Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58291
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李財坤(Tsai-Kun Li)
dc.contributor.authorMei-Yi Hsiehen
dc.contributor.author謝美儀zh_TW
dc.date.accessioned2021-06-16T08:10:28Z-
dc.date.available2016-10-09
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-03-25
dc.identifier.citationBerns, K., Hijmans, E. M., Mullenders, J., Brummelkamp, T. R., Velds, A., Heimerikx, M., Kerkhoven, R. M., Madiredjo, M., Nijkamp, W., Weigelt, B., et al. (2004). A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431-437.
Blasina, A., Price, B. D., Turenne, G. A., and McGowan, C. H. (1999). Caffeine inhibits the checkpoint kinase ATM. Curr Biol 9, 1135-1138.
Campisi, J., and d'Adda di Fagagna, F. (2007). Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8, 729-740.
Chakraverty, R. K., Kearsey, J. M., Oakley, T. J., Grenon, M., de La Torre Ruiz, M. A., Lowndes, N. F., and Hickson, I. D. (2001). Topoisomerase III acts upstream of Rad53p in the S-phase DNA damage checkpoint. Mol Cell Biol 21, 7150-7162.
Ding, J., Huang, S., Wu, S., Zhao, Y., Liang, L., Yan, M., Ge, C., Yao, J., Chen, T., Wan, D., et al. (2010). Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol 12, 390-399.
Drost, J., Mantovani, F., Tocco, F., Elkon, R., Comel, A., Holstege, H., Kerkhoven, R., Jonkers, J., Voorhoeve, P. M., Agami, R., and Del Sal, G. (2010). BRD7 is a candidate tumour suppressor gene required for p53 function. Nat Cell Biol 12, 380-389.
Durand-Dubief, M., Persson, J., Norman, U., Hartsuiker, E., and Ekwall, K. (2010). Topoisomerase I regulates open chromatin and controls gene expression in vivo. Embo J 29, 2126-2134.
Fritz, E., Elsea, S. H., Patel, P. I., and Meyn, M. S. (1997). Overexpression of a truncated human topoisomerase III partially corrects multiple aspects of the ataxia-telangiectasia phenotype. Proc Natl Acad Sci U S A 94, 4538-4542.
Haffner, M. C., Aryee, M. J., Toubaji, A., Esopi, D. M., Albadine, R., Gurel, B., Isaacs, W. B., Bova, G. S., Liu, W., Xu, J., et al. (2010). Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 42, 668-675.
Hanahan, D., and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57-70.
Hartung, F., Suer, S., Knoll, A., Wurz-Wildersinn, R., and Puchta, H. (2008). Topoisomerase 3alpha and RMI1 suppress somatic crossovers and are essential for resolution of meiotic recombination intermediates in Arabidopsis thaliana. PLoS Genet 4, e1000285.
Hendricks, K. B., Shanahan, F., and Lees, E. (2004). Role for BRG1 in cell cycle control and tumor suppression. Mol Cell Biol 24, 362-376.
Hickson, I. D. (2003). RecQ helicases: caretakers of the genome. Nat Rev Cancer 3, 169-178.
Hu, W., Chan, C. S., Wu, R., Zhang, C., Sun, Y., Song, J. S., Tang, L. H., Levine, A. J., and Feng, Z. (2010). Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell 38, 689-699.
Hussain, S. P., and Harris, C. C. (2006). p53 biological network: at the crossroads of the cellular-stress response pathway and molecular carcinogenesis. J Nippon Med Sch 73, 54-64.
Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687.
Johnson, F. B., Lombard, D. B., Neff, N. F., Mastrangelo, M. A., Dewolf, W., Ellis, N. A., Marciniak, R. A., Yin, Y., Jaenisch, R., and Guarente, L. (2000). Association of the Bloom syndrome protein with topoisomerase IIIalpha in somatic and meiotic cells. Cancer Res 60, 1162-1167.
Ju, B. G., Lunyak, V. V., Perissi, V., Garcia-Bassets, I., Rose, D. W., Glass, C. K., and Rosenfeld, M. G. (2006). A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 312, 1798-1802.
Kinzler, K. W., and Vogelstein, B. (1997). Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386, 761, 763.
Kwan, K. Y., Moens, P. B., and Wang, J. C. (2003). Infertility and aneuploidy in mice lacking a type IA DNA topoisomerase III beta. Proc Natl Acad Sci U S A 100, 2526-2531.
Kwan, K. Y., and Wang, J. C. (2001). Mice lacking DNA topoisomerase IIIbeta develop to maturity but show a reduced mean lifespan. Proc Natl Acad Sci U S A 98, 5717-5721.
Li, T. K., and Liu, L. F. (2001). Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol 41, 53-77.
Li, W., and Wang, J. C. (1998). Mammalian DNA topoisomerase IIIalpha is essential in early embryogenesis. Proc Natl Acad Sci U S A 95, 1010-1013.
Mankouri, H. W., and Hickson, I. D. (2006). Top3 processes recombination intermediates and modulates checkpoint activity after DNA damage. Mol Biol Cell 17, 4473-4483.
Meetei, A. R., Sechi, S., Wallisch, M., Yang, D., Young, M. K., Joenje, H., Hoatlin, M. E., and Wang, W. (2003). A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol Cell Biol 23, 3417-3426.
Mohanty, S., Town, T., Yagi, T., Scheidig, C., Kwan, K. Y., Allore, H. G., Flavell, R. A., and Shaw, A. C. (2008). Defective p53 engagement after the induction of DNA damage in cells deficient in topoisomerase 3beta. Proc Natl Acad Sci U S A 105, 5063-5068.
Nitiss, J. L. (2009). DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9, 327-337.
Oakley, T. J., Goodwin, A., Chakraverty, R. K., and Hickson, I. D. (2002). Inactivation of homologous recombination suppresses defects in topoisomerase III-deficient mutants. DNA Repair (Amst) 1, 463-482.
Oakley, T. J., and Hickson, I. D. (2002). Defending genome integrity during S-phase: putative roles for RecQ helicases and topoisomerase III. DNA Repair (Amst) 1, 175-207.
Olivier, M., Hussain, S. P., Caron de Fromentel, C., Hainaut, P., and Harris, C. C. (2004). TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ, 247-270.
Raynard, S., Bussen, W., and Sung, P. (2006). A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIalpha, and BLAP75. J Biol Chem 281, 13861-13864.
Rohwer, N., Dame, C., Haugstetter, A., Wiedenmann, B., Detjen, K., Schmitt, C. A., and Cramer, T. (2010). Hypoxia-inducible factor 1alpha determines gastric cancer chemosensitivity via modulation of p53 and NF-kappaB. PLoS One 5, e12038.
Sengupta, S., Linke, S. P., Pedeux, R., Yang, Q., Farnsworth, J., Garfield, S. H., Valerie, K., Shay, J. W., Ellis, N. A., Wasylyk, B., and Harris, C. C. (2003). BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO J 22, 1210-1222.
Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., Nik-Zainal, S., Martin, S., Varela, I., Bignell, G. R., et al. (2012). The landscape of cancer genes and mutational processes in breast cancer. Nature 486, 400-404.
Swarbrick, A., Woods, S. L., Shaw, A., Balakrishnan, A., Phua, Y., Nguyen, A., Chanthery, Y., Lim, L., Ashton, L. J., Judson, R. L., et al. (2010). miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nat Med 16, 1134-1140.
Temime-Smaali, N., Guittat, L., Wenner, T., Bayart, E., Douarre, C., Gomez, D., Giraud-Panis, M. J., Londono-Vallejo, A., Gilson, E., Amor-Gueret, M., and Riou, J. F. (2008). Topoisomerase IIIalpha is required for normal proliferation and telomere stability in alternative lengthening of telomeres. EMBO J 27, 1513-1524.
Tiwari, V. K., Burger, L., Nikoletopoulou, V., Deogracias, R., Thakurela, S., Wirbelauer, C., Kaut, J., Terranova, R., Hoerner, L., Mielke, C., et al. (2012). Target genes of Topoisomerase IIbeta regulate neuronal survival and are defined by their chromatin state. Proc Natl Acad Sci U S A 109, E934-943.
Tsai, H. J., Huang, W. H., Li, T. K., Tsai, Y. L., Wu, K. J., Tseng, S. F., and Teng, S. C. (2006). Involvement of topoisomerase III in telomere-telomere recombination. J Biol Chem 281, 13717-13723.
Tuck, S. P., and Crawford, L. (1989). Characterization of the human p53 gene promoter. Mol Cell Biol 9, 2163-2172.
Voorhoeve, P. M., le Sage, C., Schrier, M., Gillis, A. J., Stoop, H., Nagel, R., Liu, Y. P., van Duijse, J., Drost, J., Griekspoor, A., et al. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169-1181.
Wang, J. C. (2002). Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3, 430-440.
Wang, S. P., Wang, W. L., Chang, Y. L., Wu, C. T., Chao, Y. C., Kao, S. H., Yuan, A., Lin, C. W., Yang, S. C., Chan, W. K., et al. (2009). p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11, 694-704.
Wang, Y., Cortez, D., Yazdi, P., Neff, N., Elledge, S. J., and Qin, J. (2000). BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14, 927-939.
Weidensdorfer, D., Stohr, N., Baude, A., Lederer, M., Kohn, M., Schierhorn, A., Buchmeier, S., Wahle, E., and Huttelmaier, S. (2009). Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. RNA 15, 104-115.
Win, T. Z., Mankouri, H. W., Hickson, I. D., and Wang, S. W. (2005). A role for the fission yeast Rqh1 helicase in chromosome segregation. J Cell Sci 118, 5777-5784.
Wu, L., Bachrati, C. Z., Ou, J., Xu, C., Yin, J., Chang, M., Wang, W., Li, L., Brown, G. W., and Hickson, I. D. (2006). BLAP75/RMI1 promotes the BLM-dependent dissolution of homologous recombination intermediates. Proc Natl Acad Sci U S A 103, 4068-4073.
Wu, L., Davies, S. L., North, P. S., Goulaouic, H., Riou, J. F., Turley, H., Gatter, K. C., and Hickson, I. D. (2000). The Bloom's syndrome gene product interacts with topoisomerase III. J Biol Chem 275, 9636-9644.
Wu, L., and Hickson, I. D. (2006). DNA Helicases Required for Homologous Recombination and Repair of Damaged Replication Forks. Annu Rev Genet.
Xu, Y., Zhang, J., and Chen, X. (2007). The activity of p53 is differentially regulated by Brm- and Brg1-containing SWI/SNF chromatin remodeling complexes. J Biol Chem 282, 37429-37435.
Yadon, A. N., Singh, B. N., Hampsey, M., and Tsukiyama, T. (2013). DNA looping facilitates targeting of a chromatin remodeling enzyme. Mol Cell 50, 93-103.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58291-
dc.description.abstract人類的DNA拓撲異構酶III alpha(hTOP3a)同功酶藉由與腫瘤抑制因子形成複合物的方式參與DNA修復的監視和細胞週期檢查點之調控。然而,hTOP3a在腫瘤發生過程中所扮演的角色仍尚未被探討。在本篇論文中,我們的研究指出hTOP3a和轉錄因子p53蛋白質之間的交互作用對於腫瘤發生的進程是一個重要的染色質表觀遺傳調控點。我們研究中顯示,(i) 在非致癌性RHEK -1細胞中降低hTOP3a的表現 (sh- hTOP3a) 會引起較高的anchorage-independent growth,(ii) 在不同的細胞株中分別降低hTOP3a的表現會促進形成腫瘤的能力,反之,當於不同的細胞株中異位表達hTOP3zh_TW
dc.description.abstractThe human DNA topoisomerase III alpha (hTOP3a) isozyme is involved in DNA-repair surveillance and cell cycle checkpoints through the formation of a complex with tumor suppressors. However, the role of hTOP3a in tumorigenesis remains unexplored. Here, we report novel interactions between the epigenetic chromatin modulator hTOP3a and the transcription factor p53 that are important for tumorigenesis. We have determined that (i) hTOP3a knockdown (sh-hTOP3a) in non-tumorigenic RHEK-1 cells caused a higher anchorage-independent growth; (ii) modulation of hTOP3a levels by shRNA knockdown or ectopic expression approaches in different cancer cell lines also cause an increase or a reduction in tumorigenic abilities, respectively; (iii) hTOP3a binds to p53 and interacts with p53 functionally to suppress tumor growth; and (iv) the tumor-suppressive activity of hTOP3a requires functional hTOP3a, p53 and p21. To study the underlying mechanisms of hTOP3a in cancer, chromatin immunoprecipitation data revealed that hTOP3a binds to both the p53 and p21 promoters, and hTOP3a and p53 affect the recruitments of each other to corresponding promoters. Moreover, hTOP3a not only positively regulates p53 expression but also cooperates with p53 to promote p21 transcription. We defined the molecular basis of this collaboration with p21 expression and identified that hTOP3a is recruited to the p21 promoter via p53. Functionally, sh-hTOP3a and sh-p53 in AGS cells caused a similar amount of reduced senescence. Above interactions require functional hTOP3a and p53, as the active-site mutant of hTOP3a and the DNA-binding mutant of p53 were unable to promote p21 expression and to suppress anchorage-independent growth. Therefore, we suggest that hTOP3a contributes significantly to tumorigenesis in part through interactions with p53. In support of this hypothesis, hTOP3a mRNA levels were lower in gastric and renal tumor samples. Together, our results suggest that hTOP3a regulates p53 and p21 expression and might contributes to the p53-mediated senescence and tumor suppression.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:10:28Z (GMT). No. of bitstreams: 1
ntu-103-D95445005-1.pdf: 3092736 bytes, checksum: 976d24e021bf826964a5b7a21933cd24 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents論文口試委員審定書 ………………………………………………………………… i
中文摘要 ………………………………………………………………………………… ii
Abstract ………………………………..……………………………………………… iii
Contents …………………………………….………………………………………… v
1. Introduction
1.1 Tumorigenesis ……………………………………….………………………… 1
1.2 DNA topoisomerases ……………………………………….………………… 2
1.3 DNA topoisomerases and their biological functions …………….……… 4
2. Materials and Methods
2.1 Chemicals, plasmids and antibodies …………….…………………………… 7
2.2 Cell culture and cell proliferation assay……………………………………… 7
2.3 Lentivirus-based RNA interference (RNAi) ………………………….……… 8
2.4 Co-immunoprecipitation (co-IP), immunoblotting (IB) and RT-PCR analyse …………………………………………………….…….………….……… 8
2.5 Chromatin immunoprecipitation (ChIP) assay .……….…………….……… 9
2.6 Tumorigenesis assays: anchorage-independent growth on soft agar and tumor formation in NOD-SCID mice .……….…………….………….……… 9
2.7 Cellular senescence assay.……….………….……………….………….……… 10
2.8 Cancer profiling Array.……….….………….……………….………….……… 11
2.9 Cell Invasion Assay .….……….….………….……………….………….……… 12
2.10 Flow cytometry.….………….….………….……………….………….……… 12
2.11 Clonogenic assays .….………….….………….……………….…….……… 13
2.12 mRNA decay analysis.….………….….……………………….…….……… 13
2.13 Statistical analyses .….………….….………….……………….…….……… 13
3. Results
3.1 The physical interaction between hTOP3
dc.language.isoen
dc.title人類DNA拓樸異構酶IIIa在腫瘤發生之功能探討zh_TW
dc.titleStudy on the Roles of Human Topoisomerases IIIa in tumorigenesisen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee鄧述諄(Shu-Chun Teng),賴逸儒(I-Rue Lai),李明學(Ming-Shyue Lee),董馨蓮(Shin-Lian Doong)
dc.subject.keyword拓樸異構?,轉錄,腫瘤新生,衰老,zh_TW
dc.subject.keywordTopoisomerase,p53,Transcription,Tumorigenesis,Senescence,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2014-03-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
3.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved