請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58212完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 牟中原 | |
| dc.contributor.author | Feng-Peng Chang | en |
| dc.contributor.author | 張豐鵬 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:08:24Z | - |
| dc.date.available | 2017-07-10 | |
| dc.date.copyright | 2014-07-10 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-05-27 | |
| dc.identifier.citation | Section 1:
(1) Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. The Preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Materials. Bull. Chem. Soc. Jpn. 1990, 63, 988-992. (2) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359, 710-712. (3)Tang, F. Q.; Li, L. L.; Chen, D. Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Adv. Mater. 2012, 24, 1504-1534. (4) Kwon, S.; Singh, R. K.; Perez, R. A.; Abou Neel, E. A.; Kim, H. W.; Chrzanowski, W. Silica-Based Mesoporous Nanoparticles for Controlled Drug Delivery. J. Tissue Eng. 2013, 4, 2041731413503357. (5) Wu, S. H.; Mou, C. Y.; Lin, H. P. Synthesis of Mesoporous Silica Nanoparticles. Chem. Soc. Rev. 2013, 42, 3862-3875. (6) Taguchi, A.; Schuth, F. Ordered Mesoporous Materials in Catalysis. Microporous Mesoporous Mater. 2005, 77, 1-45. (7) Heitbaum, M.; Glorius, F.; Escher, I. Asymmetric Heterogeneous Catalysis. Angew. Chem., Int. Ed. 2006, 45, 4732-4762. (8) Chew, T. L.; Ahmad, A. L.; Bhatia, S. Ordered Mesoporous Silica (Oms) as an Adsorbent and Membrane for Separation of Carbon Dioxide (Co2). Adv. Colloid Interface Sci. 2010, 153, 43-57. (9) Belmabkhout, Y.; Sayari, A. Effect of Pore Expansion and Amine Functionalization of Mesoporous Silica on Co2 Adsorption over a Wide Range of Conditions. Adsorpt.-J. Int. Adsorpt. Soc. 2009, 15, 318-328. (10) Wu, S. H.; Hung, Y.; Mou, C. Y. Mesoporous Silica Nanoparticles as Nanocarriers. Chem. Commun. 2011, 47, 9972-9985. (11) Lin, Y. S.; Hurley, K. R.; Haynes, C. L. Critical Considerations in the Biomedical Use of Mesoporous Silica Nanoparticles. J. Phys. Chem. Lett. 2012, 3, 364-374. (12) Vallet-Regi, M.; Balas, F.; Arcos, D. Mesoporous Materials for Drug Delivery. Angew. Chem., Int. Ed. 2007, 46, 7548-7558. (13) Lev, O.; Tsionsky, M.; Rabinovich, L.; Glezer, V.; Sampath, S.; Pankratov, I.; Gun, J. Organically Modified Sol-Gel Sensors. Anal. Chem. 1995, 67, A22-A30. (14) Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M. Silica-Based Mesoporous Organic-Inorganic Hybrid Materials. Angew. Chem., Int. Ed. 2006, 45, 3216-3251. (15) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; Mccullen, S. B.; Higgins, J. B.; Schlenker, J. L. A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates. J. Am. Chem. Soc. 1992, 114, 10834-10843. (16) Kim, M. H.; Na, H. K.; Kim, Y. K.; Ryoo, S. R.; Cho, H. S.; Lee, K. E.; Jeon, H.; Ryoo, R.; Min, D. H. Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles with Ultralarge Pores and Their Application in Gene Delivery. ACS Nano 2011, 5, 3568-3576. (17) Nooney, R. I.; Thirunavukkarasu, D.; Chen, Y. M.; Josephs, R.; Ostafin, A. E. Synthesis of Nanoscale Mesoporous Silica Spheres with Controlled Particle Size. Chem. Mater. 2002, 14, 4721-4728. (18) Yano, K.; Fukushima, Y. Synthesis of Mono-Dispersed Mesoporous Silica Spheres with Highly Ordered Hexagonal Regularity Using Conventional Alkyltrimethylammonium Halide as a Surfactant. J. Mater. Chem. 2004, 14, 1579-1584. (19) Suzuki, K.; Ikari, K.; Imai, H. Synthesis of Silica Nanoparticles Having a Well-Ordered Mesostructure Using a Double Surfactant System. J. Am. Chem. Soc. 2004, 126, 462-3. (20) Huh, S.; Wiench, J. W.; Yoo, J. C.; Pruski, M.; Lin, V. S. Y. Organic Functionalization and Morphology Control of Mesoporous Silicas Via a Co-Condensation Synthesis Method. Chem. Mater. 2003, 15, 4247-4256. (21) Huh, S.; Wiench, J. W.; Trewyn, B. G.; Song, S.; Pruski, M.; Lin, V. S. Tuning of Particle Morphology and Pore Properties in Mesoporous Silicas with Multiple Organic Functional Groups. Chem. Commun. 2003, 2364-5. (22) Lu, F.; Wu, S. H.; Hung, Y.; Mou, C. Y. Size Effect on Cell Uptake in Well-Suspended, Uniform Mesoporous Silica Nanoparticles. Small 2009, 5, 1408-13. (23) Li, J. A.; Liu, J.; Wang, D. H.; Guo, R. S.; Li, X. L.; Qi, W. Interfacially Controlled Synthesis of Hollow Mesoporous Silica Spheres with Radially Oriented Pore Structures. Langmuir 2010, 26, 12267-12272. (24) Lin, Y. S.; Wu, S. H.; Tseng, C. T.; Hung, Y.; Chang, C.; Mou, C. Y. Synthesis of Hollow Silica Nanospheres with a Microemulsion as the Template. Chem. Commun. 2009, 3542-3544. (25) Fujiwara, M.; Shiokawa, K.; Sakakura, I.; Nakahara, Y. Silica Hollow Spheres with Nano-Macroholes Like Diatomaceous Earth. Nano Lett. 2006, 6, 2925-2928. (26) Wu, S. H.; Tseng, C. T.; Lin, Y. S.; Lin, C. H.; Hung, Y.; Mou, C. Y. Catalytic Nano-Rattle of Au@Hollow Silica: Towards a Poison-Resistant Nanocatalyst. J. Mater. Chem. 2011, 21, 789-794. (27) Mandal, M.; Kruk, M. Family of Single-Micelle-Templated Organosilica Hollow Nanospheres and Nanotubes Synthesized through Adjustment of Organosilica/Surfactant Ratio. Chem. Mater. 2012, 24, 123-132. (28) Yuan, J. J.; Mykhaylyk, O. O.; Ryan, A. J.; Armes, S. P. Cross-Linking of Cationic Block Copolymer Micelles by Silica Deposition. J. Am. Chem. Soc. 2007, 129, 1717-23. (29) Han, L.; Gao, C. B.; Wu, X. W.; Chen, Q. R.; Shu, P.; Ding, Z. G.; Che, S. N. Anionic Surfactants Templating Route for Synthesizing Silica Hollow Spheres with Different Shell Porosity. Solid State Sci. 2011, 13, 721-728. (30) Pan, L.; He, Q.; Liu, J.; Chen, Y.; Ma, M.; Zhang, L.; Shi, J. Nuclear-Targeted Drug Delivery of Tat Peptide-Conjugated Monodisperse Mesoporous Silica Nanoparticles. J. Am. Chem. Soc. 2012, 134, 5722-5. (31) Caruso, F.; Caruso, R. A.; Mohwald, H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science 1998, 282, 1111-4. (32) Chen, D.; Li, L. L.; Tang, F. Q.; Qi, S. O. Facile and Scalable Synthesis of Tailored Silica 'Nanorattle' Structures. Adv. Mater. 2009, 21, 3804-3807. (33) Ren, N.; Wang, B.; Yang, Y. H.; Zhang, Y. H.; Yang, W. L.; Yue, Y. H.; Gao, Z.; Tang, Y. General Method for the Fabrication of Hollow Microcapsules with Adjustable Shell Compositions. Chem. Mater. 2005, 17, 2582-2587. (34) Zhang, T. R.; Ge, J. P.; Hu, Y. X.; Zhang, Q.; Aloni, S.; Yin, Y. D. Formation of Hollow Silica Colloids through a Spontaneous Dissolution-Regrowth Process. Angew. Chem., Int. Ed. 2008, 47, 5806-5811. (35) Wong, Y. J.; Zhu, L.; Teo, W. S.; Tan, Y. W.; Yang, Y.; Wang, C.; Chen, H. Revisiting the Stober Method: Inhomogeneity in Silica Shells. J. Am. Chem. Soc. 2011, 133, 11422-5. (36) Yu, Q.; Wang, P.; Hu, S.; Hui, J.; Zhuang, J.; Wang, X. Hydrothermal Synthesis of Hollow Silica Spheres under Acidic Conditions. Langmuir 2011, 27, 7185-91. (37) Williams, D. F. On the Mechanisms of Biocompatibility. Biomaterials 2008, 29, 2941-2953. (38) Halas, N. J. Nanoscience under Glass: The Versatile Chemistry of Silica Nanostructures. ACS Nano 2008, 2, 179-83. (39) Garcia-Bennett, A. E. Synthesis, Toxicology and Potential of Ordered Mesoporous Materials in Nanomedicine. Nanomed.-Nanotechnol. Biol. Med. 2011, 6, 867-77. (40) Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 2006, 6, 662-8. (41) Osaki, F.; Kanamori, T.; Sando, S.; Sera, T.; Aoyama, Y. A Quantum Dot Conjugated Sugar Ball and Its Cellular Uptake. On the Size Effects of Endocytosis in the Subviral Region. J. Am. Chem. Soc. 2004, 126, 6520-1. (42) He, Q. J.; Zhang, Z. W.; Gao, F.; Li, Y. P.; Shi, J. L. In Vivo Biodistribution and Urinary Excretion of Mesoporous Silica Nanoparticles: Effects of Particle Size and Pegylation. Small 2011, 7, 271-280. (43) Lu, J.; Liong, M.; Li, Z. X.; Zink, J. I.; Tamanoi, F. Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals. Small. 2010, 6, 1794-1805. (44) Liu, T. L.; Li, L. L.; Teng, X.; Huang, X. L.; Liu, H. Y.; Chen, D.; Ren, J.; He, J. Q.; Tang, F. Q. Single and Repeated Dose Toxicity of Mesoporous Hollow Silica Nanoparticles in Intravenously Exposed Mice. Biomaterials 2011, 32, 1657-1668. (45) Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink, J. I. Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano. 2008, 2, 889-896. (46) Veronese, F. M.; Pasut, G. Pegylation, Successful Approach to Drug Delivery. Drug Discov. Today 2005, 10, 1451-8. (47) Lin, Y. S.; Haynes, C. L. Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity. J. Am. Chem. Soc. 2010, 132, 4834-4842. (48) Chung, T. H.; Wu, S. H.; Yao, M.; Lu, C. W.; Lin, Y. S.; Hung, Y.; Mou, C. Y.; Chen, Y. C.; Huang, D. M. The Effect of Surface Charge on the Uptake and Biological Function of Mesoporous Silica Nanoparticles 3t3-L1 Cells and Human Mesenchymal Stem Cells. Biomaterials 2007, 28, 2959-2966. (49) Slowing, I.; Trewyn, B. G.; Lin, V. S. Effect of Surface Functionalization of Mcm-41-Type Mesoporous Silica Nanoparticles on the Endocytosis by Human Cancer Cells. J. Am. Chem. Soc. 2006, 128, 14792-3. (50) Meng, H.; Yang, S.; Li, Z. X.; Xia, T.; Chen, J.; Ji, Z. X.; Zhang, H. Y.; Wang, X.; Lin, S. J.; Huang, C.; Zhou, Z. H.; Zink, J. I.; Nel, A. E. Aspect Ratio Determines the Quantity of Mesoporous Silica Nanoparticle Uptake by a Small Gtpase-Dependent Macropinocytosis Mechanism. ACS Nano. 2011, 5, 4434-4447. (51) Huang, X.; Li, L.; Liu, T.; Hao, N.; Liu, H.; Chen, D.; Tang, F. The Shape Effect of Mesoporous Silica Nanoparticles on Biodistribution, Clearance, and Biocompatibility in Vivo. ACS Nano. 2011, 5, 5390-9. (52) Slowing, I. I.; Wu, C. W.; Vivero-Escoto, J. L.; Lin, V. S. Y. Mesoporous Silica Nanoparticles for Reducing Hemolytic Activity Towards Mammalian Red Blood Cells. Small 2009, 5, 57-62. (53) Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science 2006, 311, 622-627. (54) Al Shamsi, M.; Al Samri, M. T.; Al-Salam, S.; Conca, W.; Shaban, S.; Benedict, S.; Tariq, S.; Biradar, A. V.; Penefsky, H. S.; Asefa, T.; Souid, A. K. Biocompatibility of Calcined Mesoporous Silica Particles with Cellular Bioenergetics in Murine Tissues. Chem. Res. Toxicol. 2010, 23, 1796-1805. (55) He, Q. J.; Shi, J. L.; Zhu, M.; Chen, Y.; Chen, F. The Three-Stage in Vitro Degradation Behavior of Mesoporous Silica in Simulated Body Fluid. Microporous Mesoporous Mater. 2010, 131, 314-320. (56) Vallet-Regi, M.; Ramila, A.; del Real, R. P.; Perez-Pariente, J. A New Property of Mcm-41: Drug Delivery System. Chem. Mater. 2001, 13, 308-311. (57) Halamova, D.; Zelenak, V. Nsaid Naproxen in Mesoporous Matrix Mcm-41: Drug Uptake and Release Properties. J. Incl. Phenom. Macrocycl. Chem. 2012, 72, 15-23. (58) Wang, S. B. Ordered Mesoporous Materials for Drug Delivery. Microporous Mesoporous Mater. 2009, 117, 1-9. (59) Gary-Bobo, M.; Hocine, O.; Brevet, D.; Maynadier, M.; Raehm, L.; Richeter, S.; Charasson, V.; Loock, B.; Morere, A.; Maillard, P.; Garcia, M.; Durand, J. O. Cancer Therapy Improvement with Mesoporous Silica Nanoparticles Combining Targeting, Drug Delivery and Pdt. Int. J. Pharm. 2012, 423, 509-515. (60) Fan, J. Q.; Fang, G.; Wang, X. D.; Zeng, F.; Xiang, Y. F.; Wu, S. Z. Targeted Anticancer Prodrug with Mesoporous Silica Nanoparticles as Vehicles. Nanotechnology 2011, 22. (61) Lu, J.; Liong, M.; Zink, J. I.; Tamanoi, F. Mesoporous Silica Nanoparticles as a Delivery System for Hydrophobic Anticancer Drugs. Small 2007, 3, 1341-1346. (62) Zhao, W. R.; Chen, H. R.; Li, Y. S.; Li, L.; Lang, M. D.; Shi, J. L. Uniform Rattle-Type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and Their Sustained-Release Property. Adv. Funct. Mater. 2008, 18, 2780-2788. (63) Zhang, X. F.; Clime, L.; Roberge, H.; Normandin, F.; Yahia, L.; Sacher, E.; Veres, T. Ph-Triggered Doxorubicin Delivery Based on Hollow Nanoporous Silica Nanoparticles with Free-Standing Superparamagnetic Fe3o4 Cores. J. Phys. Chem. C 2011, 115, 1436-1443. (64) Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S. Y. A Polyamidoamine Dendrimer-Capped Mesoporous Silica Nanosphere-Based Gene Transfection Reagent. J. Am. Chem. Soc. 2004, 126, 13216-13217. (65) Gao, F.; Botella, P.; Corma, A.; Blesa, J.; Dong, L. Monodispersed Mesoporous Silica Nanoparticles with Very Large Pores for Enhanced Adsorption and Release of DNA. J. Phys. Chem. B 2009, 113, 1796-1804. (66) Zhang, P.; Cheng, F.; Zhou, R.; Cao, J.; Li, J.; Burda, C.; Min, Q.; Zhu, J. J. DNA-Hybrid-Gated Multifunctional Mesoporous Silica Nanocarriers for Dual-Targeted and Microrna-Responsive Controlled Drug Delivery. Angew. Chem., Int. Ed. 2014. (67) Slowing, I. I.; Trewyn, B. G.; Lin, V. S. Y. Mesoporous Silica Nanoparticles for Intracellular Delivery of Membrane-Impermeable Proteins. J. Am. Chem. Soc. 2007, 129, 8845-8849. (68) Chen, Y. P.; Chen, C. T.; Hung, Y.; Chou, C. M.; Liu, T. P.; Liang, M. R.; Chen, C. T.; Mou, C. Y. A New Strategy for Intracellular Delivery of Enzyme Using Mesoporous Silica Nanoparticles: Superoxide Dismutase. J. Am. Chem. Soc. 2013, 135, 1516-1523. (69) Lee, C. H.; Cheng, S. H.; Huang, I. P.; Souris, J. S.; Yang, C. S.; Mou, C. Y.; Lo, L. W. Intracellular Ph Responsive Mesoporous Silica Nanoparticles for the Controlled Release of Anticancer Chemotherapeutics. Angew. Chem., Int. Ed. 2010, 49, 8214-8219. (70) You, Y. Z.; Kalebaila, K. K.; Brock, S. L.; Oupicky, D. Temperature-Controlled Uptake and Release in Pnipam-Modified Porous Silica Nanoparticles. Chem. Mater. 2008, 20, 3354-3359. (71) Aznar, E.; Marcos, M. D.; Martinez-Manez, R.; Sancenon, F.; Soto, J.; Amoros, P.; Guillem, C. Ph- and Photo-Switched Release of Guest Molecules from Mesoporous Silica Supports. J. Am. Chem. Soc. 2009, 131, 6833-6843. (72) Climent, E.; Martinez-Manez, R.; Sancenon, F.; Marcos, M. D.; Soto, J.; Maquieira, A.; Amoros, P. Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angew. Chem., Int. Ed. 2010, 49, 7281-7283. (73) Geng, J.; Li, M.; Wu, L.; Chen, C. E.; Qu, X. G. Mesoporous Silica Nanoparticle-Based H2o2 Responsive Controlled-Release System Used for Alzheimer's Disease Treatment. Adv. Healthc. Mater. 2012, 1, 332-336. (74) Torney, F.; Trewyn, B. G.; Lin, V. S.; Wang, K. Mesoporous Silica Nanoparticles Deliver DNA and Chemicals into Plants. Nat. Nanotechnol. 2007, 2, 295-300. (75) Martin-Ortigosa, S.; Valenstein, J. S.; Sun, W.; Moeller, L.; Fang, N.; Trewyn, B. G.; Lin, V. S. Y.; Wang, K. Parameters Affecting the Efficient Delivery of Mesoporous Silica Nanoparticle Materials and Gold Nanorods into Plant Tissues by the Biolistic Method. Small 2012, 8, 413-422. (76) Martin-Ortigosa, S.; Valenstein, J. S.; Lin, V. S. Y.; Trewyn, B. G.; Wang, K. Gold Functionalized Mesoporous Silica Nanoparticle Mediated Protein and DNA Codelivery to Plant Cells Via the Biolistic Method. Adv. Funct. Mater. 2012, 22, 3576-3582. (77) Wang, Q. O.; Chen, J. N.; Zhang, H. Y.; Lu, M. Z.; Qiu, D. Y.; Wen, Y. F.; Kong, Q. Q. Synthesis of Water Soluble Quantum Dots for Monitoring Carrier-DNA Nanoparticles in Plant Cells. J. Nanosci. Nanotechnol. 2011, 11, 2208-2214. (78) Chang, F. P.; Kuang, L. Y.; Huang, C. A.; Jane, W. N.; Hung, Y.; Hsing, Y. I. C.; Mou, C. Y. A Simple Plant Gene Delivery System Using Mesoporous Silica Nanoparticles as Carriers. J. Mater . Chem. B 2013, 1, 5279-5287. Section 2: (1) Li, Z.; Barnes, J. C.; Bosoy, A.; Stoddart, J. F.; Zink, J. I. Mesoporous Silica Nanoparticles in Biomedical Applications. Chem. Soc. Rev. 2012, 41, 2590-605. (2) Wu, S. H.; Hung, Y.; Mou, C. Y. Mesoporous Silica Nanoparticles as Nanocarriers. Chem. Commun. 2011, 47, 9972-9985. (3) Vivero-Escoto, J. L.; Slowing, I. I.; Trewyn, B. G.; Lin, V. S. Y. Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery. Small 2010, 6, 1952-1967. (4) Singh, N.; Karambelkar, A.; Gu, L.; Lin, K.; Miller, J. S.; Chen, C. S.; Sailor, M. J.; Bhatia, S. N. Bioresponsive Mesoporous Silica Nanoparticles for Triggered Drug Release. J. Am. Chem. Soc. 2011, 133, 19582-19585. (5) Lin, Q. N.; Huang, Q.; Li, C. Y.; Bao, C. Y.; Liu, Z. Z.; Li, F. Y.; Zhu, L. Y. Anticancer Drug Release from a Mesoporous Silica Based Nanophotocage Regulated by Either a One- or Two-Photon Process. J. Am. Chem. Soc. 2010, 132, 10645-10647. (6) Lee, C. H.; Cheng, S. H.; Huang, I. P.; Souris, J. S.; Yang, C. S.; Mou, C. Y.; Lo, L. W. Intracellular Ph-Responsive Mesoporous Silica Nanoparticles for the Controlled Release of Anticancer Chemotherapeutics. Angew. Chem., Int. Ed. 2010, 49, 8214-8219. (7) Lu, C. W.; Hung, Y.; Hsiao, J. K.; Yao, M.; Chung, T. H.; Lin, Y. S.; Wu, S. H.; Hsu, S. C.; Liu, H. M.; Mou, C. Y.; Yang, C. S.; Huang, D. M.; Chen, Y. C. Bifunctional Magnetic Silica Nanoparticles for Highly Efficient Human Stem Cell Labeling. Nano Lett. 2007, 7, 149-154. (8) Lin, Y. S.; Tsai, C. P.; Huang, H. Y.; Kuo, C. T.; Hung, Y.; Huang, D. M.; Chen, Y. C.; Mou, C. Y. Well-Ordered Mesoporous Silica Nanoparticles as Cell Markers. Chem. Mater. 2005, 17, 4570-4573. (9) Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S. A Polyamidoamine Dendrimer-Capped Mesoporous Silica Nanosphere-Based Gene Transfection Reagent. J. Am. Chem. Soc. 2004, 126, 13216-7. (10) Ashley, C. E.; Carnes, E. C.; Epler, K. E.; Padilla, D. P.; Phillips, G. K.; Castillo, R. E.; Wilkinson, D. C.; Wilkinson, B. S.; Burgard, C. A.; Kalinich, R. M.; Townson, J. L.; Chackerian, B.; Willman, C. L.; Peabody, D. S.; Wharton, W.; Brinker, C. J. Delivery of Small Interfering Rna by Peptide-Targeted Mesoporous Silica Nanoparticle-Supported Lipid Bilayers. ACS Nano 2012, 6, 2174-88. (11) Xia, T. A.; Kovochich, M.; Liong, M.; Meng, H.; Kabehie, S.; George, S.; Zink, J. I.; Nel, A. E. Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of Sirna and DNA Constructs. ACS Nano 2009, 3, 3273-3286. (12) Slowing, I. I.; Trewyn, B. G.; Lin, V. S. Y. Mesoporous Silica Nanoparticles for Intracellular Delivery of Membrane-Impermeable Proteins. J. Am. Chem. Soc. 2007, 129, 8845-8849. (13) Chen, Y. P.; Chen, C. T.; Hung, Y.; Chou, C. M.; Liu, T. P.; Liang, M. R.; Mou, C. Y. A New Strategy for Intracellular Delivery of Enzyme Using Mesoporous Silica Nanoparticles: Superoxide Dismutase. J. Am. Chem. Soc. 2013, 135, 1516-23. (14) Cheng, S. H.; Hsieh, C. C.; Chen, N. T.; Chu, C. H.; Huang, C. M.; Chou, P. T.; Tseng, F. G.; Yang, C. S.; Mou, C. Y.; Lo, L. W. Well-Defined Mesoporous Nanostructure Modulates Three-Dimensional Interface Energy Transfer for Two-Photon Activated Photodynamic Therapy. Nano Today 2011, 6, 552-563. (15) Tu, H. L.; Lin, Y. S.; Lin, H. Y.; Hung, Y.; Lo, L. W.; Chen, Y. F.; Mou, C. Y. In Vitro Studies of Functionalized Mesoporous Silica Nanoparticles for Photodynamic Therapy. Adv. Mater. 2009, 21, 172-177. (16) Yu, T.; Malugin, A.; Ghandehari, H. Impact of Silica Nanoparticle Design on Cellular Toxicity and Hemolytic Activity. ACS Nano 2011, 5, 5717-5728. (17) He, Q. J.; Shi, J. L.; Zhu, M.; Chen, Y.; Chen, F. The Three-Stage in Vitro Degradation Behavior of Mesoporous Silica in Simulated Body Fluid. Microporous Mesoporous Mater. 2010, 131, 314-320. (18) Lee, C. W.; Mahendra, S.; Zodrow, K.; Li, D.; Tsai, Y. C.; Braam, J.; Alvarez, P. J. J. Developmental Phytotoxicity of Metal Oxide Nanoparticles to Arabidopsis Thaliana. Environ. Toxicol. Chem. 2010, 29, 669-675. (19) Slomberg, D. L.; Schoenfisch, M. H. Silica Nanoparticle Phytotoxicity to Arabidopsis Thaliana. Environ. Sci. Technol. 2012, 46, 10247-10254. (20) Parsons, J. G.; Lopez, M. L.; Gonzalez, C. M.; Peralta-Videa, J. R.; Gardea-Torresdey, J. L. Toxicity and Biotransformation of Uncoated and Coated Nickel Hydroxide Nanoparticles on Mesquite Plants. Environ. Toxicol. Chem. 2010, 29, 1146-1154. (21) Khodakovskaya, M.; Dervishi, E.; Mahmood, M.; Xu, Y.; Li, Z. R.; Watanabe, F.; Biris, A. S. Carbon Nanotubes Are Able to Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth. ACS Nano 2009, 3, 3221-3227. (22) Villagarcia, H.; Dervishi, E.; de Silva, K.; Biris, A. S.; Khodakovskaya, M. V. Surface Chemistry of Carbon Nanotubes Impacts the Growth and Expression of Water Channel Protein in Tomato Plants. Small 2012, 8, 2328-2334. (23) Lin, D. H.; Xing, B. S. Phytotoxicity of Nanoparticles: Inhibition of Seed Germination and Root Growth. Environ. Pollut. 2007, 150, 243-250. (24) Liu, Q. L.; Chen, B.; Wang, Q. L.; Shi, X. L.; Xiao, Z. Y.; Lin, J. X.; Fang, X. H. Carbon Nanotubes as Molecular Transporters for Walled Plant Cells. Nano Lett. 2009, 9, 1007-1010. (25) Serag, M. F.; Kaji, N.; Venturelli, E.; Okamoto, Y.; Terasaka, K.; Tokeshi, M.; Mizukami, H.; Braeckmans, K.; Bianco, A.; Baba, Y. Functional Platform for Controlled Subcellular Distribution of Carbon Nanotubes. ACS Nano 2011, 5, 9264-9270. (26) Kurepa, J.; Paunesku, T.; Vogt, S.; Arora, H.; Rabatic, B. M.; Lu, J. J.; Wanzer, M. B.; Woloschak, G. E.; Smalle, J. A. Uptake and Distribution of Ultrasmall Anatase Tio(2) Alizarin Red S Nanoconjugates in Arabidopsis Thaliana. Nano Lett. 2010, 10, 2296-2302. (27) Etxeberria, E.; Gonzalez, P.; Baroja-Fernandez, E.; Romero, J. P. Fluid Phase Endocytic Uptake of Artificial Nano-Spheres and Fluorescent Quantum Dots by Sycamore Cultured Cells: Evidence for the Distribution of Solutes to Different Intracellular Compartments. Plant Signal Behav. 2006, 1, 196-200. (28) Corredor, E.; Testillano, P. S.; Coronado, M. J.; Gonzalez-Melendi, P.; Fernandez-Pacheco, R.; Marquina, C.; Ibarra, M. R.; de la Fuente, J. M.; Rubiales, D.; Perez-De-Luque, A.; Risueno, M. C. Nanoparticle Penetration and Transport in Living Pumpkin Plants: In Situ Subcellular Identification. BMC Plant Biol. 2009, 9. (29) Zhu, H.; Han, J.; Xiao, J. Q.; Jin, Y. Uptake, Translocation, and Accumulation of Manufactured Iron Oxide Nanoparticles by Pumpkin Plants. J. Environ. Monit. 2008, 10, 713-717. (30) Rico, C. M.; Majumdar, S.; Duarte-Gardea, M.; Peralta-Videa, J. R.; Gardea-Torresdey, J. L. Interaction of Nanoparticles with Edible Plants and Their Possible Implications in the Food Chain. J. Agric. Food Chem. 2011, 59, 3485-3498. (31) Nair, R.; Varghese, S. H.; Nair, B. G.; Maekawa, T.; Yoshida, Y.; Kumar, D. S. Nanoparticulate Material Delivery to Plants. Plant Science 2010, 179, 154-163. (32) Torney, F.; Trewyn, B. G.; Lin, V. S. Y.; Wang, K. Mesoporous Silica Nanoparticles Deliver DNA and Chemicals into Plants. Nat. Nanotechnol. 2007, 2, 295-300. (33) Martin-Ortigosa, S.; Valenstein, J. S.; Sun, W.; Moeller, L.; Fang, N.; Trewyn, B.G.; Lin, V. S. Y.; Wang, K. Parameters Affecting the Efficient Delivery of Mesoporous Silica Nanoparticle Materials and Gold Nanorods into Plant Tissues by the Biolistic Method. Small 2012, 8, 413-422. (34) Martin-Ortigosa, S.; Valenstein, J. S.; Lin, V. S. Y.; Trewyn, B. G.; Wang, K. Gold Functionalized Mesoporous Silica Nanoparticle Mediated Protein and DNA Codelivery to Plant Cells Via the Biolistic Method. Adv. Funct. Mater. 2012, 22, 3576-3582. (35) Silva, A. T.; Alien, N.; Ye, C. M.; Verchot, J.; Moon, J. H. Conjugated Polymer Nanoparticles for Effective Sirna Delivery to Tobacco by-2 Protoplasts. BMC Plant Biol. 2010, 10. (36) Liu, J.; Wang, F. H.; Wang, L. L.; Xiao, S. Y.; Tong, C. Y.; Tang, D. Y.; Liu, X. M. Preparation of Fluorescence Starch-Nanoparticle and Its Application as Plant Transgenic Vehicle. J. Cent. South Univ. T. 2008, 15, 768-773. (37) Wang, Q. O.; Chen, J. N.; Zhang, H. Y.; Lu, M. Z.; Qiu, D. Y.; Wen, Y. F.; Kong, Q. Q. Synthesis of Water Soluble Quantum Dots for Monitoring Carrier-DNA Nanoparticles in Plant Cells. J. Nanosci. Nanotechnol. 2011, 11, 2208-2214. (38) Pasupathy, K.; Lin, S.; Hu, Q.; Luo, H.; Ke, P. C. Direct Plant Gene Delivery with a Poly(Amidoamine) Dendrimer. Biotechnol. J. 2008, 3, 1078-82. (39) Naqvi, S.; Maitra, A. N.; Abdin, M. Z.; Akmal, M.; Arora, I.; Samim, M. Calcium Phosphate Nanoparticle Mediated Genetic Transformation in Plants. J. Mater. Chem. 2012, 22, 3500-3507. (40) Fu, Y. Q.; Li, L. H.; Wang, P. W.; Qu, J.; Fu, Y. P.; Wang, H.; Sun, J. R.; Lu, C. L. Delivering DNA into Plant Cell by Gene Carriers of Zns Nanoparticles. Chem. Res. Chin. Univ. 2012, 28, 672-676. (41) Ziemienowicz, A.; Shim, Y. S.; Matsuoka, A.; Eudes, F.; Kovalchuk, I. A Novel Method of Transgene Delivery into Triticale Plants Using the Agrobacterium Transferred DNA-Derived Nano-Complex. Plant Physiol. 2012, 158, 1503-1513. (42) Chugh, A.; Amundsen, E.; Eudes, F. Translocation of Cell-Penetrating Peptides and Delivery of Their Cargoes in Triticale Microspores. Plant Cell Rep. 2009, 28, 801-810. (43) Lu, F.; Wu, S. H.; Hung, Y.; Mou, C. Y. Size Effect on Cell Uptake in Well-Suspended, Uniform Mesoporous Silica Nanoparticles. Small 2009, 5, 1408-1413. (44) Chung, T. H.; Wu, S. H.; Yao, M.; Lu, C. W.; Lin, Y. S.; Hung, Y.; Mou, C. Y.; Chen, Y. C.; Huang, D. M. The Effect of Surface Charge on the Uptake and Biological Function of Mesoporous Silica Nanoparticles in 3t3-L1 Cells and Human Mesenchymal Stem Cells. Biomaterials 2007, 28, 2959-66. (45) Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473-497. (46) Lee, L. Y.; Fang, M. J.; Kuang, L. Y.; Gelvin, S. B. Vectors for Multi-Color Bimolecular Fluorescence Complementation to Investigate Protein-Protein Interactions in Living Plant Cells. Plant Methods 2008, 4. (47) Coder, D. M., Assessment of Cell Viability In: Current Protocols in Cytometry. Wiley: New York, 1997; p 9.2.1-9.2.14. (48) Rondeau-Mouro, C.; Defer, D.; Leboeuf, E.; Lahaye, M. Assessment of Cell Wall Porosity in Arabidopsis Thaliana by Nmr Spectroscopy. Int. J. Biol. Macromol. 2008, 42, 83-92. (49) Carpita, N.; Sabularse, D.; Montezinos, D.; Delmer, D. P. Determination of the Pore-Size of Cell-Walls of Living Plant-Cells. Science 1979, 205, 1144-1147. (50) Lin, S. J.; Reppert, J.; Hu, Q.; Hudson, J. S.; Reid, M. L.; Ratnikova, T. A.; Rao, A. M.; Luo, H.; Ke, P. C. Uptake, Translocation, and Transmission of Carbon Nanomaterials in Rice Plants. Small 2009, 5, 1128-1132. (51) Mauseth, J. D., Plant Anatomy. The Benjamin/Cummings Publishing Company,Inc.: California USA, 1988; p 20. (52) Pan, L. M.; He, Q. J.; Liu, J. N.; Chen, Y.; Ma, M.; Zhang, L. L.; Shi, J. L. Nuclear-Targeted Drug Delivery of Tat Peptide-Conjugated Monodisperse Mesoporous Silica Nanoparticles. J. Am. Chem. Soc. 2012, 134, 5722-5725. (53) Benjamins, R.; Scheres, B. Auxin: The Looping Star in Plant Development. Annu. Rev. Plant Biol. 2008, 59, 443-65. (54) Horn, M. A.; Heinstein, P. F.; Low, P. S. Receptor-Mediated Endocytosis in Plant-Cells. Plant Cell 1989, 1, 1003-1009. (55) Kania, A.; Langlade, N.; Martinoia, E.; Neumann, G. Phosphorus Deficiency-Induced Modifications in Citrate Catabolism and in Cytosolic Ph as Related to Citrate Exudation in Cluster Roots of White Lupin. Plant Soil 2003, 248, 117-127. (56) Kihlman, B. A.; Odmark, G.; Norlen, K.; Karlsson, M. B. Caffeine, Caffeine Derivatives and Chromosomal Aberrations .1. Relationship between Atp-Concentration and Frequency of 8-Ethoxycaffeine-Induced Chromosomal Exchanges in Vicia-Faba. Hereditas-Genetiskt Arkiv. 1971, 68, 291-304. (57) Yoo, S. D.; Cho, Y. H.; Sheen, J. Arabidopsis Mesophyll Protoplasts: A Versatile Cell System for Transient Gene Expression Analysis. Nat. Protoc. 2007, 2, 1565-1572. Section 3: (1) Price, N. C. a. S., L., Fundamentals of Enzymology. The Cell and Molecular Biology of Catalytic Proteins. 3rd ed.; Oxford University Press Inc.: New York, 1999; p 478. (2) Vucic, S.; Kiernan, M. C. Pathophysiology of Neurodegeneration in Familial Amyotrophic Lateral Sclerosis. Curr. Mol. Med. 2009, 9, 255-272. (3) Desnick, R. J.; Schuchman, E. H. Enzyme Replacement Therapy for Lysosomal Diseases: Lessons from 20 Years of Experience and Remaining Challenges. Annu. Rev. Genomics Hum. Genet. 2012, 13, 307-335. (4) Whyte, M. P.; Greenberg, C. R.; Salman, N. J.; Bober, M. B.; McAlister, W. H.; Wenkert, D.; Van Sickle, B. J.; Simmons, J. H.; Edgar, T. S.; Bauer, M. L.; Hamdan, M. A.; Bishop, N.; Lutz, R. E.; McGinn, M.; Craig, S.; Moore, J. N.; Taylor, J. W.; Cleveland, R. H.; Cranley, W. R.; Lim, R.; Thacher, T. D.; Mayhew, J. E.; Downs, M.; Millan, J. L.; Skrinar, A. M.; Crine, P.; Landy, H. Enzyme-Replacement Therapy in Life-Threatening Hypophosphatasia. N. Engl. J. Med. 2012, 366, 904-913. (5) Flohe, L. Superoxide-Dismutase for Therapeutic Use - Clinical-Experience, Dead Ends and Hopes. Mol. Cell. Biochem. 1988, 84, 123-131. (6) Pieters, R.; Hunger, S. P.; Boos, J.; Rizzari, C.; Silverman, L.; Baruchel, A.; Goekbuget, N.; Schrappe, M.; Pui, C. H. L-Asparaginase Treatment in Acute Lymphoblastic Leukemia: A Focus on Erwinia Asparaginase. Cancer 2011, 117, 238-49. (7) Rooseboom, M.; Commandeur, J. N. M.; Vermeulen, N. P. E. Enzyme-Catalyzed Activation of Anticancer Prodrugs. Pharmacol. Rev. 2004, 56, 53-102. (8) Bagshawe, K. D.; Sharma, S. K.; Burke, P. J.; Melton, R. G.; Knox, R. J. Developments with Targeted Enzymes in Cancer Therapy. Curr. Opin. Immunol. 1999, 11, 579-583. (9) Nucci, M. L.; Shorr, R.; Abuchowski, A. The Therapeutic Value of Poly(Ethylene Glycol)-Modified Proteins. Adv. Drug Deliv. Rev. 1991, 6, 133-151. (10) Mae, M.; Langel, U. Cell-Penetrating Peptides as Vectors for Peptide, Protein and Oligonucleotide Delivery. Curr. Opin. Pharmacol. 2006, 6, 509-514. (11) Du, J. J.; Jin, J.; Yan, M.; Lu, Y. F. Synthetic Nanocarriers for Intracellular Protein Delivery. Curr. Drug Metab. 2012, 13, 82-92. (12) Gu, Z.; Biswas, A.; Zhao, M. X.; Tang, Y. Tailoring Nanocarriers for Intracellular Protein Delivery. Chem. Soc. Rev. 2011, 40, 3638-3655. (13) Di Marco, M.; Shamsuddin, S.; Razak, K. A.; Aziz, A. A.; Devaux, C.; Borghi, E.; Levy, L.; Sadun, C. Overview of the Main Methods Used to Combine Proteins with Nanosystems: Absorption, Bioconjugation, and Encapsulation. Int. J. Nanomed. 2010, 5, 37-49. (14) Chen, J. F.; Ding, H. M.; Wang, J. X.; Shao, L. Preparation and Characterization of Porous Hollow Silica Nanoparticles for Drug Delivery Application. Biomaterials 2004, 25, 723-727. (15) Li, Z. Z.; Wen, L. X.; Shao, L.; Chen, J. F.Fabrication of Porous Hollow Silica Nanoparticles and Their Applications in Drug Release Control. J. Controlled Release 2004, 98, 245-254. (16) Zhou, J.; Wu, W.; Caruntu, D.; Yu, M. H.; Martin, A.; Chen, J. F.; O'Connor, C. J.; Zhou, W. L. Synthesis of Porous Magnetic Hollow Silica Nanospheres for Nanomedicine Application. J. Phys. Chem. C 2007, 111, 17473-17477. (17) Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow Micro-/Nanostructures: Synthesis and Applications. Adv. Mater. 2008, 20, 3987-4019. (18) Lin, Y. S.; Wu, S. H.; Tseng, C. T.; Hung, Y.; Chang, C.; Mou, C. Y. Synthesis of Hollow Silica Nanospheres with a Microemulsion as the Template. Chem. Commun. 2009, 3542-3544. (19) Ow, H.; Larson, D. R.; Srivastava, M.; Baird, B. A.; Webb, W. W.; Wiesner, U. Bright and Stable Core-Shell Fluorescent Silica Nanoparticles. Nano Lett. 2005, 5, 113-117. (20) Muddana, H. S.; Morgan, T. T.; Adair, J. H.; Butler, P. J. Photophysics of Cy3-Encapsulated Calcium Phosphate Nanoparticles. Nano Lett. 2009, 9, 1559-1566. (21) He, X. X.; Chen, J. Y.; Wang, K. M.; Qin, D. L.; Tan, W. H. Preparation of Luminescent Cy5 Doped Core-Shell Sfnps and Its Application as a near-Infrared Fluorescent Marker. Talanta 2007, 72, 1519-152 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58212 | - |
| dc.description.abstract | 中孔洞奈米矽材泛指具有 2-50 nm 孔洞結構之二氧化矽奈米材料。因為具有高的表面積與孔洞特性 ,此材料在奈米生醫領域中吸引廣泛的注意與應用。最近,一種二氧化矽相似材料(Cornell dots)已經進入人體臨床實驗。這是個令人振奮的消息,它鼓舞我們對中孔洞奈米矽材做進一步地研究與改善,並期待能將此材料推向市場應用端。本論文共包含了五個章節,內容專注於中孔洞二氧化矽奈米材料的合成、結構鑑定、表面修飾、與其在生物上的應用。
第一章節為中孔洞奈米矽材概論,內容描述規則中孔洞與空心結構之中孔洞二氧化矽奈米材料的合成方法、形成機制、生物相容性、與生物上的應用。 第二章節探討中孔洞奈米矽材應用於植物轉殖工程的可行性。在此研究領域,我們有相當突破性的進展。研究發現,中孔洞材料可以不需藉由任何外力自發性地攜帶 DNA 進入植物組織中。這對運送外來物質進入植物組織的研究會有顯著的發展。 第三章節報導一種將酵素包覆於空心奈米球的新穎方法。此奈米空心球具有可讓物質自由通透的孔洞結構。進入細胞後可在細胞中進行酵素的催化反應並達成癌症治療目的。 第四章節闡述人造胞器的概念。奈米空心球因為具有大的內部反應空間與通透性球殼,因此可以同時包覆多種酵素進行複雜的連續性反應。就像細胞內胞器一般,我們包覆多種酵素於奈米空心球中,並期待此人造胞器與細胞結合後可以發展成具有醫療價值的工具。 第五章節總結了所有的研究工作,同時對於未來研究提出個人看法與展望。 | zh_TW |
| dc.description.abstract | Mesoporous silica is a form of silica with a pore diameter from 2 to 50 nm. Due to their high surface area and pore structure, Mesostructured silica nanoparticles (MS-NPs)have drawn with extensive attentions in biotechnology applications. Recently,multimodal silica nanoparticles (Cornell dots),a kind of silica materials, have been approved for a first-in-human clinical trial which inspires and brings us to work on the subjects to improve and optimize the MS-NP-based materials for commercial purposes.
There are five chapters in this dissertation which focuses on the synthesis, chemical and physical characterization, surface functionalization, and biological applications of MS-NPs. In Chapter 1, I described the general introduction of MS-NPs, including the preparation of ordered/hollow-type mesoporous silica nanoparticles, the formation mechanism, biocompatibility, and biological applications. In Chapter 2, I explored the possibilities of using mesoporous silica nanoparticles (MSNs) in plant bioengineering. This study is pioneer of introducing biomaterials into intact plants without the aid of any mechanical force and has significant applications in multi-cargo delivery. In Chapter 3, I reported a novel method of entrapping enzymes inside hollow-type MSNs (HMSNs). The enzyme-filled nanoparticles allowing transport of substrates and products were delivered into cancer cells. The idea is to have a nano-sized catalytic reactor functioning inside living cells for therapeutic purpose. In Chapter 4, I proposed the concept of “artificial organelles.” Like a bio-compartment mimic, the special architectures of HMSNs with an interior reaction space and substrate-permeable shells could load multiple enzymes to process cascade reactions. This idea raised the possibility of artificial organelles to enhance the cell metabolic ability in either increasing life-span or cell fate for the medical use. In Chapter 5, I summarized my research works, opinions and future directions of studies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:08:24Z (GMT). No. of bitstreams: 1 ntu-103-D98223203-1.pdf: 4333206 bytes, checksum: 03e80e65474e5a37df9b66182613c40b (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 中文摘要 ......................................................................................................................... I
Abstract .................................................................................................................... III Table of contents ........................................................................................................... V List of schemes ........................................................................................................... XIII List of Tables .............................................................................................................. XIV 1.1 Mesostructured Silica Nanoparticles (MS-NPs)......................................................... 2 1.1.1 Ordered Mesoporous Silica. ................................................................................ 2 1.1.1.1 Synthesis of MSNs. ...................................................................................... 2 1.1.2 Hollow-type Mesoporous Silica Nanoparticles (HMSNs). ................................. 5 1.1.2.1 Synthetic Approaches to Hollow Structures. ................................................ 6 1.1.2.1.1 Soft Templating Synthesis: Emulsion Droplets. .................................... 6 1.1.2.1.2 Soft Templating Synthesis: Single Micelle/Vesicle-Templating. .......... 9 1.1.2.1.3 Hard Templating Synthesis: Selective Dissolving Strategy ................ 10 1.1.2.1.4 Hard Templating Synthesis: Surface-protected Etching & Self-template Method. ........................................................................................................... 12 1.2 Biocompatibility of Mesostructured Silica Nannoparticles...................................... 14 1.2.1 Effect of Size. .................................................................................................... 14 1.2.2 Effect of Surface Properties. .............................................................................. 15 1.2.3 Effect of Shape & Structure. .............................................................................. 16 1.3 Mesostructured Silica Nannoparticles as nanocarriers. ............................................ 17 1.3.1 Drug, Gene, and Protein Delivery. .................................................................... 17 1.3.1.1 Mammalian Systems. ................................................................................. 17 1.3.1.2 Plant Systems. ............................................................................................. 18 1.4 References. ............................................................................................................... 20 Section 2 A Simple Plant Gene Delivery System Using Mesoporous silica Nanoparticles as carriers ............................................................................................. 29 2.1 Abstract. .................................................................................................................... 30 2.2 Introduction. ............................................................................................................. 31 2.3 Materials and Methods. ............................................................................................ 35 2.3.1 Materials. ........................................................................................................... 35 2.3.2 Organically Functionalized MSNs. ................................................................... 35 2.3.2.1 Synthesis of F-MSNs and R-MSNs. ........................................................... 35 2.3.2.2 Synthesis of APTMS/F-MSNs, APTMS/R-MSNs, TMAPS/F-MSNs, and TMAPS/R-MSNs. .................................................................................................. 36 2.3.2.3 Synthesis of THPMP/F-MSNs and THPMP/R-MSNs. .............................. 36 2.3.3 Physicochemical Properties of Organically Functionalized MSNs. .................. 37 2.3.3.1 Characterization of Organically Functionalized MSNs with Transmission electron microscopy (TEM).................................................................................... 37 2.3.3.2 Characterization of Organically Functionalized MSNs in Aqueous Solution. ................................................................................................................................ 37 2.3.3.3 Characterization of Organically Functionalized MSNs in 1/2 Murashige and Skoog (MS) and BY-2 Culture Medium. ................................................................ 38 2.3.4 Preparation of DNA–TMAPS-MSN Complexes. ............................................. 38 2.3.5 Plant Materials. .................................................................................................. 38 2.3.6 MSN Uptake Experiments. ................................................................................ 39 2.3.7 DNA-MSN Binding and Plant Transformation. ................................................ 39 2.3.8 Efficiency Analysis of the MSN–Plant System. ................................................ 40 2.3.9 Low Temperature and Inhibitor Experiments. ................................................... 41 2.3.10 TEM Imaging of Arabidopsis Roots. ............................................................... 42 2.4 Results and Discussion. ............................................................................................ 44 2.4.1 Organically Functionalized MSNs. ................................................................... 44 2.4.2 Organically Functionalized MSNs are Internalized by Tobacco Protoplasts. ... 49 2.4.3 Organically Functionalized MSNs Can Enter Intact Plants. ............................. 52 2.4.4 Localization of MSNs within Root Tissue. ....................................................... 54 2.4.5 Dynamic Distribution of MSNs in Arabidopsis Roots. ..................................... 56 2.4.6 MSNs as Delivery Vectors for Plant Transformation. ....................................... 58 2.4.7 Efficiency of MSN-Mediated DNA Delivery. ................................................... 65 2.4.8 Possible Route of MSN Uptake by Arabidopsis Root Cells. ............................. 67 2.5 Conclusions. ............................................................................................................. 73 2.6 References. ............................................................................................................... 75 Section 3 Enzyme Encapsulated Hollow Silica Nanospheres for intracellular Biocatalysis .................................................................................................................... 82 3.1 Abstract. .................................................................................................................... 83 3.2 Introduction. ............................................................................................................. 84 3.3. Materials and methods. ............................................................................................ 87 3.3.1 Materials. ........................................................................................................... 87 3.3.2 Synthesis of HRP@HSNs, HRP@SSNs, HSNs, and SSNs. ............................. 87 3.3.3 Synthesis of HRP@F-HSNs and F-HSNs. ........................................................ 88 3.3.4 HRP-Encapsulation Efficiency and Loading Yield. .......................................... 89 3.3.5 Characterization. ................................................................................................ 89 3.3.6 Leakage of HRP-RITC from Silica Nanospheres. ............................................ 90 3.3.7 HRP Activity Assay. .......................................................................................... 91 3.3.8 Stability of Encapsulated HRP in the Presence of Trypsin and Urea. ............... 91 3.3.9 Cell Culture. ...................................................................................................... 92 3.3.10 Cell Cytotoxicity and Proliferation Assay. ...................................................... 93 3.3.11 Flow Cytometry Analysis. .......................................................................... 93 3.3.12 Confocal Fluorescence Microscopy Examination. .......................................... 94 3.3.13 Co-localization amination. ................................................ 94 3.3.14. Application of HRP@HSNs for Cancer Therapy. .......................................... 95 3.4 Results and Discussion. ............................................................................................ 96 3.4.1. Synthesis and Characterization of Enzyme Encapsulated Nanospheres. ......... 96 3.4.2 Activity of Encapsulated HRP. ........................................................................ 103 3.4.3 Silica Shell Protects HRP. ................................................................................ 105 3.4.4 Cell Uptake of HRP@HSNs. ........................................................................... 107 3.4.5. Cytotoxicity and Distribution Pattern of Nanoparticles. ................................. 111 3.4.6. HRP@HSNs as Nanoreactors for Intracellular Biocatalysis . ......................... 113 3.5. Conclusions. ........................................................................................................... 116 3.6 References. .............................................................................................................. 117 Section 4 Cascade Reactions in Hollow Silica Nanospheres: From Nanoreactors to Artificial Organelles ................................................................................................... 121 4.1. Abstract. ................................................................................................................. 122 4.2. Introduction. .......................................................................................................... 123 4.3. Materials and Methods. ......................................................................................... 125 4.3.1. Materials. ........................................................................................................ 125 4.3.2. Modification of SOD and CAT with PEI. ....................................................... 125 4.3.3. Synthesis of SOD_PEI@HSNs, CAT_PEI@HSNs, and SOD/CAT_PEI@HSNs. .................................................................................................................................. 126 4.3.4. Enzyme-Encapsulation Efficiency. ................................................................. 127 4.3.5. Enzymatic Activity Assays. ............................................................................ 128 4.3.6. Cascade Reaction of SOD/CAT-PEI@HSNs. ................................................ 129 4.3.7. Transmission Electron Microscopy (TEM) Analysis. .................................... 130 4.3.8. Dynamic Light Scattering (DLS) Size and Zeta Potential of Surface Functionalized Enzyme and Enzyme Encapsulated HSNs....................................... 130 4.4. Results and Discussion. ......................................................................................... 131 4.4.1 Synthesis of Enzyme Encapsulated Nanospheres. .......................................... 131 4.4.2. Physicochemical Characterization. ................................................................. 133 4.4.3. Activity of Encapsulated Enzymes. ................................................................ 136 4.4.4. Cascade reactions in SOD/CAT-PEI@HSNs. ................................................ 139 4.5. Conclusions. .......................................................................................................... 142 4.6. References. ............................................................................................................ 143 Section 5 Conclusions and Perspective ..................................................................... 146 Abbreviations ............................................................................................................... 150 | |
| dc.language.iso | en | |
| dc.subject | 孔洞結構二氧化矽奈米材料 | zh_TW |
| dc.subject | 基因轉殖 | zh_TW |
| dc.subject | 蛋白質輸送 | zh_TW |
| dc.subject | 奈米反應器 | zh_TW |
| dc.subject | 人造胞器. | zh_TW |
| dc.subject | nanoreactors | en |
| dc.subject | mesostructured silica nanoparticles | en |
| dc.subject | artificial organelles. | en |
| dc.subject | gene transformation | en |
| dc.subject | protein delivery | en |
| dc.title | 中孔結構之二氧化矽奈米材料在生物上的應用 | zh_TW |
| dc.title | Mesostructured Silica Nanoparticles: Biological Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳平,陳培菱,陳建志,詹維康 | |
| dc.subject.keyword | 孔洞結構二氧化矽奈米材料,基因轉殖,蛋白質輸送,奈米反應器,人造胞器., | zh_TW |
| dc.subject.keyword | mesostructured silica nanoparticles,gene transformation,protein delivery,nanoreactors,artificial organelles., | en |
| dc.relation.page | 153 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-05-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
