請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58206完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉貴生(Guey-Sheng Liou) | |
| dc.contributor.author | Fang-Wei Li | en |
| dc.contributor.author | 李方瑋 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:08:15Z | - |
| dc.date.available | 2022-07-31 | |
| dc.date.copyright | 2020-07-17 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-14 | |
| dc.identifier.citation | References and Notes 1. P. M. Monk, R. J. Mortimer and D. R. Rosseinsky, Electrochromism: fundamentals and applications, John Wiley Sons, 2008. 2. F. H. Smith,British Pat., 1929, 328 017. 3. N. Kobosew and N. I. Nekrassow, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1930, 36, 529-544. 4. J. R. Platt, The Journal of Chemical Physics, 1961, 34, 862-863. 5. S. K. Deb, Appl. Opt., 1969, 8, 192-195. 6. S. K. Deb, Philosophical Magazine, 1973, 27, 801-822. 7. S. K. Mohapatra, Journal of The Electrochemical Society, 1978, 125, 284-288. 8. N. R. Lynam, Electrochromic automotive day/night mirrors, Report 0148-7191, SAE Technical Paper, 1987. 9. R. Baetens, B. P. Jelle and A. Gustavsen, Solar Energy Materials and Solar Cells, 2010, 94, 87-105. 10. M. Green, Chemistry and industry., 1996, 641-644. 11. T. Kubo, J. Tanimoto, M. Minami, T. Toya, Y. Nishikitani and H. Watanabe, Solid State Ionics, 2003, 165, 97-104. 12. C. M. Lampert, Solar energy materials., 1984, 11, 1-27. 13. E. S. Lee and D. L. DiBartolomeo, Solar Energy Materials and Solar Cells, 2002, 71, 465-491. 14. Aircraft Windows, http://www.gentex.com/aerospace/aircraft-windows. 15. LG’s New E-Paper Promises Flexible, Color Displays, https://www.ubergizmo.com/2010/08/lgs-new-e-paper-promises-flexible-color-displays/. 16. ECM Room Mirror, http://www.mancando.com/Products_category/others_interior.html. 17. N. S. Allen, Polymer Photochemistry, 1984, 4, 81. 18. C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans and B. P. Rand, ACS Applied Materials Interfaces, 2011, 3, 3244-3247. 19. L. Zheng, Y. Xu, D. Jin and Y. Xie, Chemistry of Materials, 2009, 21, 5681-5690. 20. K. C. Cheng, F. R. Chen and J. J. Kai, Solar Energy Materials and Solar Cells, 2006, 90, 1156-1165. 21. M. R. J. Scherer, L. Li, P. M. S. Cunha, O. A. Scherman and U. Steiner, Advanced Materials, 2012, 24, 1217-1221. 22. A. Ghicov, M. Yamamoto and P. Schmuki, Angewandte Chemie International Edition, 2008, 47, 7934-7937. 23. S. H. Mujawar, A. I. Inamdar, C. A. Betty, V. Ganesan and P. S. Patil, Electrochimica Acta, 2007, 52, 4899-4906. 24. W. Lin, Q. Zhao, H. Sun, K. Y. Zhang, H. Yang, Q. Yu, X. Zhou, S. Guo, S. Liu and W. Huang, Advanced Optical Materials, 2015, 3, 368-375. 25. Y. S. Nam, H. Park, A. P. Magyar, D. S. Yun, T. S. Pollom and A. M. Belcher, Nanoscale, 2012, 4, 3405-3409. 26. R. T. Wen, G. A. Niklasson and C. G. Granqvist, ACS Applied Materials Interfaces, 2015, 7, 9319-9322. 27. F. Lin, D. Nordlund, T. C. Weng, R. G. Moore, D. T. Gillaspie, A. C. Dillon, R. M. Richards and C. Engtrakul, ACS Applied Materials Interfaces, 2013, 5, 301-309. 28. R. T. Wen, C. G. Granqvist and G. A. Niklasson, Advanced Functional Materials, 2015, 25, 3359-3370. 29. R. T. Wen, C. G. Granqvist and G. A. Niklasson, ChemElectroChem., 2016, 3, 266-275. 30. B. W. Faughnan, RCA Rev., 1975, 36, 177-197. 31. B. J. Coe, J. A. Harris, B. S. Brunschwig, I. Asselberghs, K. Clays, J. Garín and J. Orduna, Journal of the American Chemical Society, 2005, 127, 13399-13410. 32. R. J. Mortimer, Electrochromic materials, Chemical Society reviews., 1997. 33. J. A. Duffy, M. D. Ingram and P. M. S. Monk, Solid State Ionics, 1992, 58, 109-114. 34. V. D. Neff, Journal of the Electrochemical Society., 1978, 125, 886. 35. N. R. de Tacconi, K. Rajeshwar and R. O. Lezna, Chemistry of Materials, 2003, 15, 3046-3062. 36. H. J. Yen, C. J. Chen and G. S. Liou, Advanced Functional Materials, 2013, 23, 5307-5316. 37. H. Shirakawa, Chemical communications : Chem comm /, 2003, 2003, 1. 38. M. Mastragostino, Electrochromic devices, in Applications of Electroactive Polymers, ed. B. Scrosati, Springer Netherlands, Dordrecht, 1993, pp. 223-249. 39. A. Kumar, D. M. Welsh, M. C. Morvant, F. Piroux, K. A. Abboud and J. R. Reynolds, Chemistry of Materials, 1998, 10, 896-902. 40. S. A. Sapp, G. A. Sotzing and J. R. Reynolds, Chemistry of Materials, 1998, 10, 2101-2108. 41. G. Sonmez, H. B. Sonmez, C. K. F. Shen and F. Wudl, Advanced Materials, 2004, 16, 1905-1908. 42. G. Barbarella, M. Melucci and G. Sotgiu, Advanced Materials, 2005, 17, 1581-1593. 43. B. Scrosati, Laminated electrochromic displays and windows, in Applications of Electroactive Polymers, ed. B. Scrosati, Springer Netherlands, Dordrecht, 1993, pp. 250-282. 44. S. Hünig, Stable radical ions, in Pure and Applied Chemistry, 1967, vol. 15, pp. 109-122. 45. C. L. Bird and A. T. Kuhn, Chemical Society Reviews, 1981, 10, 49-82. 46. N. M. Rowley and R. J. Mortimer, Science progress, 2002, 85, 243-262. 47. C. S. Ah, J. Song, S. M. Cho, T.-Y. Kim, H. N. Kim, J. Y. Oh, H. Y. Chu and H. Ryu, Bulletin of the Korean Chemical Society, 2015, 36, 548-552. 48. R. Cinnsealach, G. Boschloo, S. Nagaraja Rao and D. Fitzmaurice, Solar Energy Materials and Solar Cells, 1999, 57, 107-125. 49. D. Cummins, G. Boschloo, M. Ryan, D. Corr, S. N. Rao and D. Fitzmaurice, The Journal of Physical Chemistry B, 2000, 104, 11449-11459. 50. M. K. Leung, M. Y. Chou, Y. O. Su, C. L. Chiang, H. L. Chen, C. F. Yang, C. C. Yang, C. C. Lin and H. T. Chen, Organic Letters, 2003, 5, 839-842. 51. G. S. Liou, S. H. Hsiao, M. Ishida, M. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40, 3815-3822. 52. Y. Oishi, M. Ishida, M.-A. Kakimoto, Y. Imai and T. Kurosaki, Journal of Polymer Science Part A: Polymer Chemistry, 1992, 30, 1027-1035. 53. C. W. Chang and G. S. Liou, Journal of Materials Chemistry, 2008, 18, 5638-5646. 54. S. H. Cheng, S. H. Hsiao, T. H. Su and G. S. Liou, Macromolecules, 2005, 38, 307-316. 55. Y. W. Chuang, H. J. Yen, J. H. Wu and G. S. Liou, ACS Applied Materials Interfaces, 2014, 6, 3594-3599. 56. G. S. Liou, S. H. Hsiao, N. K. Huang and Y. L. Yang, Macromolecules, 2006, 39, 5337-5346. 57. G. S. Liou, S. H. Hsiao and T. H. Su, Journal of Materials Chemistry, 2005, 15, 1812-1820. 58. G. S. Liou and H. Y. Lin, Macromolecules, 2009, 42, 125-134. 59. R. R. Nelson and R. N. Adams, Journal of the American Chemical Society, 1968, 90, 3925-3930. 60. L. C. Lin, H. J. Yen, Y. R. Kung, C. M. Leu, T. M. Lee and G. S. Liou, Journal of materials chemistry C, 2014, 2, 7796-7803. 61. T. H. Su, S. H. Hsiao and G. S. Liou, Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43, 2085-2098. 62. C. W. Chang, G. S. Liou and S. H. Hsiao, Journal of Materials Chemistry, 2007, 17, 1007-1015. 63. H. J. Yen, H. Y. Lin and G. S. Liou, Chemistry of Materials, 2011, 23, 1874-1882. 64. H. J. Yen and G. S. Liou, Chemistry of Materials, 2009, 21, 4062-4070. 65. C. G. Granqvist, Nature Materials, 2006, 5, 89. 66. J. G. H. Mathew, S. P. Sapers, M. J. Cumbo, N. A. O'Brien, R. B. Sargent, V. P. Raksha, R. B. Lahaderne and B. P. Hichwa, Journal of Non-Crystalline Solids, 1997, 218, 342-346. 67. H. R. Allcock, Advanced Materials, 1994, 6, 106-115. 68. B. M. Novak, Advanced Materials, 1993, 5, 422-433. 69. W. Caseri, Macromolecular Rapid Communications, 2000, 21, 705-722. 70. P. Judeinstein and C. Sanchez, Journal of Materials Chemistry, 1996, 6, 511-525. 71. F. Mammeri, E. L. Bourhis, L. Rozes and C. Sanchez, Journal of Materials Chemistry, 2005, 15, 3787-3811. 72. J. J. Ebelmen, Ann, 1846, 57, 319-355. 73. W. Geffcken and E. Berger, German Patent, 1939, 736. 74. C. J. Brinker and G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, Academic press, 2013. 75. H. W. Su and W. C. Chen, Journal of Materials Chemistry, 2008, 18, 1139-1145. 76. A. Thelen, Design of optical interference coatings, McGraw-Hill Companies, 1989. 77. B. C. Pan, W. H. Chen, T. M. Lee and G. S. Liou, Journal of Materials Chemistry C, 2018, 6, 12422-12428. 78. S. Kirchmeyer and K. Reuter, Journal of Materials Chemistry, 2005, 15, 2077-2088. 79. A. G. MacDiarmid, Angewandte Chemie International Edition, 2001, 40, 2581-2590. 80. S. Iijima, Nature, 1991, 354, 56-58. 81. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature, 2005, 438, 197. 82. J. Y. Lee, S. T. Connor, Y. Cui and P. Peumans, Nano Letters, 2008, 8, 689-692. 83. A. R. Rathmell and B. J. Wiley, Advanced Materials, 2011, 23, 4798-4803. 84. D. S. Hecht, L. Hu and G. Irvin, Advanced Materials, 2011, 23, 1482-1513. 85. D. Vaufrey, M. B. Khalifa, J. Tardy, C. Ghica, M. G. Blanchin, C. Sandu and J. A. Roger, Semiconductor Science and Technology, 2003, 18, 253-260. 86. Hard Coat Film for ITO, http://www.lintec.co.jp/e-dept/english/opteria/products/hardcoat_ito.html. 87. C. K. Chiang, M. A. Druy, S. C. Gau, A. J. Heeger, E. J. Louis, A. G. MacDiarmid, Y. W. Park and H. Shirakawa, Journal of the American Chemical Society, 1978, 100, 1013-1015. 88. J. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello and D. D. C. Bradley, Advanced Functional Materials, 2005, 15, 290-296. 89. Y. Xia, K. Sun and J. Ouyang, Advanced Materials, 2012, 24, 2436-2440. 90. S. Sharma, S. Shriwastava, S. Kumar, K. Bhatt and C. C. Tripathi, Opto-Electronics Review, 2018, 26, 223-235. 91. H. Naarmann, Ullmann's Encyclopedia of Industrial Chemistry, 2000. 92. S. Iijima and T. Ichihashi, Nature, 1993, 363, 603-605. 93. N. Saran, K. Parikh, D. S. Suh, E. Muñoz, H. Kolla and S. K. Manohar, Journal of the American Chemical Society, 2004, 126, 4462-4463. 94. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard and A. G. Rinzler, Science, 2004, 305, 1273. 95. X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang and S. Fan, Nano Lett, 2009, 9, 3137-3141. 96. E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth and G. Grüner, Nano Letters, 2005, 5, 757-760. 97. A. K. Geim and K. S. Novoselov, Nature Materials, 2007, 6, 183. 98. T. Fang, A. Konar, H. Xing and D. Jena, Applied Physics Letters, 2007, 91, 092109. 99. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Nano Letters, 2008, 8, 902-907. 100. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, Science, 2008, 320, 1308. 101. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, Nature, 2009, 457, 706. 102. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong and S. Iijima, Nature Nanotechnology, 2010, 5, 574. 103. D. Azulai, T. Belenkova, H. Gilon, Z. Barkay and G. Markovich, Nano Letters, 2009, 9, 4246-4249. 104. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland and J. N. Coleman, ACS Nano, 2009, 3, 1767-1774. 105. M. G. Kang and L. J. Guo, Advanced Materials, 2007, 19, 1391-1396. 106. Z. Wang, J. Yuan, J. Zhang, R. Xing, D. Yan and Y. Han, Advanced Materials, 2003, 15, 1009-1012. 107. J. H. Song, Y. Wu, B. Messer, H. Kind and P. Yang, Journal of the American Chemical Society, 2001, 123, 10397-10398. 108. C. Wang, M. Chen, G. Zhu and Z. Lin, Journal of Colloid and Interface Science, 2001, 243, 362-364. 109. Q. Zhang, Y. A. N. Li, D. Xu and Z. Gu, Journal of Materials Science Letters, 2001, 20, 925-927. 110. M. Saka and R. Ueda, Journal of Materials Research, 2005, 20, 2712-2718. 111. Y. Sun, Y. Yin, B. T. Mayers, T. Herricks and Y. Xia, Chemistry of Materials, 2002, 14, 4736-4745. 112. S. H. Im, Y. T. Lee, B. Wiley and Y. Xia, Angewandte Chemie International Edition, 2005, 44, 2154-2157. 113. K. E. Korte, S. E. Skrabalak and Y. Xia, Journal of materials chemistry 2008, 18, 437-441. 114. Y. Sun, B. Mayers, T. Herricks and Y. Xia, Nano Letters, 2003, 3, 955-960. 115. B. Wiley, Y. Sun and Y. Xia, Langmuir, 2005, 21, 8077-8080. 116. H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng and G. Q. Xu, Langmuir, 1996, 12, 909-912. 117. S. De, P. J. King, P. E. Lyons, U. Khan and J. N. Coleman, ACS Nano, 2010, 4, 7064-7072. 118. M. Dressel and G. Grüner, Electrodynamics of solids: optical properties of electrons in matter, Cambridge University Press: Cambridge, 2002. 119. S. B. Sepulveda-Mora and S. G. Cloutier, Journal of Nanomaterials, 2012, 2012, 9. 120. E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee and M. L. Brongersma, Nature Materials, 2012, 11, 241. 121. S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, M.-Y. Yang and S. H. Ko, Advanced Materials, 2014, 26, 5808-5814. 122. J. Lee, P. Lee, H. Lee, D. Lee, S. S. Lee and S. H. Ko, Nanoscale, 2012, 4, 6408-6414. 123. W. H. Chen(陳偉豪), 高透明度奈米銀線/聚二甲基矽氧烷電極應用於可拉伸式電致變色元件之製備及性質探討, 國立臺灣大學高分子科學與工程學研究所, 2018. 124. X. Ho, J. Nie Tey, W. Liu, C. Kweng Cheng and J. Wei, Journal of Applied Physics, 2013, 113, 044311. 125. H. J. Lee, J. H. Hwang, K. B. Choi, S.-G. Jung, K. N. Kim, Y. S. Shim, C. H. Park, Y. W. Park and B.-K. Ju, ACS Applied Materials Interfaces, 2013, 5, 10397-10403. 126. J. Y. Lee, D. Shin and J. Park, Thin Solid Films, 2016, 608, 34-43. 127. C. Preston, Y. Xu, X. Han, J. N. Munday and L. Hu, Nano Research, 2013, 6, 461-468. 128. W. Hu, X. Niu, L. Li, S. Yun, Z. Yu and Q. Pei, Nanotechnology, 2012, 23, 344002. 129. L. Li, Z. Yu, W. Hu, C. H. Chang, Q. Chen and Q. Pei, Advanced Materials, 2011, 23, 5563-5567. 130. Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu and Q. Pei, Advanced Materials, 2011, 23, 664-668. 131. C. Y. Chou, H. S. Liu and G. S. Liou, RSC Advances, 2016, 6, 61386-61392. 132. J. Jiu, T. Sugahara, M. Nogi, T. Araki, K. Suganuma, H. Uchida and K. Shinozaki, Nanoscale, 2013, 5, 11820-11828. 133. H. Y. Lu, C. Y. Chou, J. H. Wu, J. J. Lin and G. S. Liou, Journal of Materials Chemistry C, 2015, 3, 3629-3635. 134. S. P. Chen and Y. C. Liao, Physical Chemistry Chemical Physics, 2014, 16, 19856-19860. 135. H. W. Tien, S. T. Hsiao, W. H. Liao, Y. H. Yu, F. C. Lin, Y. S. Wang, S. M. Li and C. C. M. Ma, Carbon, 2013, 58, 198-207. 136. T. Kim, A. Canlier, G. H. Kim, J. Choi, M. Park and S. M. Han, ACS Applied Materials Interfaces, 2013, 5, 788-794. 137. T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge, Y. Aso and K. Suganuma, Nano Research, 2011, 4, 1215-1222. 138. S. Narayanan, J. R. Hajzus, C. E. Treacy, M. R. Bockstaller and L. M. Porter, ECS Journal of Solid State Science and Technology, 2014, 3, P363-P369. 139. X. Y. Zeng, Q. K. Zhang, R. M. Yu and C. Z. Lu, Advanced Materials, 2010, 22, 4484-4488. 140. D. Kim, L. Zhu, D.-J. Jeong, K. Chun, Y.-Y. Bang, S.-R. Kim, J.-H. Kim and S.-K. Oh, Carbon, 2013, 63, 530-536. 141. S. E. Park, S. Kim, D. Y. Lee, E. Kim and J. Hwang, Journal of Materials Chemistry A, 2013, 1, 14286-14293. 142. J. S. Cooper, T. F. Pajak, A. A. Forastiere, J. Jacobs, B. H. Campbell, S. B. Saxman, J. A. Kish, H. E. Kim, A. J. Cmelak, M. Rotman, M. Machtay, J. F. Ensley, K. S. C. Chao, C. J. Schultz, N. Lee and K. K. Fu, New England Journal of Medicine, 2004, 350, 1937-1944. 143. D. Y. Choi, H. W. Kang, H. J. Sung and S. S. Kim, Nanoscale, 2013, 5, 977-983. 144. T. Kim, Y. W. Kim, H. S. Lee, H. Kim, W. S. Yang and K. S. Suh, Advanced Functional Materials, 2013, 23, 1250-1255. 145. J. P. Franey, G. W. Kammlott and T. E. Graedel, Corrosion Science, 1985, 25, 133-143. 146. M. Lagrange, T. Sannicolo, D. Muñoz-Rojas, B. G. Lohan, A. Khan, M. Anikin, C. Jiménez, F. Bruckert, Y. Bréchet and D. Bellet, Nanotechnology, 2016, 28, 055709. 147. J. Jiu, J. Wang, T. Sugahara, S. Nagao, M. Nogi, H. Koga, K. Suganuma, M. Hara, E. Nakazawa and H. Uchida, RSC Advances, 2015, 5, 27657-27664. 148. D. C. Choo and T. W. Kim, Scientific Reports, 2017, 7, 1696. 149. H. H. Khaligh and I. A. Goldthorpe, Nanoscale Research Letters, 2013, 8, 235. 150. H.-Y. Lu, C.-Y. Chou, J.-H. Wu, J.-J. Lin and G.-S. Liou, Journal of Materials Chemistry C, 2015, 3, 3629-3635. 151. C.-Y. Chou, H.-S. Liu and G.-S. Liou, RSC Advances, 2016, 6, 61386-61392. 152. H. S. Liu, B. C. Pan and G. S. Liou, Nanoscale, 2017, 9, 2633-2639. 153. W. H. Chen, F. W. Li and G. S. Liou, Advanced Optical Materials, 2019, 7, 1900632. 154. D. Lee, H. Lee, Y. Ahn, Y. Jeong, D. Y. Lee and Y. Lee, Nanoscale, 2013, 5, 7750-7755. 155. J.-M. Lee, Y.-H. Kim, H.-K. Kim, H.-J. Kim and C.-H. Hong, Scientific Reports, 2020, 10, 4592. References and Notes 1. R. J. Mortimer, A. L. Dyer and J. R. Reynolds, Displays, 2006, 27, 2-18. 2. N. R. Lynam, Electrochromic automotive day/night mirrors, Report 0148-7191, SAE Technical Paper, 1987. 3. C. S. Matsumoto, K. Shinoda, H. Matsumoto, K. Seki, E. Nagasaka, T. Iwata and A. Mizota, Journal of Vision, 2014, 14, 2-2. 4. Aircraft Windows, http://www.gentex.com/aerospace/aircraft-windows. 5. S. K. Deb, Philosophical Magazine, 1973, 27, 801-822. 6. R. J. Mortimer, Electrochromic materials, Chemical Society reviews., 1997. 7. G. Barbarella, M. Melucci and G. Sotgiu, Advanced Materials, 2005, 17, 1581-1593. 8. C. L. Bird and A. T. Kuhn, Chemical Society Reviews, 1981, 10, 49-82. 9. H. J. Yen and G. S. Liou, Progress in Polymer Science, 2019, 89, 250-287. 10. Y. Kuo, T. Chiu, J. Su, L. Hong, T.-H. Lin, G. S. Liou and S. H. Cheng, Journal of Electroanalytical Chemistry 2005, 575, 95-101. 11. J. T. Wu, H. T. Lin and G. S. Liou, ACS Applied Materials Interfaces, 2019, 11, 14902-14908. 12. S. H. Hsiao, G. S. Liou, Y. C. Kung and H. J. Yen, Macromolecules, 2008, 41, 2800-2808. 13. B. C. Pan, W. H. Chen, T. M. Lee and G. S. Liou, Journal of Materials Chemistry C, 2018, 6, 12422-12428. 14. J. T. Wu and G. S. Liou, Chemical Communications, 2018, 54, 2619-2622. 15. H. S. Liu, B. C. Pan, D. C. Huang, Y. R. Kung, C. M. Leu and G. S. Liou, Npg Asia Materials, 2017, 9, e388. 16. G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu and W. C. Chen, Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48, 1433-1440. 17. G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, T. W. Tsai and W. C. Chen, Journal of Materials Chemistry, 2010, 20, 531-536. 18. C. W. Hu, K. M. Lee, K. C. Chen, L. C. Chang, K. Y. Shen, S. C. Lai, T. H. Kuo, C. Y. Hsu, L. M. Huang, R. Vittal and K. C. Ho, Solar Energy Materials and Solar Cells, 2012, 99, 135-140. 19. J. H. Wu and G. S. Liou, Advanced Functional Materials, 2014, 24, 6422-6429. 20. C. H. Chen, F. Fei, N. W. Sun, X. G. Zhao, S. Y. Meng and D. M. Wang,China Patent, 2016. 21. M. Novak, K. A. Martin and J. L. Heinrich, The Journal of Organic Chemistry, 1989, 54, 5430-5431. 22. N. Yamazaki, F. Higashi and J. Kawabata, Journal of Polymer Science: Polymer Chemistry Edition, 1974, 12, 2149-2154. 23. N. Yamazaki, M. Matsumoto and F. Higashi, Journal of Polymer Science: Polymer Chemistry Edition, 1975, 13, 1373-1380. 24. C. W. Chang, C. H. Chung and G. S. Liou, Macromolecules, 2008, 41, 8441-8451. 25. C. W. Chang, G. S. Liou and S. H. Hsiao, Journal of Materials Chemistry, 2007, 17, 1007-1015. 26. G. S. Liou and C. W. Chang, Macromolecules, 2008, 41, 1667-1674. 27. R. S. Nicholson and I. Shain, Analytical Chemistry, 1964, 36, 706-723. References and Notes 1. B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren and K. Kempa, Advanced Materials, 2014, 26, 873-877. 2. C. Zhang, A. Khan, J. Cai, C. Liang, Y. Liu, J. Deng, S. Huang, G. Li and W.-D. Li, ACS Applied Materials Interfaces, 2018, 10, 21009-21017. 3. D. Ginley, H. Hosono and D. C. Paine, Handbook of transparent conductors, Springer Science Business Media, 2010. 4. Z. Cui, Y. Han, Q. Huang, J. Dong and Y. Zhu, Nanoscale, 2018, 10, 6806-6811. 5. J. Liang, K. Tong and Q. Pei, Advanced Materials, 2016, 28, 5986-5996. 6. J. Liang, L. Li, K. Tong, Z. Ren, W. Hu, X. Niu, Y. Chen and Q. Pei, ACS Nano, 2014, 8, 1590-1600. 7. C. Yan, W. Kang, J. Wang, M. Cui, X. Wang, C. Y. Foo, K. J. Chee and P. S. Lee, ACS Nano, 2014, 8, 316-322. 8. Y. Hwang, J. Choi, J.-W. Kim, J.-W. Lee, J. G. Kim, H. Hwang, K. W. Choi, W. Lee and B.-K. Ju, Scientific Reports, 2020, 10, 5117. 9. J. Liang, L. Li, D. Chen, T. Hajagos, Z. Ren, S.-Y. Chou, W. Hu and Q. Pei, Nature Communications, 2015, 6, 7647. 10. K. Alzoubi, M. M. Hamasha, S. Lu and B. Sammakia, Journal of Display Technology, 2011, 7, 593-600. 11. J. Jensen, M. Hösel, I. Kim, J.-S. Yu, J. Jo and F. C. Krebs, Advanced Functional Materials, 2014, 24, 1228-1233. 12. S. Kirchmeyer and K. Reuter, Journal of Materials Chemistry, 2005, 15, 2077-2088. 13. A. G. MacDiarmid, Angewandte Chemie International Edition, 2001, 40, 2581-2590. 14. S. Iijima, Nature, 1991, 354, 56-58. 15. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature, 2005, 438, 197. 16. J. Y. Lee, S. T. Connor, Y. Cui and P. Peumans, Nano Letters, 2008, 8, 689-692. 17. A. R. Rathmell and B. J. Wiley, Advanced Materials, 2011, 23, 4798-4803. 18. H. S. Liu, B. C. Pan and G. S. Liou, Nanoscale, 2017, 9, 2633-2639. 19. H. J. Lee, J. H. Hwang, K. B. Choi, S. G. Jung, K. N. Kim, Y. S. Shim, C. H. Park, Y. W. Park and B. K. Ju, ACS Applied Materials Interfaces, 2013, 5, 10397-10403. 20. P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee and S. H. Ko, Advanced Materials, 2012, 24, 3326-3332. 21. S. De, P. J. King, P. E. Lyons, U. Khan and J. N. Coleman, ACS Nano, 2010, 4, 7064-7072. 22. J. Xue, J. Song, Y. Dong, L. Xu, J. Li and H. Zeng, Science Bulletin, 2017, 62, 143-156. 23. J. L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado and M. J. Yacaman, Chemistry of Materials, 2005, 17, 6042-6052. 24. J. P. Franey, G. W. Kammlott and T. E. Graedel, Corrosion Science, 1985, 25, 133-143. 25. M. Lagrange, T. Sannicolo, D. Muñoz-Rojas, B. G. Lohan, A. Khan, M. Anikin, C. Jiménez, F. Bruckert, Y. Bréchet and D. Bellet, Nanotechnology, 2016, 28, 055709. 26. J. Jiu, J. Wang, T. Sugahara, S. Nagao, M. Nogi, H. Koga, K. Suganuma, M. Hara, E. Nakazawa and H. Uchida, RSC Advances, 2015, 5, 27657-27664. 27. D. C. Choo and T. W. Kim, Scientific Reports, 2017, 7, 1696. 28. H. H. Khaligh and I. A. Goldthorpe, Nanoscale Research Letters, 2013, 8, 235. 29. D. Lee, H. Lee, Y. Ahn, Y. Jeong, D. Y. Lee and Y. Lee, Nanoscale, 2013, 5, 7750-7755. 30. D. Chen, J. Liang, C. Liu, G. Saldanha, F. Zhao, K. Tong, J. Liu and Q. Pei, Advanced Functional Materials, 2015, 25, 7512-7520. 31. A. T. Pham, X. Q. Nguyen, D. H. Tran, V. Ngoc Phan, T. T. Duong and D. C. Nguyen, Nanotechnology, 2016, 27, 335202. 32. J.-M. Lee, Y.-H. Kim, H.-K. Kim, H.-J. Kim and C.-H. Hong, Scientific Reports, 2020, 10, 4592. 33. G. S. Liu, Y. Xu, Y. Kong, L. Wang, J. Wang, X. Xie, Y. Luo and B. R. Yang, ACS Applied Materials Interfaces, 2018, 10, 37699-37708. 34. G. S. Liu, J. S. Qiu, D. H. Xu, X. Zhou, D. Zhong, H. P. D. Shieh and B. R. Yang, ACS Applied Materials Interfaces, 2017, 9, 15130-15138. 35. J. Idier, W. Neri, C. Labrugère, I. Ly, P. Poulin and R. Backov, Nanotechnology, 2016, 27, 105705. 36. H.-Y. Lu, C.-Y. Chou, J.-H. Wu, J.-J. Lin and G.-S. Liou, Journal of Materials Chemistry C, 2015, 3, 3629-3635. 37. C.-Y. Chou, H.-S. Liu and G.-S. Liou, RSC Advances, 2016, 6, 61386-61392. 38. H.-S. Liu, B.-C. Pan and G.-S. Liou, Nanoscale, 2017, 9, 2633-2639. 39. W. H. Chen, F. W. Li and G. S. Liou, Advanced Optical Materials, 2019, 7, 1900632. 40. H. J. Yen, K. Y. Lin and G. S. Liou, Journal of Materials Chemistry, 2011, 21, 6230-6237. 41. J. H. Wu and G. S. Liou, Advanced Functional Materials, 2014, 24, 6422-6429. 42. K. E. Korte, S. E. Skrabalak and Y. Xia, Journal of Materials Chemistry, 2008, 18, 437-441. 43. K. Zhang, Y. Du and S. Chen, Organic Electronics, 2015, 26, 380-385. 44. L. Liu, M. Layani, S. Yellinek, A. Kamyshny, H. Ling, P. S. Lee, S. Magdassi and D. Mandler, Journal of Materials Chemistry A, 2014, 2, 16224-16229. 45. H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J.-H. Jeong, E. Lee, J.-Y. Lee and I. Park, Small, 2014, 10, 4171-4181. 46. P. Ramasamy, D.-M. Seo, S.-H. Kim and J. Kim, Journal of Materials Chemistry, 2012, 22, 11651-11657. 47. B. Deng, P.-C. Hsu, G. Chen, B. N. Chandrashekar, L. Liao, Z. Ayitimuda, J. Wu, Y. Guo, L. Lin, Y. Zhou, M. Aisijiang, Q. Xie, Y. Cui, Z. Liu and H. Peng, Nano Letters, 2015, 15, 4206-4213. 48. H. S. Liu, B. C. Pan, D. C. Huang, Y. R. Kung, C. M. Leu and G. S. Liou, Npg Asia Materials, 2017, 9, e388. 49. G. Sönmez, I. Schwendeman, P. Schottland, K. Zong and J. R. Reynolds, Macromolecules, 2003, 36, 639-647. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58206 | - |
| dc.description.abstract | 本論文分成四個章節:第一章為緒論,講述電致變色現象以及奈米銀線材料;第二章則是合成高性能的電致變色材料 (NTPB-PA),由於在苯基的對位上有二甲胺基基團,因此材料可以展現出多段變色的樣貌之外,所需的氧化電位也較低。接著材料與二氧化鋯進行反應形成混成材料,此步驟能提升電致變色的表現。最後,再將陰極變色材料紫精衍生物引入至電致變色元件,可以達到全波段遮蔽之效果;第三章則是成功的合成高長徑比之奈米銀線,透過引入具電活性的三苯胺為基底的電致變色材料作為鈍化層,其奈米銀線之電活性及與基材之間的附著力都能同時達到改善,並將此複材電極更進一步地製備出電致變色元件。而所有結果總結於第四章。 | zh_TW |
| dc.description.abstract | This study has been divided into four chapters. Chapter 1 is the general introduction of electrochromism and silver nanowires. In Chapter 2, the high-performance TPA-based electrochromic (EC) material, NTPB-PA, demonstrated multiple color appearance and lower oxidation states owing to dimethylamino groups at the para-position of the phenyl. Besides, functional hydroxyl groups on NTPB-PA backbones could be conducted to in-situ sol-gel reaction to form covalent bonds with zirconium dioxide (ZrO2). The results have been shown to enhance EC performance. Subsequently, anodic ECM, heptyl viologen (HV), is introduced into the electrochromic device (ECD) to construct ambipolar system and show the absorption of full-wavelength band during redox procedure. In chapter 3, silver nanowires (AgNWs) with high aspect ratio have been synthesized successfully. And the electrical stability issue of AgNWs was improved through introducing electroactive TPA-based polymer films as passivation layers onto the AgNW networks. At the same time, the adhesion between AgNWs and substrates increased. These hybrid electrodes, AgNW/TPPA hybrid electrodes were further applied to fabricate ECD. Finally, all the results are concluded in Chapter 4. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:08:15Z (GMT). No. of bitstreams: 1 U0001-1407202014392200.pdf: 9335530 bytes, checksum: a3e90f78b557f9a8d88f206bdf7af37a (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS i ABSTRACT (in English) ii ABSTRACT (in Chinese) iii TABLE OF CONTENTS iv LIST OF TABLES x LIST OF FIGURES xi LIST OF SCHEMES xix CHAPTER 1 1 CHAPTER 2 59 CHAPTER 3 114 CHAPTER 4 149 | |
| dc.language.iso | en | |
| dc.subject | 電致變色 | zh_TW |
| dc.subject | 三苯胺 | zh_TW |
| dc.subject | 二氧化鋯混成材料 | zh_TW |
| dc.subject | 奈米銀線 | zh_TW |
| dc.subject | 鈍化層 | zh_TW |
| dc.subject | electrochromism | en |
| dc.subject | triphenylamine | en |
| dc.subject | ZrO2 hybrid | en |
| dc.subject | silver nanowire | en |
| dc.subject | passivation layer | en |
| dc.title | 高性能電致變色材料的設計與合成及製備電化學安定之奈米銀線電極 | zh_TW |
| dc.title | Design and Synthesis of High-Performance Electrochromic Material and Fabrication of Electrochemically Stable Silver Nanowire Electrodes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭勝輝(Sheng-Huei Hsiao),龔宇睿(Yu-Ruei Kung),張嘉文(Cha-Wen Chang) | |
| dc.subject.keyword | 電致變色,三苯胺,二氧化鋯混成材料,奈米銀線,鈍化層, | zh_TW |
| dc.subject.keyword | electrochromism,triphenylamine,ZrO2 hybrid,silver nanowire,passivation layer, | en |
| dc.relation.page | 153 | |
| dc.identifier.doi | 10.6342/NTU202001510 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1407202014392200.pdf 未授權公開取用 | 9.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
