Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58160
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳哲夫(Jeffrey Daniel Ward)
dc.contributor.authorChien-Yuan Suen
dc.contributor.author蘇乾元zh_TW
dc.date.accessioned2021-06-16T08:07:11Z-
dc.date.available2016-07-22
dc.date.copyright2014-07-22
dc.date.issued2014
dc.date.submitted2014-06-12
dc.identifier.citation(1) Datta, R.; Tsai, S. P.; Bonsignore, P.; Moon, S. H.; Frank, J. R. Technological and economical potential of poly(lactic) acid and lactic acid derivatives. Fems. Microbiol. Rev., 1995, 16, 221-231.
(2) Datta, R.; Henry, M. Lactic acid: recent advances in products, processes and technologies – A review. J. Chem. Technol. Biot. 2006, 81, 1119-1129.
(3) Akerberg, C.; Zacchi, G., an economic evaluation of the fermentative production of lactic acid from wheat flour, Bioresource Technol, 2000, 75 (2), 119-126.
(4) Datta, R.; Tsai, S. P., Lactic acid production and potential uses: a technology and economics assessment. ACS Symp. Ser. 666(Fuels and Chemicals from Biomass), 1997, 224-236.
(5) Gonzalez, M. I.; Alvarez, S.; Riera, F.; Alvarez, R., Economic evaluation of an integrated process for lactic acid production from ultrafiltered whey. J. Food Eng. 2007, 80 (2), 553-561.
(6) Liew, M. K. H.; Tanaka, S.; Morita, M., separation and purification of lactic-acid-fundamental-studies on the reverse osmosis down-stream process. Desalination 1995, 101 (3), 269-277.
(7) Hano, T.; Matsumoto, M.; Uenoyama, S.; Ohtake, T.; Kawano, Y.; Miura, S., Separation of lactic acid from fermented broth by solvent extraction. Bioseparation 1992, 3 (5), 321-326.
(8) Cockrem, M. C. M.; Johnson, P. D. Recovery of lactate esters and lactic acid from fermentation broth. US Patent 5,210,296, 1993.
(9)Agreda, V. M.; Partin, L. R., Reactive distillation process for the production of methyl acetate. US Patent 4435595, 1984.
(10) Agreda, V. H.; Partin, L. R.; Heise W. H., High Purity Methyl Acetate via Reactive distillation, Chem Eng. Prog., 1990, 86(2), 40.
(11) Barbosa, D.; Doherty, M. F., Choosing the right Control Structure for Industrial Distillation Columns, Chem Eng. Sci., 1988, 43(3), 541.
(12) Doherty, M. F.; Buzad, G., Reactive Distillation by Design, Chem Eng. Res., 1992, 70(A5), 448.
(13) Okasinski, M. J.; Doherty, M. F., Design Method for Kinetically Controlled Staged Reactive Distillation Column, Ind. Eng. Chem. Res., 1988, 37(7), 2821.
(14) Jacobs, R.; Krishna, R., Mutiple Solutions in Reactive Distillation for Methyl Tert-Butyl Ether Synthesis, Ind. Eng. Chem. Res., 1993, 32(8), 1706.
(15) Nijhuis, S. A.; Kerkhof, F. P. J. M.; Mak, A. N. S., Mutiple Steady states During Reactive Distillation of Methyl Tert-Butyl Ether, Ind. Eng. Chem. Res., 1993, 32(11), 2767.
(16) Doherty, M. F.and Malone, M. F., Conceptual design of distillation systems, McGraw-Hill, New York, USA, 2001.
(17) C.C. Yu and W. L. Luyben, Reactive Distillation Design and Control, Wiley, New Jersey, USA, 2008.
(18) I-Lung. Chien and W. L. Luyben, Design and Control of distillation systems for separating azeotropes, Wiley, New Jersey, USA, 2010.
(19) Kumar, R.; Nanavati, H.; Noronha, S. B.; Mahajani, S. M., A continuous process for the recovery of lactic acid by reactive distillation. J. Chem. Techno. Biot. 2006, 81 (11), 1767-1777.
(20) Sanz, M. T.; Murga, R.; Beltran, S.; Cabezas, J. L.; Coca, J., Kinetic study for the reactive system of lactic acid esterification with methanol: Methyl lactate hydrolysis reaction. Ind. Eng. Chem. Res. 2004, 43 (9), 2049-2053.
(21) Pereira, C. S. M.; Pinho, S. P.; Silva, V.; Rodrigues, A. E., Thermodynamic equilibrium and reaction kinetics for the esterification of lactic acid with ethanol catalyzed by acid ion-exchange resin. Ind. Eng. Chem. Res. 2008, 47 (5), 1453-1463.
(22) Asthana, N. S.; Kolah, A. K.; Vu, D. T.; Lira, C. T.; Miller, D. J., A kinetic model for the esterification of lactic acid and its oligomers. Ind. Eng. Chem. Res. 2006, 45 (15), 5251-5257.
(23) Delgado, P.; Sanz, M. T.; Beltran, S., Kinetic study for esterification of lactic acid with ethanol and hydrolysis of ethyl lactate using an ion-exchange resin catalyst. Chem. Eng. J. 2007, 126 (2-3), 111-118.
(24) Yadav, G. D.; Kulkarni, H. B., Ion-exchange resin catalysis in the synthesis of isopropyl lactate. React. Funct. Polym. 2000, 44 (2), 153-165.
(25) Kumar, R.; Mahajani, S. M., Esterification of lactic acid with n-butanol by reactive distillation. Ind. Eng. Chem. Res. 2007, 46 (21), 6873-6882.
(26) Qu, Y. X.; Peng, S. J.; Wang, S.; Zhang, Z. Q.; Wang, J. D., Kinetic Study of Esterification of Lactic Acid with Isobutanol and n-Butanol Catalyzed by Ion-exchange Resins. Chinese J. Chem. Eng. 2009, 17 (5), 773-780.
(27) Kister, H. Z., Distillation -design-, McGraw-Hill, Belfast, NI, United Kingdom, 1992.
(28) Li, G. Z.; Bai, P., New Operation Strategy for Separation of Ethanol-Water by Extractive Distillation. Ind. Eng. Chem. Res. 2012, 51 (6), 2723-2729.
(29) Kiss, A. A.; Suszwalak, D. J. P. C. Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Sep Purif Technol. 2012, 86:70-78.
(30) Arifin, S.; Chien, I. L., Design and control of an isopropyl alcohol dehydration process via extractive distillation using dimethyl sulfoxide as an entrainer. Ind. Eng. Chem. Res. 2008, 47 (3), 790-803.
(31) J.M. Douglas, Conceptual Design of Chemical Processes, McGraw-Hill, New York, USA, 1988.
(32) Seider, W. D.; Seader J. D.; Lewin D. R., Product and Process Design Principles : Synthesis, Analysis, and Evaluation, Wiley, New York, USA, 2004.
(33) Paster, M.; Pellegrino, J. L.; Carole, T. M., Industrial Bioproducts: Today and Tomorrow, U. S. department of energy, Washington, D.C., 2004.
(34) Wang, P. S.; Thompson, J.; Gerpen J. V., Minimizing the cost of biodiesel blends for specified cloud points, J. Am. Oil Chem. Soc., 2011, 88, 563-572
(35) Elliott T. R.; Luyben W. L., Quantitative assessment of controllability during the design of a ternary system with two recycle streams, Ind. Eng. Chem. Res. 1996, 35, 3470-3479.
(36) Chiang, S. F.; Kuo, C. L.; Yu, C. C.; Wong, D. S. H., Design Alternatives for Amyl Acetate Process: Coupled Reactor/Column and Reactive Distillation, Ind. Eng. Chem. Res. 2002, 41, 3233-3246.
(37) Sakizlis, V.; Perkins, J. D.; Pistikopoulos, E. N., Recent advances in optimization-based simultaneous process and control design, Comput. Chem. Eng. 2004, 28, 2069-2086.
(38) Tang, Y. T.; Chen, Y. W.; Lai I. K.; Hung, W. J.; Huang, H. P.;Yu, C. C., Control of different reactive distillation configurations, AIChE J.. 2006, 52(4), 1423-1440.
(39) Chang, J. W; Yu, C. C., The relative gain for non-square multivariable systems, Chem Eng Sci. 1990, 45, 1309.
(40) Shen, S. H.; Yu, C. C., Use of relay-feedback test for automatic tuning of multivariable systems, AIChE J. 1994, 40, 627-646.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58160-
dc.description.abstract近年來由於對環境保護意識的逐漸重視,在自然環境中遇熱可分解的環保素材如環保乳膠手套等環保物質在現今越來越受到重視。而環保乳膠手套正是乳酸的聚合產物,因此乳酸的需求也因此逐年增加,乳酸有兩種形式,L型和R型,其中L型的乳酸可以製造出較高品質的乳膠產品。
由於乳酸的傳統製程是必須透過發酵反應,而製程中其中會含有許多的雜質和未反應的原料有待分離,因此乳酸純化的議題近年來也越來越受到重視,純化方式有很多種,例如:分離方式加入熟石灰再經過過濾或是加入溶劑做萃取分離或是利用電極吸引分離,但是都會有乳酸回收率不高或是總處理量不大的缺點。因此利用乳酸與醇類的酯化以及乳酸酯與水的水解反應來純化乳酸具有高的處理量以及較高的乳酸回收率等優點。
本研究針對粗乳酸的純化製程做出設計,利用五種不同的醇類來設計此純化製程,並透過年總成本來選擇最經濟的純化製程,結果顯示甲醇以及丁醇有最少的年總成本,兩者會依據不同的回償年限而改變兩者的排名。
接下來針對甲醇以及丁醇系統的最適化穩態流程做控制架構的設計以及控制性能的測試。其中,控制架構以溫度控制以及組成控制為主,最後也嘗試串級控制,並且將原本的最適化的穩態架構做推廣,將水回流接上以期能夠有更好的能源運用。結果顯示甲醇系統的控制效果優於丁醇系統,可在較短的時間內達到新的穩態結果:甲醇的控制架構能通過流量正負10%以及乳酸5%以及重成分雜質3%的進料組成的擾動;丁醇的控制架構能通過流量正負10%以及乳酸5%以及重成分雜質3%的進料組成的擾動。
zh_TW
dc.description.abstractProcess designs for the continuous recovery of lactic acid from fermentation broth by reactive distillation (esterification and hydrolysis with C1 to C4 alcohols) are developed and optimized to minimize cost. The best designs are qualitatively different for different alcohols because of differing volatility ranking of reactants and products and the formation of a two liquid phase zone in some cases. The results suggest that the methanol and butanol processes are the most attractive solution. The costs of these two processes are similar, and the ranking depends on the payback period (when payback period is 3 butanol is more economical, vise versa). The ethanol and isopropanol processes are more expensive because an entrainer is required to break the alcohol/water azeotrope. Control structures for the methanol and butanol processes are designed and tested for the performance through feed flowrate, lactic acid composition and impurity composition disturbances.
Designed control structures can be separated into 2 scenarios. One is 1-recycle stream of recovered alcohol. Another one is 2-recycle streams with recovered alcohol and water. Methanol system can implement 2 recycle streams and butanol system can implement 1 recycle stream. Results show that 1-recycle scenario is more robust than 2-recycle scenario because it has a more straight forward flowsheet. Combined composition and temperature control structures can handle more disturbances and maintain the constraints. Both methanol and butanol control structures can pass flow rate and composition disturbances. Methanol control structure is more robust than butanol control structure because it can handle the disturbances in less time.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:07:11Z (GMT). No. of bitstreams: 1
ntu-103-D96524019-1.pdf: 3638679 bytes, checksum: cfbaf47d84ea3592fc3ed8dda5025c6a (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContents
誌謝 i
中文摘要 iii
Abstract iv
List of Figures ix
List of Tables xiv
1 Introduction 1
1.1 Review of lactic acid 1
1.2 Review of reactive distillation 5
1.3 Literature survey 7
1.4 Research motivation 9
1.5 Dissertation organization 10
2 Steady state flowsheet design 12
2.1 Process block description and design variables 12
2.2 Design procedure and objective function 18
2.3 Thermodynamics properties 22
2.4 Reaction kinetics 28
2.5 Pretest of conventional and reactive distillation configuration 33
3 Optimal steady state flowsheet result 36
3.1 Methanol system 36
3.2 Ethanol system 42
3.3 Isopropanol system 48
3.4 Butanol system 54
3.5 Pentanol system 60
3.6 Discussion and conclusion 67
4 Control structure design procedure 70
4.1 Methanol system temperature control structure 73
4.1.1 MCS1:Methanol 1-Recycle temperature control structure 82
4.1.2 MCS2:Methanol 1-Recycle composition control structure 89
4.1.3 MCS3:Methanol 2-Recycle temperature control structure 97
4.1.4 MCS4:Methanol 2-Recycle composition control structure 106
4.1.5 MCS5:Methanol 1-Recycle Cascade control structure
114
4.1.6 Summary and remarks 123
4.2 Butanol system control structure 125
4.2.1 BCS1 Butanol 1-Recycle Temperature control structure
132
4.2.2 BCS2 Butanol 1-Recycle composition control structure
140
4.2.3 BCS3 Butanol 2-Recycle temperature control structure
148
4.2.4 BCS4 Butanol 2-Recycle composition control structure
156
4.2.5 Summary and remarks 163
5 Conclusions 164
6 References 166
Appendix A: TAC Calculation Formula 172
Appendix B: UniQuac binary parameters 175
Appendix C: Inventory Control loop parameters 183




List of Figures
Fig. 1 1 Conventional manufacture process for lactic acid from carbohydrate2 2
Fig. 1 2 Typical reactive distillation column. 5
Fig. 1 3 proposed process for recovery of lactic acid using methanol19 8
Fig. 1 4 proposed process for recovery of lactic acid using Butanol25 8
Fig. 2 1 Process block flow diagram 12
Fig. 2 2 three different esterification column configurations. 15
Fig. 2 3 vapor-liquid experiment data fitting curve: 26
Fig. 2 4 Liquid-Liquid envelope and azeotropic points for four systems. 27
Fig. 2 5 conventional methanol esterification reaction process 33
Fig. 3 1 Process flowsheet for methanol system 38
Fig. 3 2 Different design variable value effect on TAC of methanol system 40
Fig. 3 3 Optimal temperature and composition profile in methanol esterification column 41
Fig. 3 4 Optimal temperature and composition profile in methanol hydrolysis column 41
Fig. 3 5 Process flowsheet for ethanol system 44
Fig. 3 6 Different design variable value effect on TAC of ethanol system 46
Fig. 3 7 Optimal temperature and composition profile in ethanol esterification column 47
Fig. 3 8 Optimal temperature and composition profile in ethanol hydrolysis column 47
Fig. 3 9 Process flowsheet for isopropanol system 49
Fig. 3 10 Different design variable value effect on TAC of isopropanol system 52
Fig. 3 11 Optimal temperature and composition profile in isopropanol esterification column 53
Fig. 3 12 Optimal temperature and composition profile in isopropanol hydrolysis column 53
Fig. 3 13 Process flowsheet for butanol system 55
Fig. 3 14 Different design variable value effect on TAC of butanol system 57
Fig. 3 15 Optimal temperature and composition profile in butanol esterification column 58
Fig. 3 16 Optimal temperature and composition profile in butanol hydrolysis column 58
Fig. 3 17 Liquid-liquid envelope comparison between n-pentanol and butanol 60
Fig. 3 18 Process flowsheet for pentanol system 63
Fig. 3 19 Optimal temperature and composition profile in pentanol esterification column 65
Fig. 3 20 Optimal temperature and composition profile in pentanol hydrolysis column 65
Fig. 4 1 Sensitivities of tray temperatures for ±0.1% manipulated variables changes in preconcentrator 75
Fig. 4 2 Sensitivities of tray temperatures for ±0.1% manipulated variables changes in esterification column 75
Fig. 4 3 Sensitivities of tray temperatures for ±0.1% manipulated variables changes in hydrolysis column 76
Fig. 4 4 Sensitivities of tray temperatures for ±0.1% manipulated variables changes in recovery column 76
Fig. 4 5 Row sum of individual tray temperature for all 4 columns 77
Fig. 4 6 Methanol 1-recycle temperature control structure 81
Fig. 4 7 MCS1 ±10% flow rate disturbance dynamic response 83
Fig. 4 8 MCS1 ±5% lactic acid composition disturbance dynamic response 84
Fig. 4 9 MCS1 ±3% Impurity composition disturbance dynamic response 86
Fig. 4 10 MCS1 ±3% Impurity composition disturbance dynamic response 88
Fig. 4 11 Methanol 1-recycle composition control structure 90
Fig. 4 12 MCS2 ±10% flow rate disturbance dynamic response 91
Fig. 4 13 MCS2:±5% lactic acid composition disturbance dynamic response 93
Fig. 4 14 MCS2 ±3% Impurity composition disturbance dynamic response 95
Fig. 4 15 Methanol 2-recycle temperature control structure 98
Fig. 4 16 MCS3 ±10% flow rate disturbance dynamic response 99
Fig. 4 17 MCS3 ±5% lactic acid composition disturbance dynamic response 101
Fig. 4 18 MCS3 ±3% Impurity composition disturbance dynamic response 103
Fig. 4 19 MCS3 ±3% Impurity composition disturbance dynamic response 105
Fig. 4 20 Methanol 2-recycle composition control structure 107
Fig. 4 21 MCS4 ±10% flowrate disturbance dynamic response 108
Fig. 4 22 MCS4 ±5% lactic acid composition disturbance dynamic response 110
Fig. 4 23 MCS4 ±3% Impurity composition disturbance dynamic response 112
Fig. 4 24 Methanol 1-recycle cascade control structure 116
Fig. 4 25 MCS5 ±10% flow rate disturbance dynamic response 117
Fig. 4 26 MCS5 ±5% lactic acid composition disturbance dynamic response 119
Fig. 4 27 MCS5 ±3% Impurity composition disturbance dynamic response 121
Fig. 4 28 Sensitivity of tray temperature for ±0.1% manipulated variables changes in preconcentrator 127
Fig. 4 29 Sensitivity of tray temperature for ±0.1% manipulated variables changes in esterification column 127
Fig. 4 30 Sensitivity of tray temperature for ±0.1% manipulated variables changes in Esterification-separation column 128
Fig. 4 31 Sensitivity of tray temperature for ±0.1% manipulated variables changes in Hydrolysis column 128
Fig. 4 32 Row sum of individual tray temperature for 4 columns 129
Fig. 4 33 Control structure of 1-recycle temperature control structure 131
Fig. 4 34 BCS1 ±10% Feed flow rate disturbance dynamic response 133
Fig. 4 35BCS1 ±5% lactic acid composition disturbance dynamic response 135
Fig. 4 36BCS1 ±3% Impurity composition disturbance dynamic response 137
Fig. 4 37 Control structure of 1-recycle composition control structure 139
Fig. 4 38 BCS2 ±10% Feed flow rate disturbance dynamic response 141
Fig. 4 39 BCS2 ±5% lactic acid composition disturbance dynamic response 143
Fig. 4 40 BCS2 ±3% Impurity composition disturbance dynamic response 145
Fig. 4 41 Control structure of 2-recycle temperature control structure 147
Fig. 4 42 BCS3 ±10% Feed flow rate disturbance dynamic response 149
Fig. 4 43 BCS3 ±5% lactic acid composition disturbance dynamic response 151
Fig. 4 44 BCS3 ±3% Impurity composition disturbance dynamic response 153
Fig. 4 45 Control structure of 2-recycle composition control structure 155
Fig. 4 46 BCS4 ±10% Feed flow rate disturbance dynamic response 157
Fig. 4 47 BCS4 ±5% Lactic acid composition disturbance dynamic response 159
Fig. 4 48 BCS4 ±3% Impurity composition disturbance dynamic response 161

List of Tables
Table 1 1 Lactic acid purification methods comparison 4
Table 2 1 Four systems optimal design specifications and design variables. 17
Table 2 2 Prices for alcohols and entrainers. 20
Table 2 3 Sources of binary interaction parameters. 24
Table 2 4 Ranking of azeotropic Temperatures and Pure Component NBP Temperatures 25
Table 2 5 Kinetic equations for four esterification reactions 31
Table 2 6 Kinetic equations for lactic acid oligomerization reactions 32
Table 2 7 TAC comparison between conventional and reactive distillation 34
Table 3 1 MeOH system optimal flowsheet design result 39
Table 3 2 Ethanol system optimal flowsheet design result 45
Table 3 3 iPrOH system optimal flowsheet design result 50
Table 3 4 BuOH system optimal flowsheet design result 56
Table 3 5 AmOH system optimal flowsheet design result 64
Table 3 6 Process TAC comparison 68
Table 3 7 TAC of methanol and butanol process sections for different payback periods 69
Table 4 1 Controlled variables, manipulated variables and relative gain array for four columns in methanol system 79
Table 4 2 Controlled variables, manipulated variables and relative gain array for four columns in butanol system 130
dc.language.isoen
dc.subject動態控制zh_TW
dc.subject最適化流程zh_TW
dc.subject反應蒸餾zh_TW
dc.subject乳酸純化zh_TW
dc.subjectlactic aciden
dc.subjectdynamic controlen
dc.subjectpurificationen
dc.subjecteconomical evaluationen
dc.title乳酸純化製程之反應蒸餾系統設計與最適流程控制zh_TW
dc.titlePlant-wide Design and Control of Lactic acid Recovery Processes by Reactive Distillation with Different Alcoholsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee錢義隆(I-Lung Chien),陳誠亮(Cheng-Liang Chen),李豪業(Hao-Yeh Lee),鄭西顯(Shi-Shang Jang)
dc.subject.keyword乳酸純化,反應蒸餾,最適化流程,動態控制,zh_TW
dc.subject.keywordlactic acid,dynamic control,purification,economical evaluation,en
dc.relation.page186
dc.rights.note有償授權
dc.date.accepted2014-06-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved