請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58218完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張上鎮 | |
| dc.contributor.author | Wan-Jung Chang | en |
| dc.contributor.author | 張菀蓉 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:08:33Z | - |
| dc.date.available | 2019-07-22 | |
| dc.date.copyright | 2014-07-22 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-05-26 | |
| dc.identifier.citation | 王仁(2012)由生理與生化性狀評估孟宗竹材的砍伐與利用。國立中興大學森林學系碩士論文。68頁。
呂錦明(2001)竹林之培育及經營管理。林業叢刊第135號。204頁。 呂錦明(2010)臺灣竹圖鑑。晨星出版社。271頁。 谷雲川、王益真(1990)臺灣竹材製漿之回顧與展望。林產工業 11:195–202。 吳岱澤(2007)綠竹筍不同生長時期non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase之純化與生化性質探討。國立臺灣大學微生物與生化學研究所學位論文。82頁。 吳裕仁(2006)綠竹筍生長過程蛋白質體變化及其抗體庫之建立。國立臺灣大學微生物與生化研究所博士論文。190頁。 吳順昭(1974)以竹材機械性質決定竹林輪伐期之研究。林務局合作試驗報告第4號。49頁。 吳順昭、謝榮生(1990)臺灣新引種竹材構造變異之研究。林產工業 9(1):55–78。 林維治(1958)臺灣竹類生長之研究。臺灣省林業試驗所報告第54號。29頁。 林裕仁(2011)臺灣竹材利用技術回顧與展望。林業研究專訊 18(11):49–55。 高景輝(1987)植物生長與分化。國立編譯館。731頁。 陸象豫(2011)臺灣地區桂竹林及莿竹林水文特性研究。林業研究專訊 18(11):30–32。 曾勇祥(2004)綠竹不同生長階段之基因差異性表現分析。國立臺灣大學微生物與生化學研究所碩士論文。44頁。 溫太輝(1990)竹林生產力因子的評價。竹子研究匯刊 9(2):1–9。 管立豪、陳仲賢(1995)第三次臺灣森林資源及土地利用調查。臺灣省農林廳林務局。258頁。 詹皓程(2005)以Differential display-PCR法選殖綠竹中不同生長時期具差異表現之基因。國立臺灣大學微生物與生化學研究所碩士論文。60頁。 劉建麟(1995)中國大陸產竹材解剖性質之研究。國立臺灣大學森林學研究所碩士論文。144頁。 戴廣耀、楊寶霖、沈榮江(1973)臺灣之竹林資源。臺灣省林務局。81頁。 謝榮生(1983)臺灣產竹材超微構造之研究。國立臺灣大學森林學研究所碩士論文。97頁。 Abid, G., K. Sassi, Y. Muhovski, J. M. Jacquemin, D. Mingeot, N. Tarchoun, and J. P. Baudoin (2012) Comparative expression and cellular localization of myo-inositol phosphate synthase (MIPS) in the wild type and in an EMS mutant during common bean (Phaseolus vulgaris L.) seed development. Plant Molecular Biology Reporter 30(3): 780-793. Adams, R. P. (2001) Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Allured Publishing Corporation, Illinois, 456 pp. Awotunde, O. S., K. Lechward, K. Krajewska, S. Zolnierowicz, and G. Muszynska (2003) Interaction of maize (Zea mays) protein phosphatase 2A with tubulin. Acta Biochimica Polonica 50(1): 131-138. Baba, K., Y. Sone, H. Kaku, A. Misaki, N. Shibuya, and T. Itoh (1994) Localization of hemicelluloses in the cell-walls of some woody-plants using immonugold electron-microscopy. Holzforschung 48(4): 297-300. Bai, H., X. Y. Wang, Y. H. Cao, X. M. Li, L. Y. Li, H. Chen, L. J. Liu, J. H. Zhu, and G. Z. Liu (2010) Expression profiling of rice chloroplast proteins during growth and development. Progress in Biochemistry and Biophysics 37(9): 988-995. Bassil, E., A. Coku, and E. Blumwald (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na/H antiporters in plant growth and development. Journal of Experimental Botany 63(16): 5727-5740. Beljkas, B., J. Matic, I. Milovanovic, P. Jovanov, A. Misan, and L. Saric (2010) Rapid method for determination of protein content in cereals and oilseeds: validation, measurement uncertainty and comparison with the Kjeldahl method. Accreditation and Quality Assurance 15(10): 555-561. Bitter, T. and H. M. Muir (1962) A modified uronic acid carbazole reaction. Analytical Biochemistry 4(4): 330-334. Blake, A. W., L. McCartney, J. E. Flint, D. N. Bolam, A. B. Boraston, H. J. Gilbert, and J. P. Knox (2006) Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. Journal of Biological Chemistry 281(39): 29321-29329. Blakeney, A. B., P. J. Harris, R. J. Henry, and B. A. Stone (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydrate Research 113(2): 291-299. Boerjan, W. (2005) Biotechnology and the domestication of forest trees. Current Opinion in Biotechnology 16(2): 159-166. Bouche, N., A. Yellin, W. A. Snedden, and H. Fromm (2005) Plant-specific calmodulin-binding proteins. Annual Review of Plant Biology 56: 435-466. Buchanan, B. B., W. Gruissem, and R. L. Jones (2000) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, Md., 1367 pp. Carpita, N. C. and D. M. Gibeaut (1993) Structural models of primary-cell walls in flowering plants - consistency of molecular-structure with the physical-properties of the walls during growth. Plant Journal 3(1): 1-30. Chang, S., J. Puryear, and J. Cairney (1993) A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11(2): 113-116. Chang, W. J., M. J. Chang, S. T. Chang, and T. F. Yeh (2013) Chemical composition and immunohistological variations of a growing bamboo shoot. Journal of Wood Chemistry and Technology 33(2): 144-155. Chen, C. L. (1992) Nitrobenzene and cupric oxide oxidation. In Methods in Lignin Chemistry, S. Y. Lin and C. W. Dence, Eds., Springer-Verlag, New York, pp. 301-321. Chen, H. and L. M. Xiong (2010) myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development. Journal of Biological Chemistry 285(31): 24238-24247. Chetal, S., D. S. Wagle, and H. S. Nainawatee (1981) Glycolipid changes in wheat and barley chloroplast under water-stress. Plant Science Letters 20(3): 225-230. Chetal, S., D. S. Wagle, and H. S. Nainawatee (1983) Glycolipid and phospholipid-composition of wheat and barley chloroplasts. Biologia Plantarum 25(4): 246-251. Chiu, W. B., C. H. Lin, C. J. Chang, M. H. Hsieh, and A. Y. Wang (2006) Molecular characterization and expression of four cDNAs encoding sucrose synthase from green bamboo Bambusa oldhamii. New Phytologist 170(1): 53-63. Choudhury, D., J. K. Sahu, and G. D. Sharma (2012) Value addition to bamboo shoots: a review. Journal of Food Science and Technology 49(4): 407-414. Connett, R. J. and J. J. Blum (1972) Metabolic pathways in Tetrahymena - Estimation of rates of tricarboxylic acid cycle, glyoxylate cycle, lipid-synthesis, and related pathways by use of multiple labeled substrates. Journal of Biological Chemistry 247(16): 5199-5209. Cornah, J. E., V. Germain, J. L. Ward, M. H. Beale, and S. M. Smith (2004) Lipid utilization, gluconeogenesis, and seedling growth in Arabidopsis mutants lacking the glyoxylate cycle enzyme malate synthase. Journal of Biological Chemistry 279(41): 42916-42923. Cui, K., C. Y. He, J. G. Zhang, A. G. Duan, and Y. F. Zeng (2012) Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo. Journal of Proteome Research 11(4): 2492-2507. Cutler, D. F., C. E. J. Botha, and D. W. Stevenson (2008) Plant anatomy: an applied approach. Blackwell Pub, Malden, MA, 302 pp. Dence, C. W. (1992) The determination of lignin. In Methods in Lignin Chemistry, S. Y. Lin and C. W. Dence, Eds., Springer-Verlag, New York, pp. 33-58. Diatchenko, L., Y. F. C. Lau, A. P. Campbell, A. Chenchik, F. Moqadam, B. Huang, S. Lukyanov, K. Lukyanov, N. Gurskaya, E. D. Sverdlov, and P. D. Siebert (1996) Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences of the United States of America 93(12): 6025-6030. Dong, J., X. M. Wang, K. Wang, Z. Wang, and H. W. Gao (2012) Isolation and characterization of a gene encoding an ethylene responsive factor protein from Ceratoides arborescens. Molecular Biology Reports 39(2): 1349-1357. Embaye, K. (2000) The indigenous bamboo forests of Ethiopia: An overview. AMBIO: A Journal of the Human Environment 29(8): 518-521. Fiehn, O., J. Kopka, P. Dormann, T. Altmann, R. N. Trethewey, and L. Willmitzer (2000) Metabolite profiling for plant functional genomics. Nature Biotechnology 18(11): 1157-1161. Fleischmann, T. T., L. B. Scharff, S. Alkatib, S. Hasdorf, M. A. Schoettler, and R. Bock (2011) Nonessential plastid-encoded ribosomal proteins in tobacco: a developmental role for plastid translation and implications for reductive genome evolution. Plant Cell 23(9): 3137-3155. Fujii, Y., J. Azuma, R. H. Marchessault, F. G. Morin, S. Aibara, and K. Okamura (1993) Chemical composition change of bamboo accompanying its growth. Holzforschung 47(2): 109-115. Fujii, Y., J. Azuma, and K. Okamura (1996) Changes in chemical composition within an internode of elongating bamboo. Holzforschung 50(6): 525-530. Funes, S., H. Westerburg, F. Jaimes-Miranda, M. W. Woellhaf, J. L. Aguilar-Lopez, L. Janssen, N. Bonnefoy, F. Kauff, and J. M. Herrmann (2013) Partial suppression of Oxa1 mutants by mitochondria-targeted signal recognition particle provides insights into the evolution of the cotranslational insertion systems. FEBS Journal 280(3): 904-915. Grosser, D. and W. Liese (1971) On the anatomy of Asian bamboos, with special reference to their vascular bundles. Wood Science and Technology 5(4): 290-312. Guilfoyle, T. J. and G. Hagen (2007) Auxin response factors. Current Opinion in Plant Biology 10(5): 453-460. Hamzehzarghani, H., A. C. Kushalappa, Y. Dion, S. Rioux, A. Comeau, V. Yaylayan, W. D. Marshall, and D. E. Mather (2005) Metabolic profiling and factor analysis to discriminate quantitative resistance in wheat cultivars against fusarium head blight. Physiological and Molecular Plant Pathology 66(4): 119-133. Hardtke, C. S. and T. Berleth (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO Journal 17(5): 1405-1411. Harris, P. J. and R. D. Hartley (1976) Detection of bound ferulic acid in cell-walls of Gramineae by ultraviolet fluorescence microscopy. Nature 259(5543): 508-510. He, L. F. and N. Terashima (1991) Formation and structure of lignin in monocotyledons. IV. Deposition process and structural diversity of the lignin in the cell-wall of sugarcane and rice plant studied by ultraviolet microscopic spectroscopy. Holzforschung 45(3): 191-198. He, X. Q., S. W. Li, Y. X. Hu, and J. X. Lin (1999) Microspectrofluorometric analysis of autofluorescence in the cell walls of Phyllostachys pubescens Culm. Acta Botanica Sinica 41(7): 711-714. Hsieh, R. S., S. C. Wu, and H. H. Wang (1986) Studies on the tissue structure of leptomorph rhizome and pachymorph rhizome bamboos. Forest Product Industries 5(2): 49-61. Huynh, Q. K., C. M. Hironaka, E. B. Levine, C. E. Smith, J. R. Borgmeyer, and D. M. Shah (1992) Antifungal proteins from plants - purification, molecular-cloning, and antifungal properties of chitinases from maize seed. Journal of Biological Chemistry 267(10): 6635-6640. Ibbett, R., S. Gaddipati, S. Hill, and G. Tucker (2013) Structural reorganisation of cellulose fibrils in hydrothermally deconstructed lignocellulosic biomass and relationships with enzyme digestibility. Biotechnology for Biofuels 6(33): 1-15. Itoh, T. (1990) Lignification of bamboo (Phyllostachys heterocycla Mitf.) during its growth. Holzforschung 44(3): 191-200. Jiang, H. W., M. J. Liu, I. C. Chen, C. H. Huang, L. Y. Chao, and H. L. Hsieh (2010) A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiology 154(4): 1646-1658. Jiang, Z. H., Z. J. Liu, B. H. Fei, Z. Y. Cai, Y. Yu, and X. E. Liu (2012) The pyrolysis characteristics of moso bamboo. Journal of Analytical and Applied Pyrolysis 94: 48-52. Jones, L., G. B. Seymour, and J. P. Knox (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1->4)-beta-D-galactan. Plant Physiology 113(4): 1405-1412. Kimura, Y., I. Yahara, and S. Lindquist (1995) Role of the protein chaperone YDJ1 in establishing Hsp90-mediated signal-transduction pathways. Science 268(5215): 1362-1365. Lee, C. L. and T. C. Chin (1960) Anatomical studies of some chinese bamboos. Acta Botanica Sinica 9(1): 76 - 97. Lee, C. L., T. C. Chin, and X. S. Iao (1962) Further anatomical studies of some Chinese bamboo. Acta Botanica Sinica 10(1): 13 - 34. Li, C. C., T. S. Lu, C. C. L. Ting, and J. C. Su (1965) Carbohydrate metabolism in shoots of bamboo Leleba oldhami II. Phosphorylation of hexoses by cell-free extracts of bamboo shoots. Botanical Bulletin of Academia Sinica 6(2): 160-169. Li, X. B., T. R. Shupe, G. F. Peter, C. Y. Hse, and T. L. Eberhardt (2007) Chemical changes with maturation of the bamboo species Phyllostachys pubescens. Journal of Tropical Forest Science 19(1): 6-12. Liese, W. (1987) Research on bamboo. Wood Science and Technology 21(3): 189-209. Liese, W. (1998) The anatomy of bamboo culms. International Network for Bamboo and Rattan, Beijing, 208 pp. Lin, C. H., Y. Zhang, G. Z. Ye, X. Li, P. Y. Yin, Q. Ruan, and G. W. Xu (2011) Classification and differential metabolite discovery of liver diseases based on plasma metabolic profiling and support vector machines. Journal of Separation Science 34(21): 3029-3036. Liu, Y., X. Sun, D. Di, J. Quan, J. Zhang, and X. Yang (2011) A metabolic profiling analysis of symptomatic gout in human serum and urine using high performance liquid chromatography-diode array detector technique. Clinica Chimica Acta 412(23-24): 2132-2140. Luo, Z. S., X. L. Xu, and B. F. Yan (2008) Accumulation of lignin and involvement of enzymes in bamboo shoot during storage. European Food Research and Technology 226(4): 635-640. Lybeer, B. and G. Koch (2005) A topochemical and semiquantitative study of the lignification during ageing of bamboo culms (Phyllostachys viridiglaucescens). IAWA Journal 26(1): 99-109. Ma, T. S. and R. C. Rittner (1979) Modern organic elemental analysis. M. Dekker, New York, 518 pp. Maeda, H. and N. Dudareva (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology 63: 73-105. Maekawa, E., T. Ichizawa, and T. Koshijima (1989) An evaluation of the acid-soluble lignin determination in analyses of lignin by the sulfuric-acid method. Journal of Wood Chemistry and Technology 9(4): 549-567. Marchant, H. J. (1979) Microtubules, cell-wall deposition and the determination of plant-cell shape. Nature 278(5700): 167-168. Marcus, S. E., A. W. Blake, T. A. S. Benians, K. J. D. Lee, C. Poyser, L. Donaldson, O. Leroux, A. Rogowski, H. L. Petersen, A. Boraston, H. J. Gilbert, W. G. T. Willats, and J. P. Knox (2010) Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant Journal 64(2): 191-203. Marcus, S. E., Y. Verhertbruggen, C. Herve, J. J. Ordaz-Ortiz, V. Farkas, H. L. Pedersen, W. G. T. Willats, and J. P. Knox (2008) Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biology 8: 60. Martin, T., R. Sharma, C. Sippel, K. Waegemann, J. Soll, and U. C. Vothknecht (2006) A protein kinase family in Arabidopsis phosphorylates chloroplast precursor proteins. Journal of Biological Chemistry 281(52): 40216-40223. May, T. and J. Soll (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12(1): 53-63. Mazur, B. J. (2003) Plant metabolic profiling en route to destination. Nature Biotechnology 21(8): 875-876. McCartney, L., S. E. Marcus, and J. P. Knox (2005) Monoclonal antibodies to plant cell wall xylans and arabinoxylans. Journal of Histochemistry and Cytochemistry 53(4): 543-546. McClure, F. A. (1966) The Bamboos. Harvard University, Cambridge, Massachusetts, 347 pp. Moons, A. (2005) Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTS). In Plant Hormones, G. Litwack, Ed., pp. 155-202. Morris, C. R., J. T. Scott, H. M. Chang, R. R. Sederoff, D. O'Malley, and J. F. Kadla (2004) Metabolic profiling: A new tool in the study of wood formation. Journal of Agricultural and Food Chemistry 52(6): 1427-1434. Na, J. K., M. H. Seo, I. S. Yoon, Y. H. Lee, K. O. Lee, and D. Y. Kim (2012) Involvement of rice Polycomb protein OsFIE2 in plant growth and seed size. Plant Biotechnology Reports 6(4): 339-346. Nakano, J. and G. Meshitsuka (1992) The dectection of lignin. In Methods in Lignin Chemistry, S. Y. Lin and C. W. Dence, Eds., Springer-Verlag, Berlin, pp. 23-32. Nozaki, M., M. Sugiyama, J. Duan, H. Uematsu, T. Genda, and Y. Sato (2012) A missense mutation in the glucosamine-6-phosphate N-acetyltransferase-encoding gene causes temperature-dependent growth defects and ectopic lignin deposition in Arabidopsis. Plant Cell 24(8): 3366-3379. Oda, Y. and H. Fukuda (2012) Secondary cell wall patterning during xylem differentiation. Current Opinion in Plant Biology 15(1): 38-44. Olah, G. A., A. Goeppert, and G. K. S. Prakash (2009) Chemical recycling off carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. Journal of Organic Chemistry 74(2): 487-498. Osorio, S., R. Alba, C. M. B. Damasceno, G. Lopez-Casado, M. Lohse, M. I. Zanor, T. Tohge, B. Usadel, J. K. C. Rose, Z. J. Fei, J. J. Giovannoni, and A. R. Fernie (2011) Systems biology of tomato fruit development: Combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. Plant Physiology 157(1): 405-425. Park, J. B., P. M. Sendon, S. H. Kwon, H. S. Seo, S. K. Park, J. H. Kim, and J. T. Song (2012) Overexpression of stress-related genes, BrERF4 and AtMYB44, in Arabidopsis thaliana alters cell expansion but not cell proliferation during leaf growth. Journal of Plant Biology 55(5): 406-412. Park, S., J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3(10): 1-10. Popov, V. N., A. T. Eprintsev, D. N. Fedorin, and A. U. Igamberdiev (2010) Succinate dehydrogenase in Arabidopsis thaliana is regulated by light via phytochrome A. FEBS Letters 584(1): 199-202. Reis, D., B. Vian, and J. C. Roland (1994) Cellulose-glucuronoxylans and plant cell wall structure. Micron 25(2): 171-187. Robinson, A. R., R. Gheneim, R. A. Kozak, D. D. Ellis, and S. D. Mansfield (2005) The potential of metabolite profiling as a selection tool for genotype discrimination in Populus. Journal of Experimental Botany 56(421): 2807-2819. Robinson, A. R., N. K. Ukrainetz, K.-Y. Kang, and S. D. Mansfield (2007) Metabolite profiling of Douglas-fir (Pseudotsuga menziesii) field trials reveals strong environmental and weak genetic variation. New Phytologist 174(4): 762-773. Rocha, D. I., L. M. Vieira, F. A. O. Tanaka, L. C. da Silva, and W. C. Otoni (2012) Somatic embryogenesis of a wild passion fruit species Passiflora cincinnata Masters: histocytological and histochemical evidences. Protoplasma 249(3): 747-758. Rowell, R. M. (2005) Handbook of Wood Chemistry and Wood Composites. CRC, Boca Raton, Florida, 487 pp. Salazar, J. and J. Meil (2009) Prospects for carbon-neutral housing: the influence of greater wood use on the carbon footprint of a single-family residence. Journal of Cleaner Production 17(17): 1563-1571. Sauter, H., M. Lauer, and H. Fritsch (1991) Metabolic profiling of plants – A new diagnostic-technique. ACS Symposium Series 443: 288-299. Scalbert, A., B. Monties, J. Y. Lallemand, E. Guittet, and C. Rolando (1985) Ether linkage between phenolic-acids and lignin fractions from wheat straw. Phytochemistry 24(6): 1359-1362. Schuetz, M., A. Haghighi-Kia, C. L. Wenzel, and J. Mattsson (2007) Induction of xylem and fiber differentiation in Populus tremuloides. Canadian Journal of Botany 85(12): 1147-1157. Schuetz, M., R. Smith, and B. Ellis (2013) Xylem tissue specification, patterning, and differentiation mechanisms. Journal of Experimental Botany 64(1): 11-31. Sedbrook, J. C., R. J. Chen, and P. H. Masson (1999) ARG1 (Altered Response to Gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America 96(3): 1140-1145. Su, J. C. (1965) Carbohydrate metabolism in shoots of bamboo, Leleba oldhami. I. Preliminary survey of soluble saccharides and sucrose-degrading enzymes. Botanical Bulletin of Academia Sinica 6(2): 153-159. Su, J. C. (1969) Carbohydrate metabolism in the shoots of bamboo Leleba oldhami VII. Changes of polysaccharide constituents accompanied with the growth of the plants. Journal of the Chinese Agricultural Chemical Society 10 (Special Issue): 25-34. Su, J. C., D. S. Tsou, and H. H. Tai (1962) Carbohydrate metabolism in the shoots of bamboo, Leleba oldhami. IV. A structural study of cell wall polysaccharides. Botanical Bulletin of Academia Sinica 6: 153-159. Su, J. C., D. S. Tzou, and H. H. Tai (1967) Carbohydrate metabolism in shoots of bamboo, Leleba oldhami. IV. A structural study of cell wall polysaccharides. Botanical Bulletin of Academia Sinica 8: 339-352. Sun, Y., L. Lin, H. B. Deng, J. Z. Li, B. H. He, R. C. Sun, and P. K. Ouyang (2008) Structural changes of bamboo cellulose in formic acid. Bioresources 3(2): 297-315. Suzuki, K. and T. Itoh (2001) The changes in cell wall architecture during lignification of bamboo, Phyllostachys aurea Carr.. Trees-Structure and Function 15(3): 137-147. Taiz, L. and E. Zeiger (2010) Plant Physiology. Sinauer Associates, Sunderland, Massachusetts, 782 pp. Tornow, J. and G. M. Santangelo (1994) Saccharomyces cerevisiae ribosomal-protein L37 is encoded by duplicate genes that are differentially expressed. Current Genetics 25(6): 480-487. Trethewey, R. N., A. J. Krotzky, and L. Willmitzer (1999) Metabolic profiling: a Rosetta Stone for genomics? Current Opinion in Plant Biology 2(2): 83-85. Tzin, V., S. Malitsky, A. Aharoni, and G. Galili (2009) Expression of a bacterial bi-functional chorismate mutase/prephenate dehydratase modulates primary and secondary metabolism associated with aromatic amino acids in Arabidopsis. Plant Journal 60(1): 156-167. Uematsu, K., N. Suzuki, T. Iwamae, M. Inui, and H. Yukawa (2012) Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. Journal of Experimental Botany 63(8): 3001-3009. Verhertbruggen, Y., S. E. Marcus, A. Haeger, J. J. Ordaz-Ortiz, and J. P. Knox (2009) An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydrate Research 344(14): 1858-1862. Vyas, P. and A. Gulati (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology 9: 174. Wang, H. T., I. H. Liu, and T. F. Yeh (2012) Immunohistological study of mannan polysaccharides in poplar stem. Cellulose Chemistry and Technology 46(3-4): 149-155. Wang, X. Q., H. Q. Ren, B. Zhang, B. H. Fei, and I. Burgert (2012) Cell wall structure and formation of maturing fibres of moso bamboo (Phyllostachys pubescens) increase buckling resistance. Journal of the Royal Society Interface 9(70): 988-996. Wang, Y. P., G. Wang, H. T. Cheng, G. L. Tian, Z. Liu, Q. F. Xiao, X. Q. Zhou, X. J. Han, and X. S. Gao (2010) Structures of bamboo fiber for textiles. Textile Research Journal 80(4): 334-343. Yeh, T. F., B. Goldfarb, H. M. Chang, I. Peszlen, J. L. Braun, and J. F. Kadla (2005) Comparison of morphological and chemical properties between juvenile wood and compression wood of loblolly pine. Holzforschung 59(6): 669-674. Yeh, T. F., C. R. Morris, B. Goldfarb, H. M. Chang, and J. F. Kadla (2006) Utilization of polar metabolite profiling in the comparison of juvenile wood and compression wood in loblolly pine (Pinus taeda). Tree Physiology 26(11): 1497-1503. Yen, T. M. and J. S. Lee (2011) Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. Forest Ecology and Management 261(6): 995-1002. Yoshida, K. T., T. Fujiwara, and S. Naito (2002) The synergistic effects of sugar and abscisic acid on myo-inositol-1-phosphate synthase expression. Physiologia Plantarum 114(4): 581-587. Yuyama, I., Y. Ito, T. Watanabe, M. Hidaka, Y. Suzuki, and M. Nishida (2012) Differential gene expression in juvenile polyps of the coral Acropora tenuis exposed to thermal and chemical stresses. Journal of Experimental Marine Biology and Ecology 430: 17-24. Zettl, R., J. Schell, and K. Palme (1994) Photoaffinity-labeling of arabidopsis thaliana plasma membrane vesicles by 5-azido- [7-3H] indole-3-acetic acid: Identification of a glutathione-S-transferase. Proceedings of the National Academy of Sciences of the United States of America 91(2): 689-693. Zhou, M. B., P. Yang, P. J. Gao, and D. Q. Tang (2011) Identification of differentially expressed sequence tags in rapidly elongating Phyllostachys pubescens internodes by suppressive subtractive hybridization. Plant Molecular Biology Reporter 29(1): 224-231. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58218 | - |
| dc.description.abstract | 麻竹(Dendrocalamus latiflorus)為臺灣常見竹種之中,分布最廣且適應力最佳之竹種。麻竹具有生長快速及竹種高大等優勢,為良好之木質纖維材料應用來源。本試驗以四周齡大之麻竹筍為材料,依生長部位之型態區分為頂部、中部及基部,分析其不同生長階段之細胞壁組成特性、代謝成分差異及基因表現,期能藉由上述分析,瞭解麻竹的生長特性,以利未來進一步推廣利用。
由組織切片之免疫標定及染色觀察結果得知,麻竹筍於頂部初生長階段,導管即開始有明顯的分化,此時之細胞壁結構以初級細胞壁為主,尚未有明顯的木質素及纖維素的累積。麻竹筍基部可觀察到完整的維管束組織,且木質素及纖維素大量累積於維管束組織。維管束的發育會先由原生木質部開始,並伴隨著導管的生成;接著為韌皮部的成熟,最後才為木質部導管及週邊組織的發育及纖維鞘的累積。細胞壁成分分析結果顯示,麻竹筍木質素含量約占6 – 9%,且於麻竹筍生長初期,酸可溶木質素含量會高於酸不溶木質素。麻竹筍細胞壁醣類組成主要為葡萄糖及木糖,並在生長過程有明顯的累積,葡萄糖的含量由頂部至基部分別為34.5、43.8及47.9%;木糖的含量則分別為14.8、27.0及29.2%。 代謝成分分析結果顯示,葡萄糖、呋喃木糖、果糖及蔗糖為極性層主要代謝成分。蔗糖於麻竹筍頂部有較高代謝,而葡萄糖、呋喃木糖及果糖此3種糖類於基部代謝較為旺盛。脂質層則以Pentadecanoic acid及8,11-Octadecadienoic acid為主要代謝成分,且此2種成分於麻竹筍頂部代謝較為旺盛。 基因差異表現結果顯示,於麻竹筍頂部主要為細胞活動及產生能量相關之基因,進一步以墨點分析及即時定量聚合酶鏈鎖反應結果可知,麻竹筍頂部之myo-Inositol phosphate synthase、Auxin response factor、Signal recognition particle 14 kDa protein及Glutathione S-transferase的表現量較高;麻竹筍基部表現量較高的基因則與光合作用香觀,分別為Chloroplast oxygen-evolving enhancer protein 及Succinate dehydrogenase。 本研究結合了物理、化學性質、代謝及基因表現分析,瞭解單株麻竹筍於不同生長階段之特性。由試驗結果可知,麻竹筍頂部之維管束發育尚未完全,此時細胞壁結構以初級細胞壁為主,基因表現及代謝以細胞分化及能量產生較為相關;麻竹筍基部具有成形之維管束,此時細胞壁已有明顯之二次生長,基因表現及代謝則以醣類生成及光合作用為主。 | zh_TW |
| dc.description.abstract | Ma bamboo (Dendrocalamus latiflous) is a common bamboo specie that is the most distributed and well adapted in Taiwan. Having the advantages of rapid growth and relatively large bulk, it provides a great source of ligno-cellulosic material. One four-week-old ma bamboo shoot was used for this experiment and was divided into top, middle and base portions. Each portion was analyzed according to different growth phases for differences in cell wall properties, metabolites and gene expression. A better understanding of the growth of ma bamboo shoot provides opportunities for further utilization in the future.
From immunolocalization and staining results, the vessels in the top portion of ma bamboo shoot began to show apparent cell division in primary growth phases. No clear accumulation of cellulose and lignin were observed in this primary growth phase. However, complete vascular bundles were observed in the base portion along with vast accumulation of cellulose and lignin. Initiation of vascular bundles starts in the region of the protoxylem accompanied by the formation of vessels, and follows the maturation of the phloem. Finally, the fiber sheath and surrounding tissue develop around the xylem vessel. Cell wall component analysis shows that lignin takes up 6 - 9% of the cell wall and that during early stages of growth, the contents of acid soluble lignin are higher than that of acid insoluble lignin. Glucose and xylose are the main sugar components of ma bamboo shoot cell wall and show significant deposition during growth. Glucose contents from top to base portion are 34.5%, 43.8%, and 47.9% respectively; while xylose contents from top to base portion are 14.8%, 27.0%, and 29.2% respectively. Metabolite profiling shows that glucose, xylofuranose, fructose, and sucrose are the major compounds of the polar phase. Of these compounds, the metabolism of sucrose in the top portion of ma bamboo shoot is greater than that of the base portion, whereas the metabolism of glucose, xylofuranose, and fructose is greater in the base portion. In the lipid phase, pentadecanoic acid and 8, 11-octadecadienoic acid are the main compounds and they both present higher metabolism in the top portion. According to gene differential expression results, the genes expressed in the top portion of ma bamboo shoot were mostly found to be related to cell activity and energy generation. Using dot blot and qRT-PCR methods, the main genes were recognized as myo-inositol phosphate synthase, auxin response factor, signal recognition particle 14 kDa protein, and glutathione S-transferase. In the base portion, the most expressive genes were chloroplast oxygen-evolving enhancer protein and succinate dehydrogenase which deals with photosynthesis. Current research is an integrated analysis of physical, chemical, metabolic, and gene expressional properties, which allows us to understand the growth characteristics of ma bamboo shoot. In the top portion of the bamboo shoot, vascular bundles are immature. Functions of gene expression and metabolic processes involve cell differentiation and energy generation. On the other hand, the base portion contains fully developed vascular bundles, gene expression is related to sugar metabolism and photosynthesis, and cell wall exhibits noticeable secondary growth. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:08:33Z (GMT). No. of bitstreams: 1 ntu-103-R98625040-1.pdf: 8182368 bytes, checksum: c8df2bdbdf56610a62503fa05aa84f95 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目 錄 I
表目錄 IV 圖目錄 VI 附 錄 X 摘 要 XI Abstract XIII 壹、前言 1 貳、文獻回顧 3 一、竹類植物簡介 3 (一)竹類的分布與應用 3 (二)竹類顯微結構 4 二、竹類的生長 7 (一)竹類生長特性 7 (二)竹類生長相關研究 10 三、植物代謝體之分析與應用 12 四、抑制刪減雜合法之原理與應用 14 參、材料與方法 16 一、試驗材料 16 二、試驗方法 17 (一)麻竹筍不同生長階段之化學成分分析 17 1. 木質素含量分析 17 2. 醣類含量分析 18 3. 灰分含量分析 18 4. 蛋白質含量分析 18 5. 醣醛酸含量分析 19 (二)麻竹筍不同生長階段之纖維結晶度分析 19 (三)麻竹筍不同生長階段之細胞壁組織形態觀察 20 1. 試材製備 20 2. 組織化學染色 20 3. 木質素染色 20 4. 醣類免疫標定 21 (四)麻竹筍不同生長階段之代謝成分分析 22 (五)麻竹筍不同生長階段之基因表現分析 23 1. Total RNA 萃取 23 2. mRNA 純化 24 3. 抑制刪減雜合分析 24 4. 基因庫(Subtraction cDNA library)建立 25 5. Dot-blot分析 25 (1)探針(Probe)製備 25 (2)雜合分析 26 6. 即時定量聚合酶鏈鎖反應(Quantitative real time PCR, qRT-PCR) 26 (六)統計分析 29 肆、結果與討論 30 一、麻竹筍的生長速度 30 二、麻竹筍生長過程之物理結構變化 31 (一)維管束結構 31 (二)纖維素結晶度 34 三、麻竹筍生長過程之化學成分變化 37 (一)細胞壁木質素含量及分布 37 (二)細胞壁醣類組成及分布 40 (三)灰分含量 48 (四)蛋白質含量 49 四、麻竹筍生長過程之代謝分析 50 五、麻竹筍生長過程之基因表現差異 55 (一)SSH library的建立 55 1. 麻竹筍頂部之Subtracted cDNA library 55 2. 麻竹筍基部之Subtracted cDNA library 57 3. 差異表現序列功能分類 57 (二)麻竹筍不同部位的基因表現量分析 62 伍、結論 70 陸、參考文獻 71 附錄 87 | |
| dc.language.iso | zh-TW | |
| dc.subject | 麻竹 | zh_TW |
| dc.subject | 基因差異表現 | zh_TW |
| dc.subject | 生長快速 | zh_TW |
| dc.subject | 代謝分析 | zh_TW |
| dc.subject | 細胞壁特性 | zh_TW |
| dc.subject | 竹筍 | zh_TW |
| dc.subject | 免疫標定 | zh_TW |
| dc.subject | Rapid growth | en |
| dc.subject | Cell wall properties | en |
| dc.subject | Dendrocalamus latiflous | en |
| dc.subject | Gene differential expression | en |
| dc.subject | Immunolocalization | en |
| dc.subject | Metabolite profiling | en |
| dc.subject | Bamboo shoot | en |
| dc.title | 麻竹筍生長之細胞壁特性及基因表現分析 | zh_TW |
| dc.title | Cell Wall Characteristics and Gene Expression of Dendrocalamus latiflorus Shoot during Different Growth Stages | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 葉汀峰 | |
| dc.contributor.oralexamcommittee | 王升陽,孫英玄,林崇熙 | |
| dc.subject.keyword | 竹筍,細胞壁特性,麻竹,基因差異表現,免疫標定,代謝分析,生長快速, | zh_TW |
| dc.subject.keyword | Bamboo shoot,Cell wall properties,Dendrocalamus latiflous,Gene differential expression,Immunolocalization,Metabolite profiling,Rapid growth, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-05-26 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 7.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
