請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58182
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鐘嘉德 | |
dc.contributor.author | Chi-Hsiang Tseng | en |
dc.contributor.author | 曾啟翔 | zh_TW |
dc.date.accessioned | 2021-06-16T08:07:41Z | - |
dc.date.available | 2017-07-22 | |
dc.date.copyright | 2014-07-22 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-06-09 | |
dc.identifier.citation | [1] S. Weinsteinm and P. Ebert, “Data transmission by frequency-division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun. Technol., vol. 19, no. 5, pp. 628-634, Oct. 1971.
[2] J. Bingham, “Multicarrier modulation for data transmission: an idea for whose time has come,” IEEE Commun. Mag., vol. 28, no. 28, pp. 5-14, May 1990. [3] B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and P. Duhamel, “Cyclic prexing or zero padding for wireless multicarrier transmissions,” IEEE Trans. Commun., vol. 50, no. 12, pp. 2136-2148, Dec. 2002. [4] K. Shi, E. Serpedin and P. Ciblat, “Decision-directed ne synchronization in OFDM systems,” IEEE Trans. Commun., vol. 53, no. 3, pp. 408-412, Mar. 2005. [5] U. Tureli, D. Kivanc, and H. Liu, “Experimental and analytical studies on a highresolution OFDM carrier frequency offset estimator,” IEEE Trans. Veh. Technol., vol. 50, no. 2, pp. 629–643, Mar. 2001. [6] Y. Li, H. Minn, N. Al-Dhahir and A. R. Calderbank, “Pilot designs for consistent frequency-offset estimation in OFDM Systems,” IEEE Trans. Commun., vol. 55, no. 5, pp. 864-877, May 2007. [7] P. Moose, “A technique for orthogonal frequency division multiplexing frequency offset correction,” IEEE Trans. Commun., vol. 42, no. 10, pp. 2908-2914, Oct. 1994. [8] Y.-R. Tsai and T.-W. Wu, “Low-complexity iterative carrier frequency offset estimation with ICI elimination for OFDM systems,” in Proc. IEEE Veh. Technol. Conf., Taipei, ROC, May 2010, pp. 1-5. [9] S. Lang, R. M. Rao, and B. Daneshrad, “Design and development of a 5.25 GHz software defined wireless OFDM communication platform,” IEEE Commun. Mag., vol. 42, no. 6, pp. 40–46, Jun. 2004. [10] Y. Zhao and S. G. Haggman, “Intercarrier interference self-cancellation scheme for OFDM mobile communication systems,” IEEE Trans. Commun., vol. 49, no. 7, pp. 1185–1191, Jul. 2001. [11] K. Sathananthan, C. R. N. Athaudage, and B. Qiu, “A novel ICI cancellation scheme to reduce both frequency offset and IQ imbalance effects in OFDM,” in Proc. IEEE 9th Int. Symp. Comput. Commun., Alexandria, USA, Jul. 2004, pp. 708-713. [12] H.-G. Yeh and Y.-K. Chang and B. Hassibi, “A scheme for cancelling intercarrier interference using conjugate transmission in multicarrier communication systems,” IEEE Trans. Wireless Commun., vol. 6, no. 1, pp. 3-7, Jan. 2007. [13] C.-L. Wang, P.-C. Shen and J.-H. Huang, “An improved adaptive receiver for OFDM systems using conjugate transmission,” in Proc. IEEE Veh. Technol. Conf., Budapest, Hungary, May 2011, pp. 1-5. [14] C.-L.Wang and Y.-C. Huang, “Intercarrier interference cancellation using general phase rotated conjugate transmission for OFDM systems,” IEEE Trans. Commun., vol. 58, no. 3, pp. 812-819, Mar. 2010. [15] Y. Zhao, J. D. Leclercq, and S. G. Haggman, “Intercarrier interference compression in OFDM communication systems by using correlatvie coding,” IEEE Commun. Lett., vol. 2, no. 8, pp. 214–216, Aug. 1998. [16] A. N. Husna, S. Y. S. Kamilah, B. Ameruddin, and E. Mazlina, “Intercarrier interference (ICI) analysis using correlative coding OFDM system,” in Proc. RF Microware. Conf., Malaysia, Oct. 2004, pp. 235-237. [17] A. Lender, “The duobinary technique for high speed data transmission,” IEEE Trans. Commun. Electron., vol. 82, no. 1, pp. 213-218, May 1963. [18] H. Kobayashi, “Correlative level coding and maximum-likelihood decoding,” IEEE Trans. Inform. Theory, vol. 17, no. 5, pp. 586-594, Sep. 1971. [19] C.-D. Chung, “Correlatively coded OFDM,” IEEE Trans. Wireless Commun., vol. 5, no. 8, pp. 2044-2049, Aug. 2006. [20] N. C. Beaulieu and P. Tan, “On the use of correlative coding for OFDM,” in Proc. IEEE Inter. Conf. on Commun., Glasgow, Scotland, Jun. 2007, pp. 1-5. [21] D. Katselis, 'Some preamble design aspects in CP-OFDM systems,' IEEE Commun. Letters, vol. 16, no. 3, pp. 356-359, May 2012. [22] O. Rousseaux, G. Leus, P. Stoica and M. Moonen, 'Gaussian maximum-likelihood channel estimation with short training sequences,' IEEE Trans. Wireless Commun., vol. 4, no. 6, pp. 2945-2955, Dec. 2005. [23] P.-Y. Tsai, H.-Y. Kang and T.-D. Chiueh, “Joint weighted least-squares estimation of carrier-frequency offset and timing offset for OFDM systems over multipath fading channels,” IEEE Trans. Veh. Technol., vol. 54, no. 1, pp. 211–223, Jan. 2005. [24] P. P. Vaidyanathan, S.-M. Phoong and Y.-P. Lin, Signal Processing and Optimization for Transceiver Systems. Cambridge University Press, 2010. [25] Z. Hong and L. Thibault, “A novel channel estimation and ICI cancellation for mobile OFDM systems,” in PIMRC'07, Ottawa, Canada, Sep. 2007, pp. 1-5. [26] Z. Hong, L. Zhang and L. Thibault, “Iterative ICI cancellation for OFDM receiver with residual carrier frequency offset,” in Proc. IEEE Veh. Technol. Conf., Ottawa, Canada, Sep. 2011, pp. 1-5. [27] C.-D. Chung, “Spectral precoding for rectangularly pulsed OFDM,” IEEE Trans. Commun., vol. 56, no. 9, pp. 1498-1510, Sep. 2008. [28] –, “Spectral precoding for constant-envelope OFDM,” IEEE Trans. Commun., vol. 58, no. 2, pp. 555-567, Feb. 2010. [29] B. O’Hara and A. Petrick, The IEEE 802.11 Handbook: A Designer's Companion. IEEE Press, 1999. [30] C.-H. Tseng and C.-D. Chung, “Concatenated precoded OFDM for CFO Effect Mitigation,” IEEE Trans. Veh. Technol., vol. 62, no. 6, pp. 2618-2632, Jul. 2013. [31] Michele Morelli and Marco Moretti, “Frequency Offset Estimation in I/Q mismatched OFDM Receivers,” in Proc. IEEE Globecom, Miami, USA, Dec. 2010, pp. 1-5. [32] M. Morelli and U. Mengali, “Carrier-frequency estimation for transmissions over selective channels,” IEEE Trans. Commun., vol. 48, no. 9, pp. 1580-1589, Sep. 2000. [33] Y. -H. Chung and S. -M. Phoong, “Joint estimation of I/Q imbalance, CFO and channel response for MIMO OFDM systems,” IEEE Trans. Commun., vol. 58, no. 5, pp. 1485- 1492, May 2010. [34] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993. 70 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58182 | - |
dc.description.abstract | 正交分頻多工系統容易遭受載波頻率偏移的影響不僅對在載波中產生子載波內互干擾以及對偵測訊號產生複數可乘性失真效應。不管是複數可乘性失真或是子載波內互干擾,兩者皆會隨著傳輸區塊的不同而跟著變動並對接收訊號產生未知失真,即使在較小的載波頻率偏移下仍然對系統產生嚴重系統表現的影響,進而使得在接收端執行通道估測及資料偵測顯得更為困難。為了讓通道估測及資料偵測的過程中不受到載波頻率偏移效應的影下,在本論文中我們提出了三種克服載波頻率偏移效應的技術,分別為連鎖式訊號預編碼正交分頻多工系統、退化式哈達碼編碼共軛傳輸機制以及稀疏式訓練序列輔助式正交分頻多工系統。
在連鎖式訊號預編碼正交分頻多工系統中,連鎖式預編碼系連鎖一改良式相關性階層編碼與一退化式哈達碼編碼配合一領航訓練序列式資料傳輸結構所組成,以助接收端在存有載波頻率偏移效應的通道下進行聯合多路徑通道及固定複數可乘性失真估測、時變性固定複數可乘性失真估測及補償以及子載波內互干擾壓抑等效用。實驗模擬顯示在存有載波頻率偏移以及多路徑通道的環境下,相較於過往的訊號預編碼技術連鎖式訊號預編碼正交分頻多工系統能提供更佳的系統效能。此外,為了能在共軛消除技術中提供與連鎖式訊號預編碼正交分頻多工系統相同之時變性複數可乘性失真壓抑效能,藉由結合退化式哈達碼編碼以及共軛傳輸機制的想法,我們提出了一退化式哈達碼編碼共軛傳輸機制可同時進行複數可乘性失真效應之估測與補償以及子載波內互干擾壓抑之效果。實驗模擬顯示我們所提出的機制在多路徑衰落通道以及載波頻率偏移存在下,相較於過往的共軛消除技術能提供更好的系統效能,另外在損失一半資料傳輸效能下退化式哈達碼編碼共軛傳輸機制亦可表現優於連鎖式訊號預編碼正交分頻多工系統。 為了能在大載波頻率偏移量的環境下仍然能提供有效的載波頻率偏移壓抑效能,我們提出一稀疏式訓練序列輔助式正交分頻多工系統以提供接受端能夠在進行通道估測以及資料偵測的同時不受到大載波頻率偏移量的影響。在稀疏式訓練序列的輔助下,一個近似最大相似度載波頻率偏移效應及通道響應估測被提出用來從接收訊號中擷取出載波頻率偏移效應急通道響應資訊,進而在執行通道估測及資料偵測的同時幫助作載波頻率偏移效應之補償。實驗模擬顯示提出的稀疏式訓練序列輔助式正交分頻多工系統能提供與完美已知載波頻率偏移效應急通道響應的狀況下相似的系統效能,並在大載波頻率偏移量下表現優於訊號預編碼技術。 | zh_TW |
dc.description.abstract | Orthogonal frequency-division multiplexing (OFDM) is highly sensitive to carrier frequency offset (CFO), which not only causes intercarrier interference (ICI) among subcarriers but also introduces complex multiplicative distortion (CMD) to all detected subcarrier symbols. Due to unknown CFO, both ICI and CMD are time-variant, thus complicating channel estimation and data detection at the receiver. In order to perform channel estimation and data detection without being affected by CFO effect, the concatenated precoded OFDM, reduced Hadamard-coded conjugate cancellation (RHCC) approach, and sparse-training-sequence-aided OFDM systems are proposed in this thesis to enable CFO effect mitigation.
In the concatenated precoded OFDM system, a concatenated precoder which is constructed by concatenating an outer modified correlative precoder with an inner reduced Hada-mard precoder is developed in conjunction with a training-prefixed data frame structure to process data symbols prior to OFDM modulation and enable joint estimation on channel multipath and constant CMD, time-variant CMD estimation and compensation, and ICI suppression at the receiver in the presence of CFO. Simulation results show that the concatenated precoded OFDM system provides much better error performance than conventional signal coding approaches in the presence of CFO and multipath fading. In order to suppress the time-variant CMD effect in conjugate cancellation (CC)-based approaches, a reduced Hadamard-coded conjugate cancellation (RHCC) approach is proposed by combining the ideas of reduced Hadamard precoding and conjugate transmission, and also enables CMD estimation and compensation, and ICI self-cancellation at the receiver in the presence of CFO. Simulation results show that the RHCC provides much better error performance than conventional CC-based approaches in the presence of CFO and multipath fading, and performs better than the concatenated precoded OFDM system at the cost of halving data throughput. In order to provide effective CFO effect suppression for a wide range of CFO values, a sparse-training-sequence-aided OFDM system is proposed to enable channel estimation and data detection without being affected by CFO effect especially for large CFO values. With the aid of the sparse training sequence, an approximate maximum likelihood estimation on CFO effect and channel response is developed to retrieve the CFO information from the received signal, and then facilitate the corresponding CFO effect compensation during channel estimation and data detection. Simulation results show that the sparse-training-sequence-aided OFDM system provides similar error performance to that with perfectly known CFO and channel response, and performs better than signal precoding approaches for large CFO values. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:07:41Z (GMT). No. of bitstreams: 1 ntu-103-D97942012-1.pdf: 1193800 bytes, checksum: ebde585bb684c32436c8c24f5ec6fa07 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | Contents
Abstract i Contents iii List of Figures vi List of Tables x Abbreviations xi Notations xiii 1 Introduction 1 1.1 Signal Precoding Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Thesis Motivation and Contributions . . . . . . . . . . . . . . . . . . 3 1.2 Training Sequence-Based Approaches . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Thesis Motivation and Contributions . . . . . . . . . . . . . . . . . . 6 2 Concatenated Precoded OFDM System 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Signal and System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 TCMD Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 TCMD Estimation Under Flat Fading . . . . . . . . . . . . . . . . . 14 2.3.2 TCMD Estimation Under Multipath Fading . . . . . . . . . . . . . . 17 2.4 ICI Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.1 ICI Suppression Under Flat Fading . . . . . . . . . . . . . . . . . . 19 2.4.2 ICI Suppression Under Multipath Fading . . . . . . . . . . . . . . . 21 2.4.3 Outer Decoding With TCMD Compensation . . . . . . . . . . . . . 21 2.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5.1 ABER Characteristics of Concatenated Precoded OFDM . . . . . . . 24 2.5.2 Comparison With Conventional Signal Coding Approaches . . . . . . 25 2.5.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 Reduced Hadamard-Coded Conjugate Transmission in OFDM System 32 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 The CFO Effect Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.1 TCMD Estimation and Compensation . . . . . . . . . . . . . . . . . 37 3.3.2 CC Decoding and ICI Suppression . . . . . . . . . . . . . . . . . . . 38 3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.1 ABER Characteristics of RHCC System . . . . . . . . . . . . . . . . 39 3.4.2 Comparison With Conventional Signal Precoding Systems . . . . . . 40 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Sparse-Training-Sequence-Aided OFDM System 44 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 Design of Estimation of h and E . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.1 ML Estimation of h and E . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.2 AML Estimation of E . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.4 LS-Based TCMD Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.5.1 Optimal Sparsity Depth for STS-Based Approach . . . . . . . . . . . 56 4.5.2 Performance of STS-Based Approach . . . . . . . . . . . . . . . . . 57 4.5.3 Comparison With FTS-Based Approach . . . . . . . . . . . . . . . . 61 4.5.4 Comparison With Signal Precoding Approaches . . . . . . . . . . . . 62 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5 Conclusion 64 Bibliography 66 Appendix A: Derivation of vtm Im fUg vk 71 Appendix B: Derivation of (2.13) 72 Appendix C: Proof that Q(k) is skew-symmetric 76 Appendix D: Derivation of (2.19) 77 List of Publications 78 | |
dc.language.iso | zh-TW | |
dc.title | 應用於正交分頻多工系統之載波頻率偏移效應壓抑技術 | zh_TW |
dc.title | CFO Effect Mitigation in OFDM Systems | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 王晉良,王蒞君,李志鵬,林茂昭,林嘉慶 | |
dc.subject.keyword | 載波頻率偏移,通道估測,相關性階層編碼,哈達碼編碼,子載波內互干擾,正交分頻多工系統,訓練序列., | zh_TW |
dc.subject.keyword | Carrier frequency offset,channel estimation,correlative code,Hadamard code,intercarrier interference,orthogonal frequency-division multiplexing,training sequence., | en |
dc.relation.page | 78 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-06-09 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。