請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58121完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文中(Wen-Jong Wu) | |
| dc.contributor.author | Shun-Chiu Lin | en |
| dc.contributor.author | 林順區 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:06:21Z | - |
| dc.date.available | 2017-07-09 | |
| dc.date.copyright | 2014-07-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-06-20 | |
| dc.identifier.citation | [1] K. Ashton, 'That ‘internet of things’ thing,' RFID Journal, vol. 22, pp. 97-114, 2009.
[2] N. G. Elvin, A. A. Elvin, and M. Spector, 'A self-powered mechanical strain energy sensor,' Smart Materials & Structures, vol. 10, pp. 293-299, 2001. [3] J. M. Rabaey, M. J. Ammer, J. L. da Silva, D. Patel, and S. Roundy, 'PicoRadio supports ad hoc ultra-low power wireless networking,' Computer, vol. 33, pp. 42-48, 2000. [4] S. Roundy, P. K. Wright, and J. Rabaey, 'A study of low level vibrations as a power source for wireless sensor nodes,' Computer Communications, vol. 26, pp. 1131-1144, 2003. [5] R. Amirtharajah and A. P. Chandrakasan, 'Self-powered signal processing using vibration-based power generation,' IEEE Journal of Solid-State Circuits, vol. 33, pp. 687-695, 1998. [6] S. Roundy, D. Steingart, L. Frechette, P. Wright, and J. Rabaey, 'Power sources for wireless sensor networks,' Wireless Sensor Networks, Proceedings, vol. 2920, pp. 1-17, 2004. [7] S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright, and V. Sundararajan, 'Improving power output for vibration-based energy scavengers,' IEEE Pervasive Computing, vol. 4, pp. 28-36, 2005. [8] H. A. Sodano, 'A Review of Power Harvesting from Vibration Using Piezoelectric Materials,' The Shock and Vibration Digest, vol. 36, pp. 197-206, 2004. [9] C. B. Williams and R. B. Yates, 'Analysis of a micro-electric generator for microsystems,' Sensors and Actuators a-Physical, vol. 52, pp. 8-11, 1996. [10] W. J. Choi, Y. Jeon, J. H. Jeong, R. Sood, and S. G. Kim, 'Energy harvesting MEMS device based on thin film piezoelectric cantilevers,' Journal of Electroceramics, vol. 17, pp. 543-548, 2006. [11] N. S. Shenck and J. A. Paradiso, 'Energy scavenging with shoe-mounted piezoelectrics,' Ieee Micro, vol. 21, pp. 30-42, 2001. [12] G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre, 'Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode,' Ieee Transactions on Power Electronics, vol. 18, pp. 696-703, 2003. [13] N. N. H. Ching, H. Y. Wong, W. J. Li, P. H. W. Leong, and Z. Y. Wen, 'A laser-micromachined multi-modal resonating power transducer for wireless sensing systems,' Sensors and Actuators A-Physical, vol. 97-8, pp. 685-690, 2002. [14] M. El-hami, R. Glynne-Jones, N. M. White, M. Hill, S. Beeby, E. James, A. D. Brown, and J. N. Ross, 'Design and fabrication of a new vibration-based electromechanical power generator,' Sensors and Actuators a-Physical, vol. 92, pp. 335-342, 2001. [15] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. P. Chandrakasan, and J. H. Lang, 'Vibration-to-electric energy conversion,' Ieee Transactions on Very Large Scale Integration (Vlsi) Systems, vol. 9, pp. 64-76, 2001. [16] Y. Chiu and V. F. G. Tseng, 'A capacitive vibration-to-electricity energy converter with integrated mechanical switches,' Journal of Micromechanics and Microengineering, vol. 18, p. 104004, 2008. [17] M. Miyazaki, H. Tanaka, G. Ono, T. Nagano, N. Ohkubo, and T. Kawahara, 'Electric-energy generation through variable-capacitive resonator for power-free LSI,' Ieice Transactions on Electronics, vol. E87c, pp. 549-555, 2004. [18] S. Roundy and P. K. Wright, 'A piezoelectric vibration based generator for wireless electronics,' Smart Materials & Structures, vol. 13, pp. 1131-1142, 2004. [19] Y. B. Jeon, R. Sood, J. H. Jeong, and S. G. Kim, 'MEMS power generator with transverse mode thin film PZT,' Sensors and Actuators a-Physical, vol. 122, pp. 16-22, 2005. [20] H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Dong, D. Chen, B. C. Cai, and Y. Liu, 'A MEMS-based piezoelectric power generator for low frequency vibration energy harvesting,' Chinese Physics Letters, vol. 23, pp. 732-734, 2006. [21] S. Saadon and O. Sidek, 'A review of vibration-based MEMS piezoelectric energy harvesters,' Energy Conversion and Management, vol. 52, pp. 500-504, 2011. [22] S. G. Kim, 'Piezoelectric MEMS for energy harvesting,' MRS Bulletin, vol. 37, pp. 1039-1050, 2012. [23] H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Dong, L. Wang, D. Chen, B. C. Cai, and Y. Liu, 'Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting,' Microelectronics Journal, vol. 37, pp. 1280-1284, 2006. [24] S. Trolier-McKinstry and P. Muralt, 'Thin film piezoelectrics for MEMS,' Journal of Electroceramics, vol. 12, pp. 7-17, 2004. [25] R. Elfrink, T. M. Kamel, M. Goedbloed, S. Matova, D. Hohlfeld, Y. van Andel, and R. van Schaijk, 'Vibration energy harvesting with aluminum nitride-based piezoelectric devices,' Journal of Micromechanics and Microengineering, vol. 19, p. 094005, 2009. [26] I. Kanno, T. Ichida, K. Adachi, H. Kotera, K. Shibata, and T. Mishima, 'Power-generation performance of lead-free (K,Na)NbO3 piezoelectric thin-film energy harvesters,' Sensors and Actuators A: Physical, vol. 179, pp. 132-136, 2012. [27] K. A. Cook-Chennault, N. Thambi, and A. M. Sastry, 'Powering MEMS portable devices - a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems,' Smart Materials & Structures, vol. 17, p. 043001, 2008. [28] C. H. Ho, K. P. Chin, C. R. Yang, H. M. Wu, and S. L. Chen, 'Ultrathick SU-8 mold formation and removal, and its application to the fabrication of LIGA-like micromotors with embedded roots,' Sensors and Actuators a-Physical, vol. 102, pp. 130-138, 2002. [29] D. Shen, J. H. Park, J. Ajitsaria, S. Y. Choe, H. C. Wikle, and D. J. Kim, 'The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting,' Journal of Micromechanics and Microengineering, vol. 18, 055017, 2008. [30] R. Elfrink, M. Renaud, T. M. Kamel, C. de Nooijer, M. Jambunathan, M. Goedbloed, D. Hohlfeld, S. Matova, V. Pop, L. Caballero, and R. van Schaijk, 'Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system,' Journal of Micromechanics and Microengineering, vol. 20, p. 104001, 2010. [31] M. Marzencki, Y. Ammar, and S. Basrour, 'Integrated power harvesting system including a MEMS generator and a power management circuit,' Sensors and Actuators a-Physical, vol. 145, pp. 363-370, 2008. [32] B. S. Lee, S. C. Lin, W. J. Wu, X. Y. Wang, P. Z. Chang, and C. K. Lee, 'Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film,' Journal of Micromechanics and Microengineering, vol. 19, p. 065014, 2009. [33] E. E. Aktakka, R. L. Peterson, and K. Najafi, 'Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting,' in Transducer’s 11 (Beijing, China), pp. 1649-1652, 2011. [34] G. Tang, J. Q. Liu, B. Yang, J. B. Luo, H. S. Liu, Y. G. Li, C. S. Yang, D. N. He, V. D. Dao, K. Tanaka, and S. Sugiyama, 'Fabrication and analysis of high-performance piezoelectric MEMS generators,' Journal of Micromechanics and Microengineering, vol. 22, p. 065017, 2012. [35] D. Shen, J. H. Park, J. Ajitsaria, S. Y. Choe, H. C. Wikle, and D. J. Kim, 'The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting,' Journal of Micromechanics and Microengineering, vol. 18, p. 055017, 2008. [36] P. Muralt, M. Marzencki, B. Belgacem, F. Calame, and S. Basrour, 'Vibration Energy Harvesting with PZT Micro Device,' Procedia Chemistry, vol. 1, pp. 1191-1194, 2009. [37] A. Hajati and S. G. Kim, 'Ultra-wide bandwidth piezoelectric energy harvesting,' Applied Physics Letters, vol. 99, p. 083105, 2011. [38] J. C. Park, J. Y. Park, and Y.-P. Lee, 'Modeling and Characterization of Piezoelectric {3-3} Mode MEMS Energy Harvester,' Journal of Microelectromechanical Systems, vol. 19, pp. 1215-1222, 2010. [39] B. S. Lee, S. C. Lin, and W. J. Wu, 'Fabrication and Evaluation of a Mems Piezoelectric Bimorph Generator for Vibration Energy Harvesting,' Journal of Mechanics, vol. 26, pp. 493-499, 2010. [40] T. T. Yen, T. Hirasawa, P. K. Wright, A. P. Pisano, and L. W. Lin, 'Corrugated aluminum nitride energy harvesters for high energy conversion effectiveness,' Journal of Micromechanics and Microengineering, vol. 21, p. 085037, 2011. [41] K. Morimoto, I. Kanno, K. Wasa, and H. Kotera, 'High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers,' Sensors and Actuators A: Physical, vol. 163, pp. 428-432, 2010. [42] A. Lei, R. Xu, A. Thyssen, A. C. Stoot, T. L. Christiansen, K. Hansen, R. Lou-Moller, E. V. Thomsen, and K. Birkelund, 'MEMS-based thick film PZT vibrational energy harvester,' in Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on, pp. 125-128, 2011. [43] M. Defosseux, M. Allain, E. Defay, and S. Basrour, 'Highly efficient piezoelectric micro harvester for low level of acceleration fabricated with a CMOS compatible process,' Sensors and Actuators a-Physical, vol. 188, pp. 489-494, 2012. [44] R. Xu, A. Lei, C. Dahl-Petersen, K. Hansen, M. Guizzetti, K. Birkelund, E. V. Thomsen, and O. Hansen, 'Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting,' Sensors and Actuators a-Physical, vol. 188, pp. 383-388, 2012. [45] E. E. Aktakka, R. L. Peterson, and K. Najafi, 'A CMOS-compatible piezoelectric vibration energy scavenger based on the integration of bulk PZT films on silicon,' in Electron Devices Meeting (IEDM), 2010 IEEE International, pp. 31.5.1-31.5.4, 2010. [46] X. Y. Wang, C. Y. Lee, Y. C. Hu, W. P. Shih, C. C. Lee, J. T. Huang, and P. Z. Chang, 'The fabrication of silicon-based PZT microstructures using an aerosol deposition method,' Journal of Micromechanics and Microengineering, vol. 18, p. 055034, 2008. [47] P. N. Rao and D. Kunzru, 'Fabrication of microchannels on stainless steel by wet chemical etching,' Journal of Micromechanics and Microengineering, vol. 17, pp. N99-N106, 2007. [48] S. P. Chang and M. G. Allen, 'Capacitive pressure sensors with stainless steel diaphragm and substrate,' Journal of Micromechanics and Microengineering, vol. 14, pp. 612-618, 2004. [49] Y. D. Gokdel, S. Mutlu, and A. D. Yalcinkaya, 'Self-terminating electrochemical etching of stainless steel for the fabrication of micro-mirrors,' Journal of Micromechanics and Microengineering, vol. 20, p. 095009, 2010. [50] Z. Yang, G. Xia, X. Li, and J. Stevenson, '(Mn,Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications,' International Journal of Hydrogen Energy, vol. 32, pp. 3648-3654, 2007. [51] F. J. S. Holler, Douglas A; Crouch, Stanley R, 'Principles of Instrumental Analysis (6th ed.),' Cengage Learning, vol. ISBN 978-0-495-01201-6., p. 9, 2007. [52] F. Akasheh, T. Myers, J. D. Fraser, S. Bose, and A. Bandyopadhyay, 'Development of piezoelectric micromachined ultrasonic transducers,' Sensors and Actuators a-Physical, vol. 111, pp. 275-287, 2004. [53] J. J. Bernstein, J. Bottari, K. Houston, G. Kirkos, R. Miller, B. Xu, Y. Ye, and L. E. Cross, 'Advanced MEMS ferroelectric ultrasound 2D arrays,' in Ultrasonics Symposium, 1999. Proceedings. 1999 IEEE, pp. 1145-1153 vol.2, 1999. [54] N. E. duToit, B. L. Wardle, and S. G. Kim, 'Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters,' Integrated Ferroelectrics, vol. 71, pp. 121-160, 2005. [55] Y. S. S. S.C. Lin, J.Y. Zeng, B.S. Lee, W.J. Wu1, 'Energy harvesting using piezoelectric mems generators with dual interdigital electrodes,' ICAST2011: 22nd International Conference on Adaptive Structures and Technologies, vol. 058, p. 95, 2011. [56] L. Gardner, 'The use of stainless steel in structures,' Progress in Structural Engineering and Materials, vol. 7, pp. 45-55, 2005. [57] H. K. Liu, C. H. Pan, and P. P. Liu, 'Dimension effect on mechanical behavior of silicon micro-cantilever beams,' Measurement, vol. 41, pp. 885-895, 2008. [58] E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, 'Piezoelectric energy harvesting device optimization by synchronous electric charge extraction,' Journal of Intelligent Material Systems and Structures, vol. 16, pp. 865-876, 2005. [59] Y. C. Shu and I. C. Lien, 'Analysis of power output for piezoelectric energy harvesting systems,' Smart Materials & Structures, vol. 15, pp. 1499-1512, 2006. [60] Y. C. Shu and I. C. Lien, 'Efficiency of energy conversion for a piezoelectric power harvesting system,' Journal of Micromechanics and Microengineering, vol. 16, pp. 2429-2438, 2006. [61] 'IEEE Standard on Piezoelectricity,' ANSI/IEEE Std 176-1987, 1988. [62] A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications: Wiley, 2003. [63] N. Setter, Piezoelectric Materials in Devices: Extended Reviews on Current and Emerging Piezoelectric Materials, Technology, and Applications: N. Setter, 2002. [64] T. M. Kamel, R. Elfrink, M. Renaud, D. Hohlfeld, M. Goedbloed, C. de Nooijer, M. Jambunathan, and R. van Schaijk, 'Modeling and characterization of MEMS-based piezoelectric harvesting devices,' Journal of Micromechanics and Microengineering, vol. 20, p. 105023, 2010. [65] R. L. Boylestad, Introductory Circuit Analysis: Pearson Education India, 1968. [66] J. Akedo, 'Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices,' Journal of Thermal Spray Technology, vol. 17, pp. 181-198, 2008. [67] H. D. Chen, K. R. Udayakumar, C. J. Gaskey, L. E. Cross, J. J. Bernstein, and L. C. Niles, 'Fabrication and electrical properties of lead zirconate titanate thick films,' Journal of the American Ceramic Society, vol. 79, pp. 2189-2192, 1996. [68] S. Watanabe, T. Fujiu, and T. Fujii, 'Effect of Poling on Piezoelectric Properties of Lead-Zirconate-Titanate Thin-Films Formed by Sputtering,' Applied Physics Letters, vol. 66, pp. 1481-1483, 1995. [69] Y. Sakashita, T. Ono, H. Segawa, K. Tominaga, and M. Okada, 'Preparation and Electrical-Properties of Mocvd-Deposited Pzt Thin-Films,' Journal of Applied Physics, vol. 69, pp. 8352-8357, 1991. [70] R. Xu, A. Lei, C. Dahl-Petersen, K. Hansen, M. Guizzetti, K. Birkelund, E. V. Thomsen, and O. Hansen, 'Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters,' Journal of Micromechanics and Microengineering, vol. 22, p. 094007, 2012. [71] H. Kidoh, T. Ogawa, A. Morimoto, and T. Shimizu, 'Ferroelectric properties of lead-zirconate-titanate films prepared by laser ablation,' Applied Physics Letters, vol. 58, p. 2910, 1991. [72] M. Oikawa and K. Toda, 'Preparation of Pb(Zr,Ti)O3 Thin-Films by an Electron-Beam Evaporation Technique,' Applied Physics Letters, vol. 29, pp. 491-492, 1976. [73] R. N. Castellano and L. G. Feinstein, 'Ion-beam deposition of thin films of ferroelectric lead zirconate titanate (PZT),' Journal of Applied Physics, vol. 50, pp. 4406-4411, 1979. [74] T. Hata, S. Kawagoe, W. Zhang, K. Sasaki, and Y. Yoshioka, 'Proposal of new mixture target for PZT thin films by reactive sputtering,' Vacuum, vol. 51, pp. 665-671, 1998. [75] X. Chen, P. Y. Hou, C. P. Jacobson, S. J. Visco, and L. C. De Jonghe, 'Protective coating on stainless steel interconnect for SOFCs: oxidation kinetics and electrical properties,' Solid State Ionics, vol. 176, pp. 425-433, 2005. [76] J. Akedo, M. Ichiki, K. Kikuchi, and R. Maeda, 'Jet molding system for realization of three-dimensional micro-structures,' Sensors and Actuators A: Physical, vol. 69, pp. 106-112, 1998. [77] J. Akedo, 'Microstructure and electrical properties of lead zirconate titanate (Pb (Zr52/Ti48) O3) thick films deposited by aerosol deposition method,' Japanese Journal of Applied Physics, vol. 38, p. 5397, 1999. [78] J. Akedo, 'Aerosol deposition method for fabrication of nano crystal ceramic layer - Novel ceramics coating with collision of fine powder at room temperature,' Designing, Processing and Properties of Advanced Engineering Materials, Pts 1 and 2, vol. 449-4, pp. 43-48, 2004. [79] M. Lebedev and J. Akedo, 'Patterning properties of PZT thick films made by aerosol deposition,' Ferroelectrics, vol. 270, pp. 1303-1308, 2002. [80] J. Akedo, 'Aerosol deposition of ceramic thick films at room temperature: Densification mechanism of ceramic layers,' Journal of the American Ceramic Society, vol. 89, pp. 1834-1839, 2006. [81] J. Iwasawa, R. Nishimizu, M. Tokita, M. Kiyohara, and K. Uematsu, 'Plasma-resistant dense yttrium oxide film prepared by aerosol deposition process,' Journal of the American Ceramic Society, vol. 90, pp. 2327-2332, 2007. [82] R. Kubrin, A. Tricoli, A. Camenzind, S. E. Pratsinis, and W. Bauhofer, 'Flame aerosol deposition of Y 2 O 3 :Eu nanophosphor screens and their photoluminescent performance,' Nanotechnology, vol. 21, p. 225603, 2010. [83] H. B. Wang, C. R. Xia, G. Y. Meng, and D. K. Peng, 'Deposition and characterization of YSZ thin films by aerosol-assisted CVD,' Materials Letters, vol. 44, pp. 23-28, 2000. [84] A. Iwata, J. Akedo, and M. Lebedev, 'Cubic aluminum nitride transformed under reduced pressure using aerosol deposition method,' Journal of the American Ceramic Society, vol. 88, pp. 1067-1069, 2005. [85] J. M. Oh, N. H. Kim, S. C. Choi, and S. M. Nam, 'Thickness dependence of dielectric properties in BaTiO3 films fabricated by aerosol deposition method,' Materials Science and Engineering B-Advanced Functional Solid-State Materials, vol. 161, pp. 80-84, 2009. [86] M. Lebedev, J. Akedo, and Y. Akiyama, 'Actuation properties of lead zirconate titanate thick films structured on Si membrane by the aerosol deposition method,' Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 39, pp. 5600-5603, 2000. [87] K. Sahner, M. Kaspar, and R. Moos, 'Assessment of the novel aerosol deposition method for room temperature preparation of metal oxide gas sensor films,' Sensors and Actuators B-Chemical, vol. 139, pp. 394-399, 2009. [88] J. H. Park, J. Akedo, and H. Sato, 'High-speed metal-based optical microscanners using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method,' Sensors and Actuators a-Physical, vol. 135, pp. 86-91, 2007. [89] I. Kim, J. Park, T. H. Nam, K. W. Kim, J. H. Ahn, D. S. Park, C. Ahn, G. Wang, and H. J. Ahn, 'Electrochemical properties of an as-deposited LiFePO4 thin film electrode prepared by aerosol deposition,' Journal of Power Sources, vol. 244, pp. 646-651, 2013. [90] X. Y. Wang, C. Y. Lee, C. R. Peng, P. Y. Chen, and P. Z. Chang, 'A micrometer scale and low temperature PZT thick film MEMS process utilizing an aerosol deposition method,' Sensors and Actuators a-Physical, vol. 143, pp. 469-474, 2008. [91] J. Akedo and M. Lebedev, 'Piezoelectric properties and poling effect of Pb(Zr, Ti)O thick films prepared for microactuators by aerosol deposition,' Applied Physics Letters, vol. 77, p. 1710, 2000. [92] J. Fraden, Handbook of modern sensors: physics, designs, and applications: Springer, 2004. [93] N. E. DuToit and B. L. Wardle, 'Experimental Verification of Models for Microfabricated Piezoelectric Vibration Energy Harvesters,' AIAA Journal, vol. 45, pp. 1126-1137, 2007. [94] E. Halvorsen, 'Energy Harvesters Driven by Broadband Random Vibrations,' Journal of Microelectromechanical Systems, vol. 17, pp. 1061-1071, 2008. [95] S. Saggini, S. Giro, F. Ongaro, and P. Mattavelli, 'Implementation of reactive and resistive load matching for optimal energy harvesting from piezoelectric generators,' in Control and Modeling for Power Electronics (COMPEL), 2010 IEEE 12th Workshop on, pp. 1-6, 2010. [96] H. Cho, B. Jeong, M. F. Yu, A. F. Vakakis, D. M. McFarland, and L. A. Bergman, 'Nonlinear hardening and softening resonances in micromechanical cantilever-nanotube systems originated from nanoscale geometric nonlinearities,' International Journal of Solids and Structures, vol. 49, pp. 2059-2065, 2012. [97] P. Kim, S. Bae, and J. Seok, 'Resonant behaviors of a nonlinear cantilever beam with tip mass subject to an axial force and electrostatic excitation,' International Journal of Mechanical Sciences, vol. 64, pp. 232-257, 2012. [98] L. G. W. Tvedt, D. S. Nguyen, and E. Halvorsen, 'Nonlinear Behavior of an Electrostatic Energy Harvester Under Wide- and Narrowband Excitation,' Journal of Microelectromechanical Systems, vol. 19, pp. 305-316, 2010. [99] W. Al-Ashtari, M. Hunstig, T. Hemsel, and W. Sextro, 'Analytical determination of characteristic frequencies and equivalent circuit parameters of a piezoelectric bimorph,' Journal of Intelligent Material Systems and Structures, vol. 23, pp. 15-23, 2011. [100] C. H. Manh and K. Hane, 'Vacuum operation of comb-drive micro display mirrors,' Journal of Micromechanics and Microengineering, vol. 19, p. 105018, 2009. [101] M. H. Bao and H. Yang, 'Squeeze film air damping in MEMS,' Sensors and Actuators a-Physical, vol. 136, pp. 3-27, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58121 | - |
| dc.description.abstract | 本論文主要在利用301不鏽鋼基板製作壓電懸臂樑式微型能量擷取元件。此微型能量擷取元件有能力可以擷取環境周遭的機械振動能,並透過鐵電材料鈦鋯酸鉛(PZT)將其轉換成電能。為了獲得高電壓及功率的輸出,壓電層利用沉積效率高且室溫製程的氣膠沉積法製作。發電的壓電模式主要分成單層壓電d31及雙層壓電模式,此兩種模式可分別開發出輸出特性不同的微型能量擷取元件。此外,在過往研究中,都是利用矽基板製作微型能量擷取元件,但是在低頻率高振幅的使用環境下,矽基板製作的懸臂樑容易斷裂,為了解決此問題,本論文利用301不鏽鋼基板取代矽基板製作微型能量擷取器,另一方面也將不鏽鋼基板與矽基板製作之微型能量擷取器進行輸出特性跟運行壽命的比較。最終透過微機電製程技術,成功製作出三種微型能量擷取元件,包含不鏽鋼基板製作上下電極輸出的d31元件、矽基板製作上下電極輸出的d31元件與不鏽鋼基板製作雙層壓電的d31模式元件。實驗結果顯示,本研究開發的微機電元件最高有能力產生四百微瓦等級的能量,且輸出電壓遠高於全橋整流電路的最低要求。 | zh_TW |
| dc.description.abstract | In the past decade, the vibration energy harvesting technologies based on piezoelectric materials have been studied intensively and been improved constantly. The power outputs of piezoelectric MEMS generators are also steadily improved year by year. This dissertation presents the development of piezoelectric MEMS power generators which have the ability to harvest mechanical energy of surrounding vibrations and transform vibration energy into useful electrical power. The harvesting electrical power is able to use in energy storage applications. To improve and get high- efficiency piezoelectric MEMS generators, the lead zirconate titanate (PZT) material was directly deposited on the substrate by the aerosol deposition method which could deposit PZT thin film up to tens micron in minutes. The piezoelectric MEMS generators utilize the d31 and bimorph of PZT for transforming mechanical strain energy into electrical charge by using. For applications with higher vibration levels, the structure with PZT ceramic fabricated on silicon or SOI substrate may break under higher acceleration levels. To increase the mechanical strength of the piezoelectric MEMS generators structure, alternative substrate material, stainless steel substrate is proposed. Finally, we succeed to fabricate the piezoelectric MEMS generators based on stainless steel, piezoelectric MEMS generators based on silicon and piezoelectric MEMS bimorph generators by means of micro-electro-mechanical-systems (MEMS) process. We also compared the output performance of these devices and the lifetime of these devices in a long-term vibration. Experimental results confirm that the devices have the ability to generate power in the hundred micro-watt range and the output voltage is much higher than the minimum requirement for diode band-gaps in the rectifier circuit. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:06:21Z (GMT). No. of bitstreams: 1 ntu-103-D98525005-1.pdf: 12887656 bytes, checksum: 405b720c98c449a20a0063c79df21108 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii Table of contents iv List of figures viii List of tables xviii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature reviews 6 1.3 Research purpose and thesis organization 13 Chapter 2 Piezoelectric MEMS generator 19 2.1 Introduction 19 2.2 Piezoelectric MEMS generator structure design 24 2.2.1 Survey of ambient vibration sources 24 2.2.2 The d31 mode piezoelectric MEMS generator 26 2.2.3 The bimorph piezoelectric MEMS generator 31 2.3 Theoretical model 34 2.3.1 The d31 mode piezoelectric MEMS generator 35 2.3.2 The bimorph mode piezoelectric MEMS generator 39 Chapter 3 Fabrication of PZT layer by aerosol deposition method 41 3.1 Introduction 41 3.2 Aerosol deposition method 44 3.3 Properties of PZT layer deposited on stainless steel substrate 53 3.4 Patterned PZT layer by lift-off process 60 Chapter 4 Fabrication of piezoelectric MEMS generator 63 4.1 Fabrication of d31 mode based on stainless steel substrate 63 4.2 Fabrication of d31 mode based on silicon substrate 69 4.3 Fabrication of bimorph mode based on stainless steel substrate 72 Chapter 5 Results and Discussion 76 5.1 Experimental set-up 76 5.1.1 PZT poling 76 5.1.2 Experimental set-up of measurement 78 5.2 Optimal polarization parameters 79 5.2.1 Maintaining and poling time 79 5.2.2 Poling electric field 80 5.2.3 Poling temperature 84 5.2.4 Summary of polarization parameters 86 5.3 The d31 mode based on stainless steel substrate 87 5.3.1 The d31 mode with 15 | |
| dc.language.iso | en | |
| dc.subject | 微機電 | zh_TW |
| dc.subject | 能量擷取 | zh_TW |
| dc.subject | 懸臂樑 | zh_TW |
| dc.subject | 氣膠沉積法 | zh_TW |
| dc.subject | 壓電材料 | zh_TW |
| dc.subject | aerosol deposition | en |
| dc.subject | MEMS | en |
| dc.subject | power generators | en |
| dc.subject | cantilever beam | en |
| dc.subject | piezoelectric material | en |
| dc.title | 利用不鏽鋼基板製作壓電懸臂樑式微型能量擷取元件之研究 | zh_TW |
| dc.title | High performance piezoelectric MEMS generators based on stainless steel substrate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李世光(Chih-Kung Lee),楊啟榮(Chii-Rong Yang),施文彬(Wen-Pin Shih),舒貽忠(Yi-Chung Shu),胡毓忠(Yuh-Chung Hu) | |
| dc.subject.keyword | 微機電,壓電材料,氣膠沉積法,懸臂樑,能量擷取, | zh_TW |
| dc.subject.keyword | MEMS,piezoelectric material,aerosol deposition,cantilever beam,power generators, | en |
| dc.relation.page | 145 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-06-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 12.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
