請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58160完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳哲夫(Jeffrey Daniel Ward) | |
| dc.contributor.author | Chien-Yuan Su | en |
| dc.contributor.author | 蘇乾元 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:07:11Z | - |
| dc.date.available | 2016-07-22 | |
| dc.date.copyright | 2014-07-22 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-06-12 | |
| dc.identifier.citation | (1) Datta, R.; Tsai, S. P.; Bonsignore, P.; Moon, S. H.; Frank, J. R. Technological and economical potential of poly(lactic) acid and lactic acid derivatives. Fems. Microbiol. Rev., 1995, 16, 221-231.
(2) Datta, R.; Henry, M. Lactic acid: recent advances in products, processes and technologies – A review. J. Chem. Technol. Biot. 2006, 81, 1119-1129. (3) Akerberg, C.; Zacchi, G., an economic evaluation of the fermentative production of lactic acid from wheat flour, Bioresource Technol, 2000, 75 (2), 119-126. (4) Datta, R.; Tsai, S. P., Lactic acid production and potential uses: a technology and economics assessment. ACS Symp. Ser. 666(Fuels and Chemicals from Biomass), 1997, 224-236. (5) Gonzalez, M. I.; Alvarez, S.; Riera, F.; Alvarez, R., Economic evaluation of an integrated process for lactic acid production from ultrafiltered whey. J. Food Eng. 2007, 80 (2), 553-561. (6) Liew, M. K. H.; Tanaka, S.; Morita, M., separation and purification of lactic-acid-fundamental-studies on the reverse osmosis down-stream process. Desalination 1995, 101 (3), 269-277. (7) Hano, T.; Matsumoto, M.; Uenoyama, S.; Ohtake, T.; Kawano, Y.; Miura, S., Separation of lactic acid from fermented broth by solvent extraction. Bioseparation 1992, 3 (5), 321-326. (8) Cockrem, M. C. M.; Johnson, P. D. Recovery of lactate esters and lactic acid from fermentation broth. US Patent 5,210,296, 1993. (9)Agreda, V. M.; Partin, L. R., Reactive distillation process for the production of methyl acetate. US Patent 4435595, 1984. (10) Agreda, V. H.; Partin, L. R.; Heise W. H., High Purity Methyl Acetate via Reactive distillation, Chem Eng. Prog., 1990, 86(2), 40. (11) Barbosa, D.; Doherty, M. F., Choosing the right Control Structure for Industrial Distillation Columns, Chem Eng. Sci., 1988, 43(3), 541. (12) Doherty, M. F.; Buzad, G., Reactive Distillation by Design, Chem Eng. Res., 1992, 70(A5), 448. (13) Okasinski, M. J.; Doherty, M. F., Design Method for Kinetically Controlled Staged Reactive Distillation Column, Ind. Eng. Chem. Res., 1988, 37(7), 2821. (14) Jacobs, R.; Krishna, R., Mutiple Solutions in Reactive Distillation for Methyl Tert-Butyl Ether Synthesis, Ind. Eng. Chem. Res., 1993, 32(8), 1706. (15) Nijhuis, S. A.; Kerkhof, F. P. J. M.; Mak, A. N. S., Mutiple Steady states During Reactive Distillation of Methyl Tert-Butyl Ether, Ind. Eng. Chem. Res., 1993, 32(11), 2767. (16) Doherty, M. F.and Malone, M. F., Conceptual design of distillation systems, McGraw-Hill, New York, USA, 2001. (17) C.C. Yu and W. L. Luyben, Reactive Distillation Design and Control, Wiley, New Jersey, USA, 2008. (18) I-Lung. Chien and W. L. Luyben, Design and Control of distillation systems for separating azeotropes, Wiley, New Jersey, USA, 2010. (19) Kumar, R.; Nanavati, H.; Noronha, S. B.; Mahajani, S. M., A continuous process for the recovery of lactic acid by reactive distillation. J. Chem. Techno. Biot. 2006, 81 (11), 1767-1777. (20) Sanz, M. T.; Murga, R.; Beltran, S.; Cabezas, J. L.; Coca, J., Kinetic study for the reactive system of lactic acid esterification with methanol: Methyl lactate hydrolysis reaction. Ind. Eng. Chem. Res. 2004, 43 (9), 2049-2053. (21) Pereira, C. S. M.; Pinho, S. P.; Silva, V.; Rodrigues, A. E., Thermodynamic equilibrium and reaction kinetics for the esterification of lactic acid with ethanol catalyzed by acid ion-exchange resin. Ind. Eng. Chem. Res. 2008, 47 (5), 1453-1463. (22) Asthana, N. S.; Kolah, A. K.; Vu, D. T.; Lira, C. T.; Miller, D. J., A kinetic model for the esterification of lactic acid and its oligomers. Ind. Eng. Chem. Res. 2006, 45 (15), 5251-5257. (23) Delgado, P.; Sanz, M. T.; Beltran, S., Kinetic study for esterification of lactic acid with ethanol and hydrolysis of ethyl lactate using an ion-exchange resin catalyst. Chem. Eng. J. 2007, 126 (2-3), 111-118. (24) Yadav, G. D.; Kulkarni, H. B., Ion-exchange resin catalysis in the synthesis of isopropyl lactate. React. Funct. Polym. 2000, 44 (2), 153-165. (25) Kumar, R.; Mahajani, S. M., Esterification of lactic acid with n-butanol by reactive distillation. Ind. Eng. Chem. Res. 2007, 46 (21), 6873-6882. (26) Qu, Y. X.; Peng, S. J.; Wang, S.; Zhang, Z. Q.; Wang, J. D., Kinetic Study of Esterification of Lactic Acid with Isobutanol and n-Butanol Catalyzed by Ion-exchange Resins. Chinese J. Chem. Eng. 2009, 17 (5), 773-780. (27) Kister, H. Z., Distillation -design-, McGraw-Hill, Belfast, NI, United Kingdom, 1992. (28) Li, G. Z.; Bai, P., New Operation Strategy for Separation of Ethanol-Water by Extractive Distillation. Ind. Eng. Chem. Res. 2012, 51 (6), 2723-2729. (29) Kiss, A. A.; Suszwalak, D. J. P. C. Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Sep Purif Technol. 2012, 86:70-78. (30) Arifin, S.; Chien, I. L., Design and control of an isopropyl alcohol dehydration process via extractive distillation using dimethyl sulfoxide as an entrainer. Ind. Eng. Chem. Res. 2008, 47 (3), 790-803. (31) J.M. Douglas, Conceptual Design of Chemical Processes, McGraw-Hill, New York, USA, 1988. (32) Seider, W. D.; Seader J. D.; Lewin D. R., Product and Process Design Principles : Synthesis, Analysis, and Evaluation, Wiley, New York, USA, 2004. (33) Paster, M.; Pellegrino, J. L.; Carole, T. M., Industrial Bioproducts: Today and Tomorrow, U. S. department of energy, Washington, D.C., 2004. (34) Wang, P. S.; Thompson, J.; Gerpen J. V., Minimizing the cost of biodiesel blends for specified cloud points, J. Am. Oil Chem. Soc., 2011, 88, 563-572 (35) Elliott T. R.; Luyben W. L., Quantitative assessment of controllability during the design of a ternary system with two recycle streams, Ind. Eng. Chem. Res. 1996, 35, 3470-3479. (36) Chiang, S. F.; Kuo, C. L.; Yu, C. C.; Wong, D. S. H., Design Alternatives for Amyl Acetate Process: Coupled Reactor/Column and Reactive Distillation, Ind. Eng. Chem. Res. 2002, 41, 3233-3246. (37) Sakizlis, V.; Perkins, J. D.; Pistikopoulos, E. N., Recent advances in optimization-based simultaneous process and control design, Comput. Chem. Eng. 2004, 28, 2069-2086. (38) Tang, Y. T.; Chen, Y. W.; Lai I. K.; Hung, W. J.; Huang, H. P.;Yu, C. C., Control of different reactive distillation configurations, AIChE J.. 2006, 52(4), 1423-1440. (39) Chang, J. W; Yu, C. C., The relative gain for non-square multivariable systems, Chem Eng Sci. 1990, 45, 1309. (40) Shen, S. H.; Yu, C. C., Use of relay-feedback test for automatic tuning of multivariable systems, AIChE J. 1994, 40, 627-646. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58160 | - |
| dc.description.abstract | 近年來由於對環境保護意識的逐漸重視,在自然環境中遇熱可分解的環保素材如環保乳膠手套等環保物質在現今越來越受到重視。而環保乳膠手套正是乳酸的聚合產物,因此乳酸的需求也因此逐年增加,乳酸有兩種形式,L型和R型,其中L型的乳酸可以製造出較高品質的乳膠產品。
由於乳酸的傳統製程是必須透過發酵反應,而製程中其中會含有許多的雜質和未反應的原料有待分離,因此乳酸純化的議題近年來也越來越受到重視,純化方式有很多種,例如:分離方式加入熟石灰再經過過濾或是加入溶劑做萃取分離或是利用電極吸引分離,但是都會有乳酸回收率不高或是總處理量不大的缺點。因此利用乳酸與醇類的酯化以及乳酸酯與水的水解反應來純化乳酸具有高的處理量以及較高的乳酸回收率等優點。 本研究針對粗乳酸的純化製程做出設計,利用五種不同的醇類來設計此純化製程,並透過年總成本來選擇最經濟的純化製程,結果顯示甲醇以及丁醇有最少的年總成本,兩者會依據不同的回償年限而改變兩者的排名。 接下來針對甲醇以及丁醇系統的最適化穩態流程做控制架構的設計以及控制性能的測試。其中,控制架構以溫度控制以及組成控制為主,最後也嘗試串級控制,並且將原本的最適化的穩態架構做推廣,將水回流接上以期能夠有更好的能源運用。結果顯示甲醇系統的控制效果優於丁醇系統,可在較短的時間內達到新的穩態結果:甲醇的控制架構能通過流量正負10%以及乳酸5%以及重成分雜質3%的進料組成的擾動;丁醇的控制架構能通過流量正負10%以及乳酸5%以及重成分雜質3%的進料組成的擾動。 | zh_TW |
| dc.description.abstract | Process designs for the continuous recovery of lactic acid from fermentation broth by reactive distillation (esterification and hydrolysis with C1 to C4 alcohols) are developed and optimized to minimize cost. The best designs are qualitatively different for different alcohols because of differing volatility ranking of reactants and products and the formation of a two liquid phase zone in some cases. The results suggest that the methanol and butanol processes are the most attractive solution. The costs of these two processes are similar, and the ranking depends on the payback period (when payback period is 3 butanol is more economical, vise versa). The ethanol and isopropanol processes are more expensive because an entrainer is required to break the alcohol/water azeotrope. Control structures for the methanol and butanol processes are designed and tested for the performance through feed flowrate, lactic acid composition and impurity composition disturbances.
Designed control structures can be separated into 2 scenarios. One is 1-recycle stream of recovered alcohol. Another one is 2-recycle streams with recovered alcohol and water. Methanol system can implement 2 recycle streams and butanol system can implement 1 recycle stream. Results show that 1-recycle scenario is more robust than 2-recycle scenario because it has a more straight forward flowsheet. Combined composition and temperature control structures can handle more disturbances and maintain the constraints. Both methanol and butanol control structures can pass flow rate and composition disturbances. Methanol control structure is more robust than butanol control structure because it can handle the disturbances in less time. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:07:11Z (GMT). No. of bitstreams: 1 ntu-103-D96524019-1.pdf: 3638679 bytes, checksum: cfbaf47d84ea3592fc3ed8dda5025c6a (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Contents
誌謝 i 中文摘要 iii Abstract iv List of Figures ix List of Tables xiv 1 Introduction 1 1.1 Review of lactic acid 1 1.2 Review of reactive distillation 5 1.3 Literature survey 7 1.4 Research motivation 9 1.5 Dissertation organization 10 2 Steady state flowsheet design 12 2.1 Process block description and design variables 12 2.2 Design procedure and objective function 18 2.3 Thermodynamics properties 22 2.4 Reaction kinetics 28 2.5 Pretest of conventional and reactive distillation configuration 33 3 Optimal steady state flowsheet result 36 3.1 Methanol system 36 3.2 Ethanol system 42 3.3 Isopropanol system 48 3.4 Butanol system 54 3.5 Pentanol system 60 3.6 Discussion and conclusion 67 4 Control structure design procedure 70 4.1 Methanol system temperature control structure 73 4.1.1 MCS1:Methanol 1-Recycle temperature control structure 82 4.1.2 MCS2:Methanol 1-Recycle composition control structure 89 4.1.3 MCS3:Methanol 2-Recycle temperature control structure 97 4.1.4 MCS4:Methanol 2-Recycle composition control structure 106 4.1.5 MCS5:Methanol 1-Recycle Cascade control structure 114 4.1.6 Summary and remarks 123 4.2 Butanol system control structure 125 4.2.1 BCS1 Butanol 1-Recycle Temperature control structure 132 4.2.2 BCS2 Butanol 1-Recycle composition control structure 140 4.2.3 BCS3 Butanol 2-Recycle temperature control structure 148 4.2.4 BCS4 Butanol 2-Recycle composition control structure 156 4.2.5 Summary and remarks 163 5 Conclusions 164 6 References 166 Appendix A: TAC Calculation Formula 172 Appendix B: UniQuac binary parameters 175 Appendix C: Inventory Control loop parameters 183 List of Figures Fig. 1 1 Conventional manufacture process for lactic acid from carbohydrate2 2 Fig. 1 2 Typical reactive distillation column. 5 Fig. 1 3 proposed process for recovery of lactic acid using methanol19 8 Fig. 1 4 proposed process for recovery of lactic acid using Butanol25 8 Fig. 2 1 Process block flow diagram 12 Fig. 2 2 three different esterification column configurations. 15 Fig. 2 3 vapor-liquid experiment data fitting curve: 26 Fig. 2 4 Liquid-Liquid envelope and azeotropic points for four systems. 27 Fig. 2 5 conventional methanol esterification reaction process 33 Fig. 3 1 Process flowsheet for methanol system 38 Fig. 3 2 Different design variable value effect on TAC of methanol system 40 Fig. 3 3 Optimal temperature and composition profile in methanol esterification column 41 Fig. 3 4 Optimal temperature and composition profile in methanol hydrolysis column 41 Fig. 3 5 Process flowsheet for ethanol system 44 Fig. 3 6 Different design variable value effect on TAC of ethanol system 46 Fig. 3 7 Optimal temperature and composition profile in ethanol esterification column 47 Fig. 3 8 Optimal temperature and composition profile in ethanol hydrolysis column 47 Fig. 3 9 Process flowsheet for isopropanol system 49 Fig. 3 10 Different design variable value effect on TAC of isopropanol system 52 Fig. 3 11 Optimal temperature and composition profile in isopropanol esterification column 53 Fig. 3 12 Optimal temperature and composition profile in isopropanol hydrolysis column 53 Fig. 3 13 Process flowsheet for butanol system 55 Fig. 3 14 Different design variable value effect on TAC of butanol system 57 Fig. 3 15 Optimal temperature and composition profile in butanol esterification column 58 Fig. 3 16 Optimal temperature and composition profile in butanol hydrolysis column 58 Fig. 3 17 Liquid-liquid envelope comparison between n-pentanol and butanol 60 Fig. 3 18 Process flowsheet for pentanol system 63 Fig. 3 19 Optimal temperature and composition profile in pentanol esterification column 65 Fig. 3 20 Optimal temperature and composition profile in pentanol hydrolysis column 65 Fig. 4 1 Sensitivities of tray temperatures for ±0.1% manipulated variables changes in preconcentrator 75 Fig. 4 2 Sensitivities of tray temperatures for ±0.1% manipulated variables changes in esterification column 75 Fig. 4 3 Sensitivities of tray temperatures for ±0.1% manipulated variables changes in hydrolysis column 76 Fig. 4 4 Sensitivities of tray temperatures for ±0.1% manipulated variables changes in recovery column 76 Fig. 4 5 Row sum of individual tray temperature for all 4 columns 77 Fig. 4 6 Methanol 1-recycle temperature control structure 81 Fig. 4 7 MCS1 ±10% flow rate disturbance dynamic response 83 Fig. 4 8 MCS1 ±5% lactic acid composition disturbance dynamic response 84 Fig. 4 9 MCS1 ±3% Impurity composition disturbance dynamic response 86 Fig. 4 10 MCS1 ±3% Impurity composition disturbance dynamic response 88 Fig. 4 11 Methanol 1-recycle composition control structure 90 Fig. 4 12 MCS2 ±10% flow rate disturbance dynamic response 91 Fig. 4 13 MCS2:±5% lactic acid composition disturbance dynamic response 93 Fig. 4 14 MCS2 ±3% Impurity composition disturbance dynamic response 95 Fig. 4 15 Methanol 2-recycle temperature control structure 98 Fig. 4 16 MCS3 ±10% flow rate disturbance dynamic response 99 Fig. 4 17 MCS3 ±5% lactic acid composition disturbance dynamic response 101 Fig. 4 18 MCS3 ±3% Impurity composition disturbance dynamic response 103 Fig. 4 19 MCS3 ±3% Impurity composition disturbance dynamic response 105 Fig. 4 20 Methanol 2-recycle composition control structure 107 Fig. 4 21 MCS4 ±10% flowrate disturbance dynamic response 108 Fig. 4 22 MCS4 ±5% lactic acid composition disturbance dynamic response 110 Fig. 4 23 MCS4 ±3% Impurity composition disturbance dynamic response 112 Fig. 4 24 Methanol 1-recycle cascade control structure 116 Fig. 4 25 MCS5 ±10% flow rate disturbance dynamic response 117 Fig. 4 26 MCS5 ±5% lactic acid composition disturbance dynamic response 119 Fig. 4 27 MCS5 ±3% Impurity composition disturbance dynamic response 121 Fig. 4 28 Sensitivity of tray temperature for ±0.1% manipulated variables changes in preconcentrator 127 Fig. 4 29 Sensitivity of tray temperature for ±0.1% manipulated variables changes in esterification column 127 Fig. 4 30 Sensitivity of tray temperature for ±0.1% manipulated variables changes in Esterification-separation column 128 Fig. 4 31 Sensitivity of tray temperature for ±0.1% manipulated variables changes in Hydrolysis column 128 Fig. 4 32 Row sum of individual tray temperature for 4 columns 129 Fig. 4 33 Control structure of 1-recycle temperature control structure 131 Fig. 4 34 BCS1 ±10% Feed flow rate disturbance dynamic response 133 Fig. 4 35BCS1 ±5% lactic acid composition disturbance dynamic response 135 Fig. 4 36BCS1 ±3% Impurity composition disturbance dynamic response 137 Fig. 4 37 Control structure of 1-recycle composition control structure 139 Fig. 4 38 BCS2 ±10% Feed flow rate disturbance dynamic response 141 Fig. 4 39 BCS2 ±5% lactic acid composition disturbance dynamic response 143 Fig. 4 40 BCS2 ±3% Impurity composition disturbance dynamic response 145 Fig. 4 41 Control structure of 2-recycle temperature control structure 147 Fig. 4 42 BCS3 ±10% Feed flow rate disturbance dynamic response 149 Fig. 4 43 BCS3 ±5% lactic acid composition disturbance dynamic response 151 Fig. 4 44 BCS3 ±3% Impurity composition disturbance dynamic response 153 Fig. 4 45 Control structure of 2-recycle composition control structure 155 Fig. 4 46 BCS4 ±10% Feed flow rate disturbance dynamic response 157 Fig. 4 47 BCS4 ±5% Lactic acid composition disturbance dynamic response 159 Fig. 4 48 BCS4 ±3% Impurity composition disturbance dynamic response 161 List of Tables Table 1 1 Lactic acid purification methods comparison 4 Table 2 1 Four systems optimal design specifications and design variables. 17 Table 2 2 Prices for alcohols and entrainers. 20 Table 2 3 Sources of binary interaction parameters. 24 Table 2 4 Ranking of azeotropic Temperatures and Pure Component NBP Temperatures 25 Table 2 5 Kinetic equations for four esterification reactions 31 Table 2 6 Kinetic equations for lactic acid oligomerization reactions 32 Table 2 7 TAC comparison between conventional and reactive distillation 34 Table 3 1 MeOH system optimal flowsheet design result 39 Table 3 2 Ethanol system optimal flowsheet design result 45 Table 3 3 iPrOH system optimal flowsheet design result 50 Table 3 4 BuOH system optimal flowsheet design result 56 Table 3 5 AmOH system optimal flowsheet design result 64 Table 3 6 Process TAC comparison 68 Table 3 7 TAC of methanol and butanol process sections for different payback periods 69 Table 4 1 Controlled variables, manipulated variables and relative gain array for four columns in methanol system 79 Table 4 2 Controlled variables, manipulated variables and relative gain array for four columns in butanol system 130 | |
| dc.language.iso | en | |
| dc.subject | 動態控制 | zh_TW |
| dc.subject | 最適化流程 | zh_TW |
| dc.subject | 反應蒸餾 | zh_TW |
| dc.subject | 乳酸純化 | zh_TW |
| dc.subject | lactic acid | en |
| dc.subject | dynamic control | en |
| dc.subject | purification | en |
| dc.subject | economical evaluation | en |
| dc.title | 乳酸純化製程之反應蒸餾系統設計與最適流程控制 | zh_TW |
| dc.title | Plant-wide Design and Control of Lactic acid Recovery Processes by Reactive Distillation with Different Alcohols | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 錢義隆(I-Lung Chien),陳誠亮(Cheng-Liang Chen),李豪業(Hao-Yeh Lee),鄭西顯(Shi-Shang Jang) | |
| dc.subject.keyword | 乳酸純化,反應蒸餾,最適化流程,動態控制, | zh_TW |
| dc.subject.keyword | lactic acid,dynamic control,purification,economical evaluation, | en |
| dc.relation.page | 186 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-06-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
