensitive Detection of Specic Protein Binding” Journal of the Korean Physical Society 49(4)
[25]Hsu, S. H., C. M. Tang, et al. (2006). 'Biocompatibility of poly(ether)urethane-gold nanocomposites.' J Biomed Mater Res A 79(4): 759-770.
[26]B. Devika Chithrani and Warren C. W. Chan. (2007). “Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes” Nano Lett 7(6): 1542-1550
[27]Hu, M., J. Chen, et al. (2006). 'Gold nanostructures: engineering their plasmonic properties for biomedical applications.' Chem Soc Rev 35(11): 1084-1094.
[28]http://www.microchem.com
[29]Kim, D.-S., J.-E. Park, et al. (2006). 'An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes.' Sensors and Actuators B: Chemical 117(2): 488-494.
[30]Patrick O. Brown, David Botstein. (1999). “Exploring the new world of the genome with DNA microarrays” Nature genetics supplement. 21: 33-37.
[31]Kjell E. Nelson, Lara Gamble, Linda S. Jung, Maximiliane S. Boeckl, Esmaeel Naeemi, Stephen L. Golledge, Tomikazu Sasaki, David G. Castner, Charles T. Campbell and Patrick S. Stayton. (2001). “Surface Characterization of Mixed Self-Assembled Monolayers Designed for Streptavidin Immobilization” 17: 807-2816.
[32]Reyes, P. I., C.-J. Ku, et al. (2011). 'ZnO thin film transistor immunosensor with high sensitivity and selectivity.' Applied Physics Letters 98(17): 173702.
[33]Christine V. Sapan, Roger L. Lundblad and Nicholas C. Price. (1999). “Colorimetric protein assay techniques” Biotechnol. Appl. Biochem. 29: 99-108.
[34]Mark S. Smeltzer, Mark E. Hart, And John J. Iandolo. (1992). “Quantitative Spectrophotometric Assay for Staphylococcal Lipase” Applied And Environmental Microbiology. 58(9): 2815-2819
[35]Rhoda L. Ashley, Julie Militoni, Francis Lee, Andre Nahmias And Lawrence Corey. (1988). “Comparison of Western Blot (Immunoblot) and Glycoprotein G-specific Immunodot Enzyme Assay for Detecting Antibodies to Herpes Simplex Virus Types 1 and 2 in Human Sera” Clinical Microbiology. 26(4): 662-667.
[36]Esa Stenberg, Bjorn Persson, Hakan Roos And Csaba Urbaniczky. (1990). “Quantitative Determination of Surface Concentration of Protein with Surface Plasmon Resonance Using Radiolabeled Proteins.” Colloid and Interface Science. 143(2): 513-526.
[37]Wang, D. G. (1998). 'Large-Scale Identification, Mapping, and Genotyping of Single-Nucleotide Polymorphisms in the Human Genome.' Science 280(5366): 1077-1082.
[38]Adel S. Sedra, Kenneth C. Smith, Microelectronic circuit, 5th edition, Oxford Series in Electrical Engineering, 2003.
[39]Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, Analysis and design of analog integrated circuit, 4th edition, John Wiley & Sons, Inc., 2001.
[40]http://www.tecan.com/
[41]Marion M. Bradford. (1976). “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding.” Analytical Biochemistry. 72: 248-254
[42]Abul K. Abbas, Andrew H. Lichtman, Shiv Pillai, Cellular and molecular and molecular immunology, 6th edition, Saunders Elsevier, 2007.
[43]Virology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior 474 002 India. (2005). “Surface Plasmon Resonance: Applications in Understanding Receptor–Ligand Interaction.” Applied Biochemistry and Biotechnology. 126: 79-92.
[44]Bo Liedberg, Claes Nylander And Ingemar Lundstrom. (1983). “Surface Plasmon Resonance For Gas Detection And Biosensing.” Sensors and Actuators. 4: 299 – 304.
[45]Patrick Englebienne, Anne Van Hoonacker and Michel Verhas. (2003). “Surface plasmon resonance: principles, methods and applications in biomedical sciences.” Spectroscopy 17: 255–273.
[46]Rebecca J. Green, Richard A. Frazier, Kevin M. Shakeshe, Martyn C. Davies, Clive J. Roberts, Saul J.B. Tendler. (2000). “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials.” Biomaterials 21: 1823-1835.
[47]Chen-Yu Chen, Chia-Chen Chang, Chun Yu and Chii-Wann Lin. (2012). “Clinical Application of Surface Plasmon Resonance-Based Biosensors for Fetal Fibronectin Detection.” Sensors 12: 3879-3890.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58301-
dc.description.abstract在這篇論文中,我們以氧化鋅奈米柱為基礎,建立了癌症相關的檢測方法。我們透過實驗證明氧化鋅奈米柱能夠和抗體結合,具有特異性的抗體和氧化鋅奈米柱的組合能夠構成具有特異性的生物標記。研究指出癌細胞大量的表現表皮生長因子接受器,因此我們選擇了表皮細胞生長因子接受器的抗體來進行實驗。我們將表皮生長因子接受器的抗體和氧化鋅奈米柱結合製成癌細胞偵測標記,這個癌細胞標記可以透過表皮生長因子接受器和癌細胞接合,當氧化鋅奈米柱受到紫外光的照射時,會被激發出波長大約377奈米的紫光,我們便可以藉由光致激發螢光頻譜和影像來辨認出癌細胞。螢光染色檢測法是目前最普遍的癌症偵測技術,然而螢光衰退、螢光顯色限制以及細胞自體螢光分辨等,使得即時檢測相當困難。由氧化鋅奈米柱製成的癌細胞爭測標記解決了上述的問題,進而使得癌細胞能夠被即時檢測。
除此之外,氧化鋅奈米柱也應用於薄膜電晶體蛋白質檢測器來提升感測器的敏感度。這個新型蛋白質解測器具有延伸的金感測板用來增加感測器的感測區域並且將待測的生物化學溶液和感測器分隔開來。我們接著用氧化鋅奈米柱和表皮生長因子接受器的抗體將感測板功能化,以進行表皮生長因子接受器的特異性量測。氧化鋅奈米柱的生物相容性以及高面積對體積比例大幅增加蛋白質和感測器的結合能力,進而大幅提升了感測器的敏感度。透過這個新型結構,我們實現了快速簡便並且具有高免感度及高特異性的感測過程。我們的薄膜電晶體蛋白質感測器可以量測到在0.1 ng/ml的細胞蛋白質溶液中36.2 fM的表皮生長因子接受器。
zh_TW
dc.description.abstractIn this thesis, tumor related assays are introduced based on the properties of ZnO nanorods. ZnO nanorods are able to form biomarkers of specificity together with antibodies. EGFR antibody is selected since it specifically binds to EGFR protein which is well-known to be overexpressed in cancer cells. ZnO nanorods/EGFR antibody probes bind to cancer cells through EGFR and emit purple light around 377nm as being excited by the UV luminance. By photoluminescent spectrum and image, cancer cells can be differentiated. The method prevents the photobleaching happened in traditional fluorescent detection and achieves the real-time detection.
ZnO nanorods are also applied to IGZO-TFT protein biosensor to improve the sensitivity of detection. The bio-TFT is of extended gold pad to enlarge the sensing area and isolate the biochemical solutions. ZnO nanorods and EGFR antibody are used to functionalize the sensing pad for specific detection of EGFR. The biocompatibility and high surface-to-volume ratio of ZnO nanorods improve the sensitivity of the device significantly. By this novel structure, a time-saving and highly sensitive protein detecting process is developed. The bio-TFT is able to selectively detecting 36.2 fM of EGFR in the total protein solution of 0.1 ng/ml.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:10:45Z (GMT). No. of bitstreams: 1
ntu-103-R99941067-1.pdf: 9199755 bytes, checksum: eb5aad9cb8d91f9dcdfe633fc9a57d0a (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract iv
Contents v
List of Figures vii
List of Tables x
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Motivation 3
1.3 Thesis structure 7
Chapter 2 ZnO nanorods conjugation with antibody 8
2.1 Introduction 8
2.2 Synthesis of ZnO nanorods 10
2.3 Binding test of ZnO nanorods to antibody 14
2.4 Application: Tumor detection by using ZnO nanorods/EGFR antibody probes 19
Chapter 3 Protein detecting bio-TFT with extended sensing metal pad and ZnO nanorods 33
3.1 Introduction 33
3.2 Structure and mechanism of the Bio-TFTs 36
3.3 Fabrication of the Bio-TFTs 38
3.4 Integration of ZnO nanorods for protein bindings 41
Chapter 4 Protein detection using bio-TFTs 45
4.1 Introduction 45
4.2 Detection of EGFR concentration by bio-TFTs 47
4.3 Detection limit and specificity of the sensors 57
4.4 Comparison of methods of extracting protein concentrations 63
4.5 Summary 73
Chapter 5 Conclusions 75
Reference 77
dc.language.isoen
dc.title以氧化鋅奈米柱增進靈敏度及特異性之薄膜電晶體蛋白質檢測器zh_TW
dc.titleIGZO-TFT Protein Sensors with ZnO nanorods for Enhanced Sensitivity and Specificityen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊宗霖(Tsung-Lin Yang),楊志忠(Chih-Chun Yang),林啟萬(Chii-Wann Lin),田維誠(Wei-Cheng Tian)
dc.subject.keyword癌症,表皮生長因子接受器,氧化鋅奈米柱,高敏感度生物感測器,zh_TW
dc.subject.keywordcancer,EGFR,ZnO nanorods,high sensitivity biosensor,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2014-03-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
8.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved