Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58270
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞峰
dc.contributor.authorYan-Hao Huangen
dc.contributor.author黃彥皓zh_TW
dc.date.accessioned2021-06-16T08:09:53Z-
dc.date.available2017-07-22
dc.date.copyright2014-07-22
dc.date.issued2014
dc.date.submitted2014-04-18
dc.identifier.citation[1] N. Howlader, A. M. Noone, M. Krapcho, N. Neyman, R. Aminou, W. Waldron, et al., SEER Cancer Statistics Review, 1975-2008: National Cancer Institute, 2011.
[2] B. O. Anderson, R. Shyyan, A. Eniu, R. A. Smith, C. H. Yip, N. S. Bese, et al., 'Breast cancer in limited-resource countries: an overview of the Breast Health Global Initiative 2005 guidelines,' Breast J, vol. 12 Suppl 1, pp. S3-15, 2006.
[3] K. Nie, J. H. Chen, S. Chan, M. K. I. Chau, H. J. Yu, S. Bahri, et al., 'Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI,' Medical Physics, vol. 35, no. 12, pp. 5253-5262, 2008.
[4] C. K. Kuhl, S. Schrading, H. B. Bieling, E. Wardelmann, C. C. Leutner, R. Koenig, et al., 'MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study,' Lancet, vol. 370, no. 9586, pp. 485-492, 2007.
[5] E. Warner, D. B. Plewes, R. S. Shumak, G. C. Catzavelos, L. S. Di Prospero, M. J. Yaffe, et al., 'Comparison of breast magnetic resonance imaging, mammography, and ultrasound for surveillance of women at high risk for hereditary breast cancer,' Journal of Clinical Oncology, vol. 19, no. 15, pp. 3524-3531, 2001.
[6] K. V. Mogatadakala, K. D. Donohue, C. W. Piccoli, and F. Forsberg, 'Detection of breast lesion regions in ultrasound images using wavelets and order statistics,' Medical Physics, vol. 33, no. 4, pp. 840-849, 2006.
[7] K. Drukker, M. L. Giger, K. Horsch, M. A. Kupinski, C. J. Vyborny, and E. B. Mendelson, 'Computerized lesion detection on breast ultrasound,' Medical Physics, vol. 29, no. 7, pp. 1438-1446, 2002.
[8] K. Drukker, M. L. Giger, C. J. Vyborny, and E. B. Mendelson, 'Computerized detection and classification of cancer on breast ultrasound1,' Academic Radiology, vol. 11, no. 5, pp. 526-535, 2004.
[9] N. F. Boyd, J. W. Byng, R. A. Jong, E. K. Fishell, L. E. Little, A. B. Miller, et al., 'Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study,' J Natl Cancer Inst, vol. 87, no. 9, pp. 670-5, 1995.
[10] N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, et al., 'Mammographic density and the risk and detection of breast cancer,' N Engl J Med, vol. 356, no. 3, pp. 227-36, 2007.
[11] T. M. Kolb, J. Lichy, and J. H. Newhouse, 'Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,' Radiology, vol. 225, no. 1, pp. 165-175, 2002.
[12] N. F. Boyd, G. S. Dite, J. Stone, A. Gunasekara, D. R. English, M. R. McCredie, et al., 'Heritability of mammographic density, a risk factor for breast cancer,' N Engl J Med, vol. 347, no. 12, pp. 886-94, 2002.
[13] W. J. Chen, M. L. Giger, L. Lan, and U. Bick, 'Computerized interpretation of breast MRI: Investigation of enhancement-variance dynamics,' Medical Physics, vol. 31, no. 5, pp. 1076-1082, 2004.
[14] D. Muradali, S. Ghai, K. Bukhanov, and S. Kulkarni, 'Nonenhancing breast malignancies on MRI: Sonographic and pathologic correlation,' American Journal of Roentgenology, vol. 185, no. 2, pp. 481-487, 2005.
[15] A. Teifke, A. Hlawatsch, T. Beier, T. W. Vomweg, S. Schadmand, M. Schmidt, et al., 'Undetected malignancies of the breast: Dynamic contrast-enhanced MR imaging at 1.0 T,' Radiology, vol. 224, no. 3, pp. 881-888, 2002.
[16] K. Drukker, M. L. Giger, K. Horsch, M. A. Kupinski, C. J. Vyborny, and E. B. Mendelson, 'Computerized lesion detection on breast ultrasound,' Medical Physics, vol. 29, no. 7, pp. 1438-46, 2002.
[17] K. Drukker, M. L. Giger, and C. E. Metz, 'Robustness of Computerized Lesion Detection and Classification Scheme across Different Breast US Platforms1,' Radiology, vol. 237, no. 3, pp. 834-840, 2005.
[18] D. W. Hosmer and S. Lemeshow, Applied logistic regression, Second ed. New York: Wiley, 2000.
[19] D. L. Pham and J. L. Prince, 'An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities,' Pattern Recognition Letters, vol. 20, no. 1, pp. 57-68, 1999.
[20] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, 'Multiscale vessel enhancement filtering,' Medical Image Computing and Computer-Assisted Intervention - Miccai'98, vol. 1496, pp. 130-137, 1998.
[21] L. Jiamin, J. M. White, and R. M. Summers, 'Automated detection of blob structures by Hessian analysis and object scale,' in Image Processing (ICIP), 2010 17th IEEE International Conference on, 2010, pp. 841-844.
[22] T. Jia, D.-Z. Zhao, Y. Wei, X.-H. Zhu, and X. Wang, 'Computer-Aided Lung Nodule Detection Based on CT Images,' in Complex Medical Engineering, 2007. CME 2007. IEEE/ICME International Conference on, 2007, pp. 816-819.
[23] P. S. Tofts, 'Modeling tracer kinetics in dynamic Gd-DTPA MR imaging,' Jmri-Journal of Magnetic Resonance Imaging, vol. 7, no. 1, pp. 91-101, 1997.
[24] P. S. Tofts, G. Brix, D. L. Buckley, J. L. Evelhoch, E. Henderson, M. Knopp, et al., 'Estimating kinetic parameters from dynamic contrast-enhanced T-1-weighted MRI of a diffusable tracer: Standardized quantities and symbols,' Journal of Magnetic Resonance Imaging, vol. 10, no. 3, pp. 223-232, 1999.
[25] Y. C. Chang, Y. H. Huang, C. S. Huang, P. K. Chang, J. H. Chen, and R. F. Chang, 'Classification of breast mass lesions using model-based analysis of the characteristic kinetic curve derived from fuzzy c-means clustering,' Magnetic Resonance Imaging, vol. 20, no. 3, pp. 312-322, 2012.
[26] D. Newell, K. Nie, J. H. Chen, C. C. Hsu, H. J. Yu, O. Nalcioglu, et al., 'Selection of diagnostic features on breast MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: differences in lesions presenting as mass and non-mass-like enhancement,' European Radiology, vol. 20, no. 4, pp. 771-781, 2010.
[27] T. M. Kolb, J. Lichy, and J. H. Newhouse, 'Occult cancer in women with dense breasts: Detection with screening US - Diagnostic yield and tumor characteristics,' Radiology, vol. 207, no. 1, pp. 191-199, 1998.
[28] P. Crystal, S. D. Strano, S. Shcharynski, and M. J. Koretz, 'Using sonography to screen women with mammographically dense breasts,' American Journal of Roentgenology, vol. 181, no. 1, pp. 177-182, 2003.
[29] V. Corsetti, A. Ferrari, M. Ghirardi, R. Bergonzini, S. Bellarosa, O. Angelini, et al., 'Role of ultrasonography in detecting mammographically occult breast carcinoma in women with dense breasts,' Radiologia Medica, vol. 111, no. 3, pp. 440-448, 2006.
[30] L. A. Meinel, A. H. Stolpen, K. S. Berbaum, L. L. Fajardo, and J. M. Reinhardt, 'Breast MRI lesion classification: improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system,' Journal of Magnetic Resonance Imaging, vol. 25, no. 1, pp. 89-95, 2007.
[31] W. Chen, M. L. Giger, H. Li, U. Bick, and G. M. Newstead, 'Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images,' Magnetic Resonance in Medicine, vol. 58, no. 3, pp. 562-571, 2007.
[32] R. M. Haralick, Shanmuga.K, and I. Dinstein, 'Textural Features for Image Classification,' Ieee Transactions on Systems Man and Cybernetics, vol. Smc3, no. 6, pp. 610-621, 1973.
[33] E. D. Yeh, 'Breast magnetic resonance imaging: current clinical indications,' Magnetic Resonance Imaging Clinics of North America, vol. 18, no. 2, pp. 155-69, vii, 2010.
[34] C. Boetes, 'Update on screening breast MRI in high-risk women,' Magnetic Resonance Imaging Clinics of North America, vol. 18, no. 2, pp. 241-7, viii, 2010.
[35] W. J. Chen, M. L. Giger, U. Bick, and G. M. Newstead, 'Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI,' Medical Physics, vol. 33, no. 8, pp. 2878-2887, 2006.
[36] C. D. Lehman, C. Gatsonis, C. K. Kuhl, R. E. Hendrick, E. D. Pisano, L. Hanna, et al., 'MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer,' New England Journal of Medicine, vol. 356, no. 13, pp. 1295-1303, 2007.
[37] W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, et al., 'Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,' Radiology, vol. 233, no. 3, pp. 830-49, 2004.
[38] D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, et al., 'Magnetic resonance imaging of the breast prior to biopsy,' Jama-Journal of the American Medical Association, vol. 292, no. 22, pp. 2735-2742, 2004.
[39] U. Fischer, L. Kopka, and E. Grabbe, 'Breast carcinoma: Effect of preoperative contrast-enhanced MR imaging on the therapeutic approach,' Radiology, vol. 213, no. 3, pp. 881-888, 1999.
[40] M. Q. Lin, J. H. Chen, K. Nie, D. Chang, O. Nalcioglu, and M. Y. Su, 'Algorithm-Based Method for Detection of Blood Vessels in Breast MRI for Development of Computer-Aided Diagnosis,' Journal of Magnetic Resonance Imaging, vol. 30, no. 4, pp. 817-824, 2009.
[41] T. E. Wilson, M. A. Helvie, and D. A. August, 'Breast cancer in the elderly patient: early detection with mammography,' Radiology, vol. 190, no. 1, pp. 203-207, 1994.
[42] M. A. Roubidoux, M. A. Helvie, N. E. Lai, and C. Paramagul, 'Bilateral breast cancer: early detection with mammography,' Radiology, vol. 196, no. 2, pp. 427-431, 1995.
[43] S. Buseman, J. Mouchawar, N. Calonge, and T. Byers, 'Mammography screening matters for young women with breast carcinoma: evidence of downstaging among 42-49-year-old women with a history of previous mammography screening,' Cancer, vol. 97, no. 2, pp. 352-8, 2003.
[44] E. A. Sickles, R. A. Filly, and P. W. Callen, 'Benign breast lesions: ultrasound detection and diagnosis,' Radiology, vol. 151, no. 2, pp. 467-470, 1984.
[45] R. F. Chang, K. C. Chang-Chien, E. Takada, C. S. Huang, Y. H. Chou, C. M. Kuo, et al., 'Rapid image stitching and computer-aided detection for multipass automated breast ultrasound,' Medical Physics, vol. 37, no. 5, pp. 2063-2073, 2010.
[46] D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, et al., 'Magnetic resonance imaging of the breast prior to biopsy,' JAMA, vol. 292, no. 22, pp. 2735-42, 2004.
[47] C. K. Kuhl and H. H. Schild, 'Dynamic image interpretation of MRI of the breast,' Journal of Magnetic Resonance Imaging, vol. 12, no. 6, pp. 965-974, 2000.
[48] W. Lu, J. Yao, C. Lu, S. Prindiville, and C. Chow, 'DCE-MRI Segmentation and Motion Correction Based on Active Contour Model and Forward Mapping,' presented at the Proceedings of the Seventh ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2006.
[49] S. Krishnan, T. L. Chenevert, M. A. Helvie, and F. L. Londy, 'Linear motion correction in three dimensions applied to dynamic gadolinium enhanced breast imaging,' Medical Physics, vol. 26, no. 5, pp. 707-714, 1999.
[50] J. B. Maintz and M. A. Viergever, 'A survey of medical image registration,' Med Image Anal, vol. 2, no. 1, pp. 1-36, 1998.
[51] B. Zitova and J. Flusser, 'Image registration methods: a survey,' Image and Vision Computing, vol. 21, no. 11, pp. 977-1000, 2003.
[52] C. J. Chen, R. F. Chang, W. K. Moon, D. R. Chen, and H. K. Wu, '2-D ultrasound strain images for breast cancer diagnosis using nonrigid subregion registration,' Ultrasound in Medicine and Biology, vol. 32, no. 6, pp. 837-846, 2006.
[53] J. G. Sled, A. P. Zijdenbos, and A. C. Evans, 'A nonparametric method for automatic correction of intensity nonuniformity in MRI data,' IEEE Transactions on Medical Imaging, vol. 17, no. 1, pp. 87-97, 1998.
[54] U. Vovk, F. Pernus, and B. Likar, 'A review of methods for correction of intensity inhomogeneity in MRI,' IEEE Transactions on Medical Imaging, vol. 26, no. 3, pp. 405-421, 2007.
[55] N. J. Tustison, B. B. Avants, P. A. Cook, Y. J. Zheng, A. Egan, P. A. Yushkevich, et al., 'N4ITK: Improved N3 Bias Correction,' IEEE Transactions on Medical Imaging, vol. 29, no. 6, pp. 1310-1320, 2010.
[56] S. van Engeland, P. R. Snoeren, H. Huisman, C. Boetes, and N. Karssemeijer, 'Volumetric breast density estimation from full-field digital mammograms,' IEEE Transactions on Medical Imaging, vol. 25, no. 3, pp. 273-282, 2006.
[57] J. H. Chen, W. K. Moon, Y. W. Shen, C. S. Huang, S. C. Luo, A. Kuzucan, et al., 'Comparative study of density analysis using automated whole breast ultrasound and MRI,' Medical Physics, vol. 38, no. 1, pp. 382-389, 2011.
[58] M. Lin, J.-H. Chen, O. Nalcioglu, and M.-Y. L. Su, 'Automatic Template-based Breast Segmentation on MRI Using Nonrigid Registration Algorithms,' presented at the International Society for Magnetic Resonance in Medicine (ISMRM) conference, Melbourne, Australia, 2012.
[59] R. F. Chang, W. K. Moon, Y. W. Shen, C. S. Huang, and L. R. Chiang, 'Computer-Aided Diagnosis for the Classification of Breast Masses in Automated Whole Breast Ultrasound Images,' Ultrasound in Medicine and Biology, vol. 37, no. 4, pp. 539-548, 2011.
[60] A. Pitiot, A. W. Toga, N. Ayache, and P. Thompson, 'Texture based MRI segmentation with a two-stage hybrid neural classifier,' in Neural Networks, 2002. IJCNN '02. Proceedings of the 2002 International Joint Conference, 2002, pp. 2053-2058.
[61] S. M. Galbraith, M. A. Lodge, N. J. Taylor, G. J. S. Rustin, S. Bentzen, J. J. Stirling, et al., 'Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis,' NMR in Biomedicine, vol. 15, no. 2, pp. 132-142, 2002.
[62] P. S. Tofts, B. Berkowitz, and M. D. Schnall, 'Quantitative-Analysis of Dynamic Gd-Dtpa Enhancement in Breast-Tumors Using a Permeability Model,' Magnetic Resonance in Medicine, vol. 33, no. 4, pp. 564-568, 1995.
[63] C. D. Pham, T. P. L. Roberts, N. van Bruggen, O. Melnyk, J. Mann, N. Ferrara, et al., 'Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor,' Cancer Investigation, vol. 16, no. 4, pp. 225-230, 1998.
[64] A. P. Field, Discovering statistics using SPSS, 3rd ed. Los Angeles: SAGE Publications, 2009.
[65] P. Hayton, M. Brady, L. Tarassenko, and N. Moore, 'Analysis of dynamic MR breast images using a model of contrast enhancement,' Med Image Anal, vol. 1, no. 3, pp. 207-24, 1997.
[66] Rosenfel.A, 'Connectivity in Digital Pictures,' Journal of the Acm, vol. 17, no. 1, pp. 146-&, 1970.
[67] Rosenfel.A and J. L. Pfaltz, 'Sequential Operations in Digital Picture Processing,' Journal of the Acm, vol. 13, no. 4, pp. 471-&, 1966.
[68] S. Banik, R. M. Rangayyan, and J. E. L. Desautels, 'Detection of Architectural Distortion in Prior Mammograms,' IEEE Transactions on Medical Imaging, vol. 30, no. 2, pp. 279-294, 2011.
[69] E. Bribiesca, 'An easy measure of compactness for 2D and 3D shapes,' Pattern Recognition, vol. 41, no. 2, pp. 543-554, 2008.
[70] K. F. Mulchrone and K. R. Choudhury, 'Fitting an ellipse to an arbitrary shape: implications for strain analysis,' Journal of Structural Geology, vol. 26, no. 1, pp. 143-153, 2004.
[71] Q. Zhu and L.-K. Poh, 'A transformation-invariant recursive subdivision method for shape analysis,' in Pattern Recognition, 1988., 9th International Conference on, 1988, pp. 833-835 vol.2.
[72] B. M. Dawant, A. P. Zijdenbos, and R. A. Margolin, 'Correction of Intensity Variations in Mr-Images for Computer-Aided Tissue Classification,' IEEE Transactions on Medical Imaging, vol. 12, no. 4, pp. 770-781, 1993.
[73] S. Y. Yu and L. Guan, 'A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films,' IEEE Transactions on Medical Imaging, vol. 19, no. 2, pp. 115-126, 2000.
[74] Y. Bengio and Y. Grandvalet, 'No unbiased estimator of the variance of K-fold cross-validation,' Journal of Machine Learning Research, vol. 5, pp. 1089-1105, 2004.
[75] A. Shimauchi, S. A. Jansen, H. Abe, N. Jaskowiak, R. A. Schmidt, and G. M. Newstead, 'Breast cancers not detected at MRI: review of false-negative lesions.,' American Journal of Roentgenology, vol. 194, no. 6, pp. 1674-1679, 2010.
[76] L. Devroye, Non-uniform random variate generation. New York: Springer-Verlag, 1986.
[77] P. C. Vos, J. O. Barentsz, N. Karssemeijer, and H. J. Huisman, 'Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis,' Physics in Medicine and Biology, vol. 57, no. 6, pp. 1527-1542, 2012.
[78] D.-J. Kroon and C. H. Slump, 'MRI Modality transformation in demon registration,' presented at the IEEE International Symposium on Biomedical Imaging, ISBI '09, Boston, MA, 2009.
[79] K. Okada and U. Akdemir, 'Blob segmentation using joint space-intensity likelihood ratio test: application to 3D tumor segmentation,' in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 2005, pp. 437-444 vol. 2.
[80] Y. C. Pang, L. Li, W. Y. Hu, Y. X. Peng, L. Z. Liu, and Y. Z. Shao, 'Computerized Segmentation and Characterization of Breast Lesions in Dynamic Contrast-Enhanced MR Images Using Fuzzy c-Means Clustering and Snake Algorithm,' Computational and Mathematical Methods in Medicine, 2012.
[81] A. Ulanovsky and G. Prohl, 'A practical method for assessment of dose conversion coefficients for aquatic biota,' Radiat Environ Biophys, vol. 45, no. 3, pp. 203-214, 2006.
[82] R. M. Haralick, 'Statistical and Structural Approaches to Texture,' Proceedings of the Ieee, vol. 67, no. 5, pp. 786-804, 1979.
[83] A. P. Field, Discovering statistics using SPSS, 3rd ed. Los Angeles: SAGE Publications, 2009.
[84] D. P. Chakraborty, 'Validation and Statistical Power Comparison of Methods for Analyzing Free-response Observer Performance Studies,' Academic Radiology, vol. 15, no. 12, pp. 1554-1566, 2008.
[85] D. P. Chakraborty, E. S. Breatnach, M. V. Yester, B. Soto, G. T. Barnes, and R. G. Fraser, 'Digital and conventional chest imaging: a modified ROC study of observer performance using simulated nodules,' Radiology, vol. 158, no. 1, pp. 35-9, 1986.
[86] E. D. Pisano, R. E. Hendrick, M. J. Yaffe, J. K. Baum, S. Acharyya, J. B. Cormack, et al., 'Diagnostic accuracy of digital versus film mammography: exploratory analysis of selected population subgroups in DMIST,' Radiology, vol. 246, no. 2, pp. 376-83, 2008.
[87] R. T. Dorr and D. S. Alberts, 'Quantitation of Ellipsoid Tumor Areas Using a Circumferential Measuring Device,' Medical Oncology and Tumor Pharmacotherapy, vol. 5, no. 4, pp. 249-251, 1988.
[88] L. Liberman, G. Mason, E. A. Morris, and D. D. Dershaw, 'Does size matter? Positive predictive value of MRI-detected breast lesions as a function of lesion size,' AJR: American Journal of Roentgenology, vol. 186, no. 2, pp. 426-30, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58270-
dc.description.abstractDynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is technique to form images according to the variation information of concentration of the contrast agent, which shows different enhancement in different kinds of tissues. A four-dimensional (4-D) image from each patient is acquired by scanning patient at different time and a 4-D image contains dozens of three-dimensional (3-D) images. In recent studies, DCE-MRI is the most sensitive tool to detect breast cancer by radiologists for clinical practice. Because an acquisition of 3-D DCE-MRI consists of dozens of 2-D images, it is time-consuming to find the tumor or diagnose the cancer from such large amount of images by physicians and the misdetection might occur due to physicians’ fatigues. In order to make inspection of DCE-MRI images more efficient, computer-aided detection (CADe) systems have been proposed to interpret the images. CADe can not only shorten the interpretation time but also probably detect the tumor which could be not found by physicians. However, it is difficult to implement a CADe system to detect tumors efficiently from a large number of 3-D DCE-MRI images. To date, no related studies for development of CADe systems on DCE-MRI images have been reported to detect breast lesions. In the thesis, we proposed two CADe systems for DCE-MRI images. In the first study, the tumor detection based on the two-stage technique was applied to distinguish breast masses from normal tissues using binary logistic regression. The tumor regions which consist of enhanced tissues were detected at first stage and then the second stage were combined to identify the suspected regions which could not be identified easily. The results from two-stage detection algorithm were considered as the detected masses. In the second study, the tumor detection based on fuzzy c-mean (FCM) was proposed to locate enhanced regions firstly on DCE-MRI. Because of the blob-like characteristic of breast mass, we detected masses from the enhanced regions by the Hessian method. The results showed that the two CADe systems have high detection performance for the breast tumor detection on DCE-MRI images.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:09:53Z (GMT). No. of bitstreams: 1
ntu-103-D97922011-1.pdf: 6453911 bytes, checksum: 7129854e8cd4784b06930d7831219ba9 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 II
摘要 III
Abstract V
Contents VIII
List of Figures XII
List of Tables XV
Chapter 1 Introduction 1
1.1. Research Motivation 1
1.2. Issue Descriptions 2
1.2.1. Logistic Regression Technique 3
1.2.2. Fuzzy C-means Technique 4
1.2.3. Hessian Analysis Technique 4
1.3. Organization 5
Chapter 2 Review of Three-Dimensional DCE-MRI Techniques 6
2.1. Introduction 6
2.2. Related Studies 7
2.3. CADe System Procedures 9
2.3.1. Preprocessing 10
2.3.1.1. Motion Correction 10
2.3.1.2. Nonuniformity Bias Correction 11
2.3.2. Segmentation 11
2.3.3. Detection 13
2.3.4. Reduction 13
Chapter 3 Computerized Breast Lesions Detection Using Kinetic and Morphologic Analysis for Dynamic Contrast-Enhanced MRI 15
3.1. Data Acquisition 16
3.2. Motion Correction 18
3.3. Breast Region Segmentation 18
3.4. Feature Extraction 22
3.5. Suspicious Tissue Detection 22
3.6. False Positive Reduction 24
3.7. Statistical Analysis 27
3.8. Results 28
3.8.1. Detection results of trained cases 28
3.8.2. Detection results of test cases 29
3.8.3. False positive reduction by morphologic features 30
3.8.4. Detection performance analysis by FROC curve 31
3.8.5. Analysis for number of suspicious regions 31
3.9. Discussion 42
3.10. Conclusion 46
Chapter 4 Computerized Breast Mass Detection Using Multi-Scale Hessian-Based Analysis for Dynamic Contrast-enhanced MRI 48
4.1. Materials 49
4.2. Methods 49
4.2.1. Motion and Nonuniformity Bias Correction 52
4.2.2. Breast Region Segmentation 54
4.2.3. Suspicious Tissue Detection 56
4.2.4. Breast Mass Detection 60
4.2.5. Mass Selection from Candidates 62
4.2.5.1. Mass Selection by Blob and Enhancement Features 63
4.2.5.2. Mass Selection by Morphologic Features 64
4.2.5.3. Mass Selection by Texture Features 65
4.2.6. Statistical Analysis 67
4.3. Results 68
4.3.1. Statistical Analysis for Mass Selection 68
4.3.2. Mass Selection by Different Features 71
4.3.2.1. Mass Selection 72
4.3.2.2. Detection Performance Analysis with FROC Curves 73
4.3.2.3. Detection Performance Analysis According to Different Size Groups 76
4.4. Discussion 76
4.5. Conclusion 82
Chapter 5 Conclusion and Future Directions 83
Publications 102
dc.language.isoen
dc.subject海森zh_TW
dc.subject兩階段式zh_TW
dc.subject動態對比增強磁振造影zh_TW
dc.subject電腦輔助偵測系統zh_TW
dc.subject乳癌zh_TW
dc.subjectcomputer-aided detectionen
dc.subjecttwo-stageen
dc.subjectHessianen
dc.subjectbreast canceren
dc.subjectDCE-MRIen
dc.title動態對比增強磁振造影自動化腫瘤偵測zh_TW
dc.titleAutomatic Tumor Detection for Dynamic Contrast-Enhanced Magnetic Resonance Imagingen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.coadvisor張允中
dc.contributor.oralexamcommittee曾宇鳳,張簡光哲(cckc@iis.sinica.edu.tw),沈毅偉
dc.subject.keyword乳癌,電腦輔助偵測系統,動態對比增強磁振造影,兩階段式,海森,zh_TW
dc.subject.keywordbreast cancer,computer-aided detection,DCE-MRI,two-stage,Hessian,en
dc.relation.page104
dc.rights.note有償授權
dc.date.accepted2014-04-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
6.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved