Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58235
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭貽生
dc.contributor.authorHsin-Yi Wuen
dc.contributor.author吳欣倚zh_TW
dc.date.accessioned2021-06-16T08:08:57Z-
dc.date.available2014-07-22
dc.date.copyright2014-07-22
dc.date.issued2014
dc.date.submitted2014-05-10
dc.identifier.citationAdamczak, R., Porollo, A., and Meller, J. (2005). Combining prediction of secondary structure and solvent accessibility in proteins. Proteins: Structure, Function, and Bioinformatics 59, 467-475.
Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research 25, 3389-3402.
Aro, E.-M., Virgin, I., and Andersson, B. (1993). Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1143, 113-134.
Asada, K. (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual review of plant biology 50, 601-639.
Baena-González, E., Barbato, R., and Aro, E.-M. (1999). Role of phosphorylation in the repair cycle and oligomeric structure of photosystem II. Planta 208, 196-204.
Barber, J., and Andersson, B. (1992). Too much of a good thing: light can be bad for photosynthesis. Trends in biochemical sciences 17, 61-66.
Bordo, D., and Argos, P. (1991). Suggestions for “safe” residue substitutions in site-directed mutagenesis. Journal of molecular biology 217, 721-729.
Boulin, T., Rapti, G., Briseño-Roa, L., Stigloher, C., Richmond, J.E., Paoletti, P., and Bessereau, J.-L. (2012). Positive modulation of a Cys-loop acetylcholine receptor by an auxiliary transmembrane subunit. Nature neuroscience 15, 1374-1381.
Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.-S., Kuszewski, J., Nilges, M., and Pannu, N.S. (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallographica Section D: Biological Crystallography 54, 905-921.
Carter Jr, C.W., and Carter, C.W. (1979). Protein crystallization using incomplete factorial experiments. J. biol. Chem 254, 12219-12223.
Cudney, R., Patel, S., and McPherson, A. (1994). Crystallization of macromolecules in silica gels. Acta Crystallographica Section D: Biological Crystallography 50, 479-483.
DeLano, W.L. (2002a). The PyMOL molecular graphics system.
DeLano, W.L. (2002b). The PyMOL user’s manual. DeLano Scientific, San Carlos, CA 452.
Delidow, B., Lynch, J., Peluso, J., and White, B. (1993). Polymerase Chain Reaction. In PCR Protocols, B. White, ed (Humana Press), pp. 1-29.
Donella-Deana, A., Meyer, H.E., and Pinna, L. (1991). The use of phosphopeptides to distinguish between protein phosphatase and acid/alkaline phosphatase activities: opposite specificity toward phosphoseryl/phosphothreonyl substrates. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1094, 130-133.
Dyrløv Bendtsen, J., Nielsen, H., von Heijne, G., and Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of molecular biology 340, 783-795.
Ealick, S.E. (2000). Advances in multiple wavelength anomalous diffraction crystallography. Current opinion in chemical biology 4, 495-499.
Emanuelsson, O., Nielsen, H., and Heijne, G.V. (1999). ChloroP, a neural network‐based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science 8, 978-984.
Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallographica Section D: Biological Crystallography 60, 2126-2132.
Fisher, D.K., and Higgins, T.J. (1994). A sensitive, high-volume, colorimetric assay for protein phosphatases. Pharmaceutical research 11, 759-763.
Fraczkiewicz, R., and Braun, W. (1998). Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. Journal of Computational Chemistry 19, 319-333.
Golbeck, J.H., Gantt, E., Allen, J.F., and Osmond, B. (2007 ). Photosynthesis. Energy from the Sun: 14th International Congress on Photosynthesis.
Gouet, P., and Courcelle, E. (2002). ENDscript: a workflow to display sequence and structure information. Bioinformatics 18, 767-768.
Gouet, P., Courcelle, E., and Stuart, D.I. (1999). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305-308.
Gouet, P., Robert, X., and Courcelle, E. (2003). ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic acids research 31, 3320-3323.
Greene, L.H., Lewis, T.E., Addou, S., Cuff, A., Dallman, T., Dibley, M., Redfern, O., Pearl, F., Nambudiry, R., and Reid, A. (2007). The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic acids research 35, D291-D297.
Gromiha, M.M., Oobatake, M., Kono, H., Uedaira, H., and Sarai, A. (1999). Role of structural and sequence information in the prediction of protein stability changes: comparison between buried and partially buried mutations. Protein engineering 12, 549-555.
Guruprasad, K., Reddy, B.B., and Pandit, M.W. (1990). Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering 4, 155-161.
Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. Journal of molecular biology 166, 557-580.
Hankamer, B., Barber, J., and Boekema, E.J. (1997). Structure and membrane organization of photosystem II in green plants. Annual review of plant biology 48, 641-671.
Haußühl, K., Andersson, B., and Adamska, I. (2001). A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. The EMBO journal 20, 713-722.
Holm, L., and Sander, C. (1998). Touring protein fold space with Dali/FSSP. Nucleic acids research 26, 316-319.
Hwang, K.Y., Chung, J.H., Kim, S.-H., Han, Y.S., and Cho, Y. (1999). Structure-based identification of a novel NTPase from Methanococcus jannaschii. Nature Structural & Molecular Biology 6, 691-696.
Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J. (1990). PCR protocols: a guide to methods and applications. (Academic press).
Inoue, H., Nojima, H., and Okayama, H. (1990). High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23-28.
Jancarik, J., and Kim, S.-H. (1991). Sparse matrix sampling: a screening method for crystallization of proteins. Journal of applied crystallography 24, 409-411.
Kawabata, T. (2003). MATRAS: a program for protein 3D structure comparison. Nucleic acids research 31, 3367-3369.
Kieselbach, T., Hagman, Å., Andersson, B., and Schröder, W.P. (1998). The Thylakoid Lumen of Chloroplasts ISOLATION AND CHARACTERIZATION. Journal of Biological Chemistry 273, 6710-6716.
Klimmek, F., Sjödin, A., Noutsos, C., Leister, D., and Jansson, S. (2006). Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. Plant physiology 140, 793-804.
Kodama, T., FUKUI, K., and KOMETANI, K. (1986). The initial phosphate burst in ATP hydrolysis by myosin and subfragment-1 as studied by a modified malachite green method for determination of inorganic phosphate. Journal of biochemistry 99, 1465-1472.
Koivuniemi, A., Aro, E.-M., and Andersson, B. (1995). Degradation of the D1-and D2-proteins of photosystem II in higher plants is regulated by reversible phosphorylation. Biochemistry 34, 16022-16029.
Kramer, D.M., Sacksteder, C.A., and Cruz, J.A. (1999). How acidic is the lumen? Photosynthesis research 60, 151-163.
Krogh, A., Larsson, B., Von Heijne, G., and Sonnhammer, E.L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of molecular biology 305, 567-580.
Kurisu, G., Zhang, H., Smith, J.L., and Cramer, W.A. (2003). Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302, 1009-1014.
Laemmli, U. (1970). Most commonly used discontinuous buffer system for SDS electrophoresis. Nature 227, 680-685.
Laible, M., and Boonrod, K. (2009). Homemade Site Directed Mutagenesis of Whole Plasmids, e1135.
Lapid, C., and Gao, Y. (2003). PrimerX-Automated design of mutagenic primers for site-directed mutagenesis.
Lawrence Jr, J.C. (1992). Signal transduction and protein phosphorylation in the regulation of cellular metabolism by insulin. Annual review of physiology 54, 177-193.
Lee, J.Y., Kwak, J.E., Moon, J., Eom, S.H., Liong, E.C., Pedelacq, J.-D., Berendzen, J., and Suh, S.W. (2001). Crystal structure and functional analysis of the SurE protein identify a novel phosphatase family. Nature Structural & Molecular Biology 8, 789-794.
Long, S., Humphries, S., and Falkowski, P.G. (1994). Photoinhibition of photosynthesis in nature. Annual review of plant biology 45, 633-662.
McGuffin, L.J., Bryson, K., and Jones, D.T. (2000). The PSIPRED protein structure prediction server. Bioinformatics 16, 404-405.
Melis, A. (1999). Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage< i> in vivo</i>? Trends in plant science 4, 130-135.
Michel, H., Griffin, P., Shabanowitz, J., Hunt, D., and Bennett, J. (1991). Tandem mass spectrometry identifies sites of three post-translational modifications of spinach light-harvesting chlorophyll protein II. Proteolytic cleavage, acetylation, and phosphorylation. Journal of Biological Chemistry 266, 17584-17591.
Mullis, K.B., and Faloona, F.A. (1987). Specific Synthesis of DNA Invitro Via a Polymerase-Catalyzed Chain-Reaction. Method Enzymol 155, 335-350.
Mulo, P., Sirpiö, S., Suorsa, M., and Aro, E.-M. (2008). Auxiliary proteins involved in the assembly and sustenance of photosystem II. Photosynthesis research 98, 489-501.
Nelson, N., and Ben-Shem, A. (2004). The complex architecture of oxygenic photosynthesis. Nature Reviews Molecular Cell Biology 5, 971-982.
Nelson, N., and Yocum, C.F. (2006). Structure and function of photosystems I and II. Annu. Rev. Plant Biol. 57, 521-565.
Ohmura, T., Ueda, T., Hashimoto, Y., and Imoto, T. (2001). Tolerance of point substitution of methionine for isoleucine in hen egg white lysozyme. Protein engineering 14, 421-425.
Oliver, T., Schmidt, B., Nathan, D., Clemens, R., and Maskell, D. (2005). Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW. Bioinformatics 21, 3431-3432.
Otwinowski, Z., and Minor, W. (1997). HKL Denzo and Scalepack program package. Nonius BV, Delft.
Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature methods 8, 785-786.
Petersson, U., Funk, C., and Schroder, W. Identification of potential metal-binding proteins in the thylakoid lumen of spinach. Science Access 3.
Pottosin, I., and Schönknecht, G. (1996). Ion channel permeable for divalent and monovalent cations in native spinach thylakoid membranes. The Journal of membrane biology 152, 223-233.
Prlić, A., Bliven, S., Rose, P.W., Bluhm, W.F., Bizon, C., Godzik, A., and Bourne, P.E. (2010). Pre-calculated protein structure alignments at the RCSB PDB website. Bioinformatics 26, 2983-2985.
Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., Forslund, K., Ceric, G., and Clements, J. (2012). The Pfam protein families database. Nucleic acids research 40, D290-D301.
Renger, T. (2009). Theory of excitation energy transfer: from structure to function. Photosynthesis research 102, 471-485.
Rice, L.M., Earnest, T., and Brunger, A.T. (2000). Single-wavelength anomalous diffraction phasing revisited. Acta Crystallographica Section D: Biological Crystallography 56, 1413-1420.
Schubert, M., Petersson, U.A., Haas, B.J., Funk, C., Schröder, W.P., and Kieselbach, T. (2002). Proteome map of the chloroplast lumen of Arabidopsis thaliana. Journal of Biological Chemistry 277, 8354-8365.
Sharma, N., Kushwaha, R., Sodhi, J., and Bhalla, T. (2009). In Silico analysis of amino acid sequences in relation to specificity and physiochemical properties of some microbial nitrilases. J Proteomics Bioinform 2, 185-192.
Sharp, P.A., Sugden, B., and Sambrook, J. (1973). Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose-ethidium bromide electrophoresis. Biochemistry 12, 3055-3063.
Shou, M., Mei, Q., ETTORE, J.M., Dai, R., Baillie, T., and Rushmore, T. (1999). Sigmoidal kinetic model for two co-operative substrate-binding sites in a cytochrome P450 3A4 active site: an example of the metabolism of diazepam and its derivatives. Biochem. J 340, 845-853.
Sillitoe, I., Cuff, A.L., Dessailly, B.H., Dawson, N.L., Furnham, N., Lee, D., Lees, J.G., Lewis, T.E., Studer, R.A., and Rentzsch, R. (2013). New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures. Nucleic acids research 41, D490-D498.
Sirpio, S., Allahverdiyeva, Y., Suorsa, M., Paakkarinen, V., Vainonen, J., Battchikova, N., and Aro, E. (2007). TLP18. 3, a novel thylakoid lumen protein regulating photosystem II repair cycle. Biochem. J 406, 415-425.
Sivakumar, K., and Balaji, S. (2007). In silico characterization of antifreeze proteins using computational tools and servers. Journal of Chemical Sciences 119, 571-579.
Smith, P., Krohn, R.I., Hermanson, G., Mallia, A., Gartner, F., Provenzano, M., Fujimoto, E., Goeke, N., Olson, B., and Klenk, D. (1985). Measurement of protein using bicinchoninic acid. Analytical biochemistry 150, 76-85.
Spetea, C., and Lundin, B. (2012). Evidence for nucleotide-dependent processes in the thylakoid lumen of plant chloroplasts–an update. FEBS letters 586, 2946-2954.
Sun, G., Bailey, D., Jones, M.W., and Markwell, J. (1989). Chloroplast thylakoid protein phosphatase is a membrane surface-associated activity. Plant physiology 89, 238-243.
Terwilliger, T. (2003). SOLVE and RESOLVE: automated structure solution, density modification and model building. Journal of synchrotron radiation 11, 49-52.
Terwilliger, T.C., and Berendzen, J. (1999). Automated MAD and MIR structure solution. Acta Crystallographica Section D: Biological Crystallography 55, 849-861.
Thompson, J.D., Gibson, T., and Higgins, D.G. (2002). Multiple sequence alignment using ClustalW and ClustalX. Current protocols in bioinformatics, 2.3. 1-2.3. 22.
Trotta, A., Wrzaczek, M., Scharte, J., Tikkanen, M., Konert, G., Rahikainen, M., Holmström, M., Hiltunen, H.-M., Rips, S., and Sipari, N. (2011). Regulatory subunit B′ γ of protein phosphatase 2A prevents unnecessary defense reactions under low light in Arabidopsis. Plant physiology 156, 1464-1480.
Vener, A.V., Harms, A., Sussman, M.R., and Vierstra, R.D. (2001). Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes ofArabidopsis thaliana. Journal of biological chemistry 276, 6959-6966.
Vener, A.V., Rokka, A., Fulgosi, H., Andersson, B., and Herrmann, R.G. (1999). A cyclophilin-regulated PP2A-like protein phosphatase in thylakoid membranes of plant chloroplasts. Biochemistry 38, 14955-14965.
Walden, H. (2010). Selenium incorporation using recombinant techniques. Acta Crystallographica Section D: Biological Crystallography 66, 352-357.
Walker, J.M. (2009). The bicinchoninic acid (BCA) assay for protein quantitation. In The Protein Protocols Handbook (Springer), pp. 11-15.
Weiner, M.P., Costa, G.L., Schoettlin, W., Cline, J., Mathur, E., and Bauer, J.C. (1994). Site-directed mutagenesis of double-stranded DNA by the polymerase chain reaction. Gene 151, 119-123.
Weiss, J.N. (1997). The Hill equation revisited: uses and misuses. The FASEB Journal 11, 835-841.
Woodman, M.E. (2008). Direct PCR of intact bacteria (colony PCR). Current protocols in microbiology, A. 3D. 1-A. 3D. 6.
Yuan, Z., Zhang, F., Davis, M.J., Bodén, M., and Teasdale, R.D. (2006). Predicting the solvent accessibility of transmembrane residues from protein sequence. Journal of proteome research 5, 1063-1070.
Zhang, L., Paakkarinen, V., Suorsa, M., and Aro, E.-M. (2001). A SecY homologue is involved in chloroplast-encoded D1 protein biogenesis. Journal of Biological Chemistry 276, 37809-37814.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58235-
dc.description.abstractAtTLP18.3蛋白位於阿拉伯芥類囊體內腔,具有285個胺基酸。依序列分析可分為三段: N端為導引訊息,C端為穿膜的疏水性胺基酸序列以及一段功能未知的區域 (DUF477 domain)。之前研究認為AtTLP18.3是參與光系統II修復機制的輔助性蛋白之一,但其分子機制未明。為了進一步瞭解它的分子功能,本研究利用X光晶體繞射實驗決定AtTLP18.3的立體結構。藉由大腸桿菌系統大量表現已經去除N端導引訊息及C端穿膜區的AtTLP18.3,因分析此序列發現在這段僅帶有功能未知區域的截斷蛋白上並無甲硫胺酸,因此將第128,159位置的白胺酸及異白胺酸以定點突變方法置換成甲硫胺酸,並純化結晶得含重原子硒的甲硫胺酸衍生物晶體,以利用異常色散法取得相角,經過X-光繞射分析,野生型及突變型AtTLP18.3皆屬於正交晶系,所得之晶胞參數皆為a = 46.9, b = 49.8, c =76.7 Å, α=β=γ=90° 所屬空間群為P212121。以單波長異常色散法計算其相角,並進一步修正並取得其蛋白質結構,將此結構以MATRAS、DALI、CATH等蛋白質資料庫進行結構比對,發現其功能可能具有無機焦磷酸水解酶活性之可能,經以酵素活性分析證實其具有酸性磷酸酶之活性。zh_TW
dc.description.abstractAtTLP18.3 is a thylakoid lumen protein with 285 amino acids. The protein can be divided into three regions based on sequence analysis: a chloroplast transit peptide, a domain of unknown function (DUF477) and a transmenebrane α-helix (TMH). Previous studies indicated that the AtTLP18.3 protein is an auxiliary protein of photosystem II (PSII) repair cycle. In order to clarify the possible molecular function of the AtTLP18.3 protein, the crystal structures of the truncated AtTLP18.3 without targeting signal and TMH were resolved. Since there is no any methionine residue in the truncated AtTLP18.3 protein, we combined the prediction of secondary structure and solvent accessibility and selected leucine (L128M) and isolecine (I159M) residues for methionine substitution. The crystals of native and double mutated AtTLP18.3 shows isomorphous in space group P212121 with unit-cell parameters a = 46.9, b = 49.8, c =76.7 Å, α=β=γ=90°. Finally, the structure of mutant was resolved at a resolution 2.6 Å using single-wavelength anomalous dispersion method, and the native structure was resolved at 1.6 Å resolution. For further structural comparison, the native structure of truncated AtTLP18.3 was submitted to the CATH, DALI and MATRAS database to search similar folding of protein with known function. The results showed that the structure of AtTLP18.3 resembled to various inorganic pyrophosphatase. The enzymatic activity of AtTLP18.3 was further identified by alkaline/acid phosphatase assay. Therefore, we proposed that the function of AtTLP18.3 will act as phosphatase to remove the phosphate group from damage protein for repair cycle.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:08:57Z (GMT). No. of bitstreams: 1
ntu-103-F92b42016-1.pdf: 5274388 bytes, checksum: 50fadbc3a74e60a91ed4e6674a72cb6c (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要 i
Abstract ii
Table of Contents iii
List of figures vii
List of tables ix
Abbreviations x
Chapter 1 Introduction 13
1.1 Photosynthesis 13
1.2 Thylakoid membranes in chloroplast 14
1.3 Photoinhibition 14
1.4 Photodamage and the repair cycle of PSII 15
1.5 Auxiliary proteins in the PSII repair cycle 16
1.6 Chloroplast thylakoid lumen protein—AtTLP18.3 16
1.7 Deducing protein function from structure 17
1.8 Anomalous dispersion for phase problem 18
1.9 Goals for the thesis project 18
Chapter 2 Materials and Methods 20
2.1 Materials 20
2.1.1 Chemicals 20
2.1.2 Kits 20
2.1.3 Enzymes 20
2.1.4 Bacterial strains 21
2.1.5 Plasmids 21
2.1.6 Oligonucleotides 21
2.1.7 Synthetic phosphorylated oligopeptides 22
2.1.8 General buffers, media and solution 22
2.1.9 Bioinformatics analysis 26
2.2 Methods 28
2.2.1 Plant materials and growth conditions 28
2.2.2 cDNA cloning of AtTLP18.3 28
2.2.3 Culturing and storage of E. coli strains 28
2.2.4 Isolation and purification of plasmid DNA from E. coli 29
2.2.5 Determination of the DNA concentration 29
2.2.6 Agarose gel electrophoresis 30
2.2.7 Isolation of DNA fragments from agarose gels 30
2.2.8 Preparation of chemically competent E. coli cells 30
2.2.9 Chemical transformation of E. coli 31
2.2.10 Amplification of DNA fragments by PCR 31
2.2.11 Site directed mutagenesis by PCR 32
2.2.12 Screening Colonies by PCR 33
2.2.13 DNA sequencing 33
2.2.14 Small-scale protein expression test 33
2.2.15 Large-scale protein expression 34
2.2.16 Preparation of selenomethionine-labeled protein 34
2.2.17 Protein purification 35
2.2.18 Determination of protein concentration 36
2.2.19 Storage of purified proteins 36
2.2.20 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis 36
2.2.21 Crystallization 37
2.2.22 Data collection, and structure determination 38
2.2.23 Phosphatase activity assay 39
Chapter 3 Results 40
3.1 Bioinformatics analysis 40
3.1.1 Multiple sequence alignment of AtTLP18.3 40
3.1.2 Sequence analysis of AtTLP18.3 40
3.1.3 In silico characterization of physicochemical parameters 41
3.1.4 Secondary structure and solvent accessibility prediction 42
3.2 Protein expression and purification 42
3.2.1 Optimization of Expression 42
3.2.2 Large-scale protein purification using Äkta prime plus 43
3.2.3 Enzymatic cleavage to remove the GST affinity tag 43
3.3 Residue selection for methionine substitution 43
3.4 Crystallization 45
3.5 Protein structure of AtTLP18.3 45
3.5.1 Structure determination 45
3.5.2 Overall structure 46
3.6 Structure comparison with known function protein 47
3.6.1 CATH classfication 47
3.6.2 MATRAS and DALI servers 47
3.7 Phosphatase activity assay 48
3.7.1 Phosphatase activity Assay using pNPP as substrate 48
3.7.2 Enzymatic kinetics with different substrates 49
3.8 Comparison of Wild-type and mutant 50
3.8.1 Structure comparison 50
3.8.2 Enzyme activity of mutant AtTLP18.3 51
3.8.3 Overall comparison of wild-type and mutants 51
3.9 Structure of the AtTLP18.3-pSer Complex 52
Chapter 4 Discussions 53
4.1 Combining secondary structure and protein solvent accessibility prediction in methionine substitution 53
4.2 AtTLP18.3 is an acid phosphatase in thylakoid lumen 53
4.3 Is AtTLP18.3 involved in the PSII repair cycle? 54
4.4 DUF477 is a novel acid phosphatase domain 54
Chapter 5 Summary 56
References 58
Figures 67
Tables 93
Publications 107
dc.language.isoen
dc.subject類囊體內腔蛋白zh_TW
dc.subject新穎酸性磷解?zh_TW
dc.subjectnovel acid phosphataseen
dc.subjectthylakoid lumen proteinen
dc.title阿拉伯芥類囊體內腔新穎酸性磷解酶之晶體結構及功能分析zh_TW
dc.titleStructural and functional characterization of a novel acid phosphatase: Arabidopsis thylakoid lumen protein AtTLP18.3en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee鄭石通,何國傑,林讚標,張世宗,蔡麗珠
dc.subject.keyword新穎酸性磷解?,類囊體內腔蛋白,zh_TW
dc.subject.keywordnovel acid phosphatase,thylakoid lumen protein,en
dc.relation.page126
dc.rights.note有償授權
dc.date.accepted2014-05-12
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
5.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved