Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58145
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李嗣涔(Si-Chen Lee)
dc.contributor.authorHung-Hsin Chenen
dc.contributor.author陳鴻欣zh_TW
dc.date.accessioned2021-06-16T08:06:51Z-
dc.date.available2016-07-01
dc.date.copyright2014-07-10
dc.date.issued2014
dc.date.submitted2014-06-17
dc.identifier.citation1. Ministry of health and Welfare, http://www.mohw.gov.tw/MOHW_Upload/doc/%E6%B0%91%E5%9C%8B101%E5%B9%B4%E4%B8%BB%E8%A6%81%E6%AD%BB%E5%9B%A0%E5%88%86%E6%9E%90.doc.
2. Chan, H.P., C. Lewis, and P.S. Thomas, Exhaled breath analysis: novel approach for early detection of lung cancer. Lung Cancer, 63(2): p. 164-168. (2009).
3. Hochhegger, B., E. Marchiori, O. Sedlaczek, K. Irion, C. Heussel, S. Ley, J. Ley-Zaporozhan, A.S. Souza Jr., and H. Kauczor, MRI in lung cancer: a pictorial essay. (2014).
4. Laurent, F., M. Montaudon, and O. Corneloup, CT and MRI of lung cancer. Respiration, 73(2): p. 133-142. (2006).
5. Henschke, C.I., D.F. Yankelevitz, D.M. Libby, M.W. Pasmantier, J.P. Smith, and O.S. Miettinen, Survival of patients with stage I lung cancer detected on CT screening. The New England journal of medicine, 355(17): p. 1763-1771. (2006).
6. Antczak, A., Markers of oxidative stress in exhaled breath condensate. NATO Science Series, Series, 1: p. 333-337. (2002).
7. Schweigkofler, M. and R. Niessner, Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GC-MS/AES analysis. Environmental science & technology, 33(20): p. 3680-3685. (1999).
8. Phillips, M., K. Gleeson, J.M.B. Hughes, J. Greenberg, R.N. Cataneo, L. Baker, and W.P. McVay, Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. The Lancet, 353(9168): p. 1930-1933. (1999).
9. Phillips, M., R.N. Cataneo, A.R. Cummin, A.J. Gagliardi, K. Gleeson, J. Greenberg, R.A. Maxfield, and W.N. Rom, Detection of lung cancer with volatile markers in the breath. Chest Journal, 123(6): p. 2115-2123. (2003).
10. Bertsch, W., Two‐Dimensional Gas Chromatography. Concepts, Instrumentation, and Applications–Part 1: Fundamentals, Conventional Two‐Dimensional Gas Chromatography, Selected Applications. Journal of High Resolution Chromatography, 22(12): p. 647-665. (1999).
11. BelAiba, R.S., T. Djordjevic, A. Petry, K. Diemer, S. Bonello, B. Banfi, J. Hess, A. Pogrebniak, C. Bickel, and A. Gorlach, NOX5 variants are functionally active in endothelial cells. Free Radical Biology and Medicine, 42(4): p. 446-459. (2007).
12. Dekhuijzen, P., K. Aben, I. Dekker, L. Aarts, P. Wielders, C. Van Herwaarden, and A. Bast, Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine, 154(3): p. 813-816. (1996).
13. Delclaux, C., B. Mahut, F. Zerah-Lancner, C. Delacourt, S. Laoud, D. Cherqui, C. Duvoux, A. Mallat, and A. Harf, Increased nitric oxide output from alveolar origin during liver cirrhosis versus bronchial source during asthma. American journal of respiratory and critical care medicine, 165(3): p. 332-337. (2002).
14. Kiełbasa, B., A. Moeller, M. Sanak, J. Hamacher, M. Hutterli, A. Ćmiel, A. Szczeklik, and J.H. Wildhaber, Eicosanoids in exhaled breath condensates in the assessment of childhood asthma. Pediatric Allergy and Immunology, 19(7): p. 660-669. (2008).
15. Morimatsu, H., T. Takahashi, T. Matsusaki, M. Hayashi, J. Matsumi, H. Shimizu, M. Matsumi, and K. Morita, An increase in exhaled CO concentration in systemic inflammation/sepsis. Journal of breath research, 4(4): p. 047103. (2010).
16. Paredi, P., S.A. Kharitonov, and P.J. Barnes, Elevation of exhaled ethane concentration in asthma. American journal of respiratory and critical care medicine, 162(4): p. 1450-1454. (2000).
17. Rhee, S.G., T.-S. Chang, W. Jeong, and D. Kang, Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Molecules and cells, 29(6): p. 539-549. (2010).
18. Ricciardolo, F.L., P.J. Sterk, B. Gaston, and G. Folkerts, Nitric oxide in health and disease of the respiratory system. Physiological reviews, 84(3): p. 731-765. (2004).
19. Tsoukias, N.M. and S.C. George, A two-compartment model of pulmonary nitric oxide exchange dynamics. Journal of Applied Physiology, 85(2): p. 653-666. (1998).
20. McNeal, M.P., N. Moelders, M.U. Pralle, I. Puscasu, L. Last, W. Ho, A.C. Greenwald, J.T. Daly, E.A. Johnson, and T. George. Development of optical MEMS CO2 sensors. in International Symposium on Optical Science and Technology. International Society for Optics and Photonics. (Year)
21. Bakhirkin, Y.A., A.A. Kosterev, C. Roller, R.F. Curl, and F.K. Tittel, Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection. Applied optics, 43(11): p. 2257-2266. (2004).
22. Hodgkinson, J. and R.P. Tatam, Optical gas sensing: a review. Measurement Science and Technology, 24(1): p. 012004. (2013).
23. Padhy, H.M. and P. Mishra, Detection of Liquefied and Gaseous form of CO2 Implementing New Method in Non-Dispersive Infrared Spectroscopy Sensor System. Global Journal of Science Frontier Research, 12(2-H). (2012).
24. Song Chen, T.Y., and Kenzo Watanabe. A Simple, Low-Cost Non-Dispersive Infrared CO2 Monitor. in Sensors for Industry Conference. Houston, Texas, USA. (Year)
25. Wang, Y., M. Nakayama, M. Yagi, M. Nishikawa, M. Fukunaga, and K. Watanabe, The NDIR CO2 monitor with smart interface for global networking. Instrumentation and Measurement, IEEE Transactions on, 54(4): p. 1634-1639. (2005).
26. Yoo, K., H. Hong, M. Lee, S. Min, C. Park, W. Choi, and N. Min, Fabrication, characterization and application of a microelectromechanical system (MEMS) thermopile for non-dispersive infrared gas sensors. Measurement Science and Technology, 22(11): p. 115206. (2011).
27. Calaza, C., E. Meca, S. Marco, M. Moreno, J. Samitier, L. Fonseca, I. Gracia, and C. Cane, Assessment of the final metrological characteristics of a MOEMS-based NDIR spectrometer through system modeling and data processing. Sensors Journal, IEEE, 3(5): p. 587-594. (2003).
28. Noro, M., K. Suzuki, N. Kishi, H. Hara, T. Watanabe, and H. Iwaoka. CO2/H2O gas sensor using a tunable Fabry-Perot filter with wide wavelength range. in Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual International Conference on. IEEE. (Year)
29. Faist, J., F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, and A.Y. Cho, Quantum cascade laser. Science, 264(5158): p. 553-556. (1994).
30. Faist, J., F. Capasso, D.L. Sivco, A.L. Hutchinson, S.N.G. Chu, and A.Y. Cho, Short wavelength (λ∼ 3.4 μm) quantum cascade laser based on strained compensated InGaAs/AlInAs. Applied Physics Letters, 72(6): p. 680-682. (1998).
31. Faugeras, C., S. Forget, E. Boer-Duchemin, H. Page, J.-Y. Bengloan, O. Parillaud, M. Calligaro, C. Sirtori, M. Giovannini, and J. Faist, High-power room temperature emission quantum cascade lasers at λ= 9 μm. Quantum Electronics, IEEE Journal of, 41(12): p. 1430-1438. (2005).
32. Abbas, M.N., C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2. Applied Physics Letters, 98(12): p. 121116. (2011).
33. Leveque, G. and O.J. Martin, Tunable composite nanoparticle for plasmonics. Optics letters, 31(18): p. 2750-2752. (2006).
34. Pralle, M., N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, E. Johnson, T. George, D. Choi, and I. El-Kady, Photonic crystal enhanced narrow-band infrared emitters. Applied Physics Letters, 81(25): p. 4685-4687. (2002).
35. Li, F., H. San, M. Cheng, and X. Chen. Micro-machined infrared emitter with metallic photonic crystals structure. in 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro-and Nano-Optical devices and Systems. International Society for Optics and Photonics. (Year)
36. Lin, S.-Y., J. Moreno, and J. Fleming, Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Applied physics letters, 83(2): p. 380-382. (2003).
37. Lin, S., J. Fleming, and I. El-Kady, Highly efficient light emission at λ= 1.5 μm by a three-dimensional tungsten photonic crystal. Optics letters, 28(18): p. 1683-1685. (2003).
38. Chen, Q. and D.R. Cumming, High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Optics express, 18(13): p. 14056-14062. (2010).
39. Homola, J., S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 54(1): p. 3-15. (1999).
40. Barnes, W.L., A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. Nature, 424(6950): p. 824-830. (2003).
41. Tsai, M.-W., T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, High performance midinfrared narrow-band plasmonic thermal emitter. Applied physics letters, 89(17): p. 173116-173116-3. (2006).
42. Chen, C.-Y., M.-W. Tsai, Y.-W. Jiang, Y.-H. Ye, Y.-T. Chang, and S.-C. Lee, Coupling of surface plasmons between two silver films in a plasmonic thermal emitter. Applied Physics Letters, 91(24): p. 243111-243111-3. (2007).
43. Fu, H.-K., Y.-W. Jiang, M.-W. Tsai, S.-C. Lee, and Y.-F. Chen, A thermal emitter with selective wavelength: Based on the coupling between photonic crystals and surface plasmon polaritons. Journal of Applied Physics, 105(3): p. 033505. (2009).
44. Schuller, J.A., T. Taubner, and M.L. Brongersma, Optical antenna thermal emitters. Nature Photonics, 3(11): p. 658-661. (2009).
45. Tay, S., A. Kropachev, I.E. Araci, T. Skotheim, R.A. Norwood, and N. Peyghambarian, Plasmonic thermal IR emitters based on nanoamorphous carbon. Applied Physics Letters, 94(7): p. 071113. (2009).
46. Jiang, Y.-W., Y.-T. Wu, M.-W. Tsai, P.-E. Chang, D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, Characteristics of a waveguide mode in a trilayer Ag/SiO2/Au plasmonic thermal emitter. Optics Letters, 34(20): p. 3089-3091. (2009).
47. Lee, B. and Z. Zhang, Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. Journal of Applied Physics, 100(6): p. 063529. (2006).
48. Wu, Y.-T., Y.-T. Chang, H.-H. Chen, H.-F. Huang, D.-C. Tzuang, Y.-W. Jiang, P.-E. Chang, and S.-C. Lee, Narrow bandwidth midinfrared waveguide thermal emitters. Photonics Technology Letters, IEEE, 22(15): p. 1159-1161. (2010).
49. Cheng, D.K., Field and wave electromagnetics. Vol. 2. Addison-Wesley New York.(1989)
50. Palik, E.D., Handbook of optical constants of solids. Vol. 3. Academic press.(1998)
51. Chen, H.-H., Y.-W. Jiang, Y.-T. Wu, P.-E. Chang, Y.-T. Chang, H.-F. Huang, and S.-C. Lee, Narrow bandwidth and highly polarized ratio infrared thermal emitter. Applied Physics Letters, 97(16): p. 163112. (2010).
52. Chang, P.-E., Y.-W. Jiang, H.-H. Chen, Y.-T. Chang, Y.-T. Wu, L.D.-C. Tzuang, Y.-H. Ye, and S.-C. Lee, Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Perot type resonances. Applied Physics Letters, 98(7): p. 073111-073111-3. (2011).
53. Cheng, C.-W., M.N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. Optics express, 20(9): p. 10376-10381. (2012).
54. Hao, J., J. Wang, X. Liu, W.J. Padilla, L. Zhou, and M. Qiu, High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 96(25): p. 251104. (2010).
55. Liu, N., M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Infrared perfect absorber and its application as plasmonic sensor. Nano letters, 10(7): p. 2342-2348. (2010).
56. Puscasu, I. and W.L. Schaich, Narrow-band, tunable infrared emission from arrays of microstrip patches. Applied Physics Letters, 92(23): p. 233102. (2008).
57. Todorov, Y., L. Tosetto, J. Teissier, A.M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, Optical properties of metal-dielectric-metal microcavities in the THz frequency range. Optics express, 18(13): p. 13886-13907. (2010).
58. Ye, Y.-H., Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, Coupling of surface plasmons between two silver films in a Ag/SiO 2/Ag plasmonic thermal emitter with grating structure. Applied Physics Letters, 93(26): p. 263106-263106-3. (2008).
59. Collin, S., F. Pardo, and J.-L. Pelouard, Waveguiding in nanoscale metallic apertures. Optics Express, 15(7): p. 4310-4320. (2007).
60. Ikeda, K., H. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities. Applied Physics Letters, 92(2): p. 021117. (2008).
61. Miyazaki, H., K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, Thermal emission of two-color polarized infrared waves from integrated plasmon cavities. Applied Physics Letters, 92(14): p. 141114. (2008).
62. Liu, X., T. Tyler, T. Starr, A.F. Starr, N.M. Jokerst, and W.J. Padilla, Taming the blackbody with infrared metamaterials as selective thermal emitters. Physical review letters, 107(4): p. 045901. (2011).
63. Cole, B., R. Higashi, and R. Wood, Monolithic two-dimensional arrays of micromachined microstructures for infrared applications. Proceedings of the IEEE, 86(8): p. 1679-1686. (1998).
64. Maier, T. and H. Bruckl, Wavelength-tunable microbolometers with metamaterial absorbers. Optics letters, 34(19): p. 3012-3014. (2009).
65. Niklaus, F., C. Vieider, and H. Jakobsen. MEMS-based uncooled infrared bolometer arrays: a review. in Photonics Asia 2007. International Society for Optics and Photonics. (Year)
66. Ogawa, S., K. Okada, N. Fukushima, and M. Kimata, Wavelength selective uncooled infrared sensor by plasmonics. Applied Physics Letters, 100(2): p. 021111. (2012).
67. Ogawa, S., J. Komoda, K. Masuda, and M. Kimata, Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber. Optical Engineering, 52(12): p. 127104-127104. (2013).
68. Ambrosio, R., M. Moreno, J. Mireles, A. Torres, A. Kosarev, and A. Heredia, An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys. physica status solidi (c), 7(3‐4): p. 1180-1183. (2010).
69. Malyarov, V., I.A. Khrebtov, Y.V. Kulikov, I.I. Shaganov, V.Y. Zerov, and N.A. Feoktistov. Comparative investigations of the bolometric properties of thin film structures based on vanadium dioxide and amorphous hydrated silicon. in International Conference on Photoelectronics and Night Vision Devices. International Society for Optics and Photonics. (Year)
70. Powell, C. and J. Swan, Effect of oxidation on the characteristic loss spectra of aluminum and magnesium. Physical Review, 118(3): p. 640. (1960).
71. Kretschmann, E. and H. Raether, Radiative decay of non radiative surface plasmons excited by light(Surface plasma waves excitation by light and decay into photons applied to nonradiative modes). Zeitschrift Fuer Naturforschung, Teil A, 23: p. 2135. (1968).
72. Maier, S.A., Plasmonics: Fundamentals and Applications: Fundamentals and Applications. Springer.(2007)
73. Rothschild, K. and N. Clark, Polarized infrared spectroscopy of oriented purple membrane. Biophysical journal, 25(3): p. 473-487. (1979).
74. Miyazawa, T., K. Fukushima, and Y. Ideguchi, Molecular vibrations and structure of high polymers. III. Polarized infrared spectra, normal vibrations, and helical conformation of polyethylene glycol. The Journal of Chemical Physics, 37(12): p. 2764-2776. (2004).
75. Pendry, J., L. Martin-Moreno, and F. Garcia-Vidal, Mimicking surface plasmons with structured surfaces. Science, 305(5685): p. 847-848. (2004).
76. Lee, C.-C., Thin Film Optics and Coating Technology. Yi Hsient Publishing Company.(2002)
77. Ye, Y.-H., Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter. Applied Physics Letters, 93(3): p. 033113-033113-3. (2008).
78. Chang, Y.-T., Y.-T. Wu, J.-H. Lee, H.-H. Chen, C.-Y. Hsueh, H.-F. Huang, Y.-W. Jiang, P.-E. Chang, and S.-C. Lee, Emission properties of Ag/dielectric/Ag plasmonic thermal emitter with different lattice type, hole shape, and dielectric material. Applied Physics Letters, 95(21): p. 213102-213102-3. (2009).
79. Mason, J., S. Smith, and D. Wasserman, Strong absorption and selective thermal emission from a midinfrared metamaterial. Applied Physics Letters, 98(24): p. 241105. (2011).
80. Taflove, A. and S.C. Hagness, Computational electrodynamics. Vol. 160. Artech house Boston.(2000)
81. Hagness, S.C. and A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Antennas And Propagation Library) A. (2000).
82. Tsai, S.-R., T.-C. Huang, C.-M. Liang, H.-Y. Chang, Y.-T. Chang, H.-C. Huang, H.-F. Juan, and S.-C. Lee, The effect of narrow bandwidth infrared radiation on the growth of Escherichia coli. Applied Physics Letters, 99(16): p. 163704. (2011).
83. Inoue, S. and M. Kabaya, Biological activities caused by far-infrared radiation. International journal of biometeorology, 33(3): p. 145-150. (1989).
84. Chang, H.-Y., M.-H. Shih, H.-C. Huang, S.-R. Tsai, H.-F. Juan, and S.-C. Lee, Middle infrared radiation induces G2/M cell cycle arrest in A549 lung cancer cells. PloS one, 8(1): p. e54117. (2013).
85. Ohtsu, M., Progress in Nano-Electro-Optics II. Springer.(2004)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58145-
dc.description.abstract本文為研究具有偏極化特性之窄頻紅外線發射器及可室溫操作之窄頻紅外線偵測器。首先我們在一個波導型窄頻紅外線發射器上方製作一金屬銀光柵,利用金屬銀光柵對於不同偏極化光具有不同穿透與反射的特性,實現一具有高偏極化特性之窄頻紅外線發射器。我們也發展出一個可同時發射雙波長窄頻紅外線之波導型熱輻射發射器,且這兩個不同波長的紅外線之偏極化方向相互垂直。此元件所發射的波長可藉由位在金屬光柵上下之二氧化矽層厚度所調變。我們也研究在一金屬光柵埋藏於一個金/二氧化矽/金三層結構中之侷域型表面電漿子共振模態。這個侷域型共振模態的共振波長亦可由位在金屬光柵上下之二氧化矽層厚度所調變。我們在一個金/二氧化矽/金/二氧化矽/金之堆疊結構中,在同樣金屬光柵寬度的條件下利用不同二氧化矽層的厚度創造出兩個不同波長的侷域型表面電漿子共振模態,發展出具有雙波段窄頻紅外線發射之侷域型表面電漿子熱輻射發射器。我們也實現了一個可攜式的窄頻紅外線發射器。我們將窄頻紅外線發射晶片安裝於一個外殼大小約為2.5x5x12立方公分的可攜式加熱裝置中,並使用一個鋰電池當作是加熱的電流源。操作時可利用電池所提供的電流流經環繞於窄頻紅外線發射晶片之電阻絲加熱晶片。
我們研究了一個具有窄頻紅外線吸收之電漿子窄頻紅外線偵測器。此偵測器的結構為一非晶矽薄膜覆蓋於一金/氧化鋁/金之三層結構,其中最上層金為具有指叉狀電極及金圓盤之圖形化結構。在此偵測器中,我們利用存在於金圓盤/氧化鋁/金結構中之侷域型表面電漿子的共振來達到窄頻紅外線的吸收,被吸收的能量會加熱覆蓋於元件上方的非晶矽薄膜進而降低其薄膜電阻值,藉由量測電阻值的改變我們即可偵測到元件所吸收的紅外線能量。
zh_TW
dc.description.abstractThe polarized infrared thermal emitter with narrow bandwidth infrared emission and the uncooled narrow bandwidth infrared photodetector were studied. At first, a polarized infrared thermal emitter consisting of a waveguide thermal emitter and top silver grating structure were studied. The polarized ratio with different grating thickness was investigated and the high polarization ratio was achieved. A waveguide thermal emitter that can generate two infrared emission modes with different wavelengths and orthogonal polarization was developed. A localized surface plasmon resonance in a tri-layer Au/SiO2/Au stacked structure with Au-grating embedded in the SiO2 layer was also investigated. The resonant wavelength can be adjusted by controlling the grating width and dielectric layer thicknesses on both sides of the metallic grating. A double wavelength infrared emission by plasmonic thermal emitter using stacked Au/SiO2/Au/SiO2/Au structure was investigated. The effective refractive index of sandwiched SiO2 is higher than normal value due to the coupling of surface plasmons at the top and bottom Au/SiO2 interfaces. Two different localized surface plasmon modes were excited with the same metal width, but different SiO2 layer thicknesses in top and bottom Au/SiO2/Au tri-layer structures. A portable narrow bandwidth infrared emission instrument was realized. The narrow bandwidth infrared emission chip was fixed on the portable heating instrument which is installed in a plastic case with a size around 2.5x5x12 cm3. A lithium battery was used as the current source. The narrow bandwidth infrared emission chip can be heated by sending the current through the resistive wire surrounding the chip.
A plasmonic infrared photodetector with narrow bandwidth infrared absorption was investigated. The structure is constructed by a hydrogenated amorphous silicon (a-Si:H) film covered on a patterned Au layer consisting of the Au disk resonators and Au interdigitated electrodes on an Al2O3/Au substrate. This device exhibited narrow bandwidth infrared absorption corresponded to the localized surface plasmon resonance in the Au-disk/Al2O3/Au tri-layer resonators. The absorption of infrared energy heats up the top a-Si:H film and reduces the film resistance which can be detected.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:06:51Z (GMT). No. of bitstreams: 1
ntu-103-D97943018-1.pdf: 6729547 bytes, checksum: 18b148a62367fda030cdf0da32a08a25 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 I
摘要 III
Abstract V
Contents VII
Figure Captions XI
List of Tables XV
Chapter 1 1
Introduction 1
Chapter 2 13
The Fundamentals of Surface Plasmons and the Sample Fabrication Processes 13
2.1 The fundamentals of surface plasmons 13
2.1.1 Surface plasmons on smooth surfaces (delocalized) 13
2.1.2 Surface plasmons on the surface with holes array 19
2.1.3 Localized surface plasmons (LSP) 22
2.2 Basic Process Flow 24
2.2.1 Fabrication processes of patterned-metal/dielectric/metal tri-layers structure 24
2.2.2 Fabrication processes of photodetector 31
2.3 Measuring Systems 32
2.3.1 Reflection measurement 32
2.3.2 Thermal emission measurement 34
Chapter 3 37
Narrow Bandwidth Infrared Thermal Emitter with High Polarization Ratio 37
3.1 Experiments 37
3.2 Results and discussion 40
3.3 Summary 48
Chapter 4 49
Waveguide Thermal Emitter with Two Infrared Wavelengths Emission 49
4.1 Waveguide modes with two emission wavelengths in orthogonal polarization 50
4.1.1 Experiments 51
4.1.2 Results and discussion 52
4.2 Localized surface plasmon resonance in a tri-layer Au/SiO2/Au stacked structure with Au-grating embedded in the SiO2 layer 64
4.2.1Experiments 64
4.2.2 Results and discussion 69
4.3 Summary 80
Chapter 5 81
Two Wavelengths Emission Plasmonic Thermal Emitter and Portable Narrow Bandwidth Infrared Thermal Emitter 81
5.1 Double wavelength infrared emission by localized surface plasmonic thermal emitter 82
5.1.1 Experiments 83
5.1.2 Results and discussion 87
5.2 Portable Narrow Bandwidth Infrared Thermal Emitter 97
5.2.1 Experiments 98
5.2.2 Results and discussion 100
5.3 Summary 108
Chapter 6 109
A Plasmonic Infrared Photodetector with Narrow Bandwidth Absorption 109
6.1 Experiments 109
6.2 Results and discussion 113
6.3 Summary 122
Chapter 7 123
Conclusions 123
Bibliography 127
dc.language.isoen
dc.subject偏極化zh_TW
dc.subject波導zh_TW
dc.subject光偵測器zh_TW
dc.subject窄頻zh_TW
dc.subject紅外線zh_TW
dc.subjectInfrareden
dc.subjectPolarizationen
dc.subjectPhotodetectoren
dc.subjectNarrow Bandwidthen
dc.subjectWaveguideen
dc.title具偏極化之波導/電漿子窄頻紅外線熱發射器與吸收窄頻紅外線偵測器zh_TW
dc.titleNarrow Band Waveguide/Plasmonic Polarized Infrared Thermal Emitter and Infrared Photodetector with Narrow Band Absorptionen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee張宏鈞,林浩雄,林清富,劉致為,陳敏璋
dc.subject.keyword紅外線,偏極化,光偵測器,窄頻,波導,zh_TW
dc.subject.keywordInfrared,Polarization,Photodetector,Narrow Bandwidth,Waveguide,en
dc.relation.page141
dc.rights.note有償授權
dc.date.accepted2014-06-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
6.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved