請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58119
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 駱尚廉(Shang-Lien Lo) | |
dc.contributor.author | Yi﹣Lin Chen | en |
dc.contributor.author | 陳奕琳 | zh_TW |
dc.date.accessioned | 2021-06-16T08:06:19Z | - |
dc.date.available | 2020-06-19 | |
dc.date.copyright | 2014-07-16 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-06-20 | |
dc.identifier.citation | 1. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. science, 293(5528), 269-271.
2. Boddien, A., and Junge, H. (2011). Catalysis: Acidic ideas for hydrogen storage. Nature Nanotechnology, 6(5), 265-266. 3. Cai, Q., Paulose, M., Varghese, O. K., and Grimes, C. A. (2005). The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. Journal of Materials Research, 20(1), 230-236. 4. Chen, Y., Wang, L., Lu, G. M., Yao, X., and Guo, L. (2011). Nanoparticles enwrapped with nanotubes: a unique architecture of CdS/titanate nanotubes for efficient photocatalytic hydrogen production from water. Journal of Materials Chemistry, 21(13), 5134-5141. 5. Cheng, W., Yu, T., Chao, K., and Lu, S. (2013). Cu2O-decorated CdS nanostructures for high efficiency visible light driven hydrogen production. International Journal of Hydrogen Energy, 38(23), 9665-9672. 6. Choi, W., Termin, A., and Hoffmann, M. R. (1994). The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry, 98(51), 13669-13679. 7. Chu, S. Z., Wada, K., Inoue, S., and Todoroki, S. (2003). Fabrication of oxide nanostructures on glass by aluminum anodization and sol–gel process. Surface and Coatings Technology, 169–170(0), 190-194. 8. ChulaKim, J., BokaLee, Y., HoonaHong, J., InaLee, J., WookaYang, J., InaLee, W., and HwiaHur, N. (2006). Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles. Chemical communications(48), 5024-5026. 9. Cui, W., Ma, S., Liu, L., Hu, J., and Liang, Y. (2012). CdS-sensitized K2Ti4O9 composite for photocatalytic hydrogen evolution under visible light irradiation. Journal of Molecular Catalysis A: Chemical, 359, 35-41. 10. Daskalaki, V. M., Antoniadou, M., Li Puma, G., Kondarides, D. I., and Lianos, P. (2010). Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environmental science & technology, 44(19), 7200-7205. 11. Dhanalakshmi, K., Latha, S., Anandan, S., and Maruthamuthu, P. (2001). Dye sensitized hydrogen evolution from water. International Journal of Hydrogen Energy, 26(7), 669-674. 12. Didier, R. (2007). Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications. Catal. Today, 122, 20-26. 13. Dong, F., Guo, S., Wang, H., Li, X., and Wu, Z. (2011). Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach. The Journal of Physical Chemistry C, 115(27), 13285-13292. 14. Fujishima, A. (1972). Electrochemical photolysis of water at a semiconductor electrode. nature, 238, 37-38. 15. Gong, D., Grimes, C., Varghese, O. K., Hu, W., Singh, R., Chen, Z., and Dickey, E. C. (2001). Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research, 16(12), 3331-3334. 16. Gratzel, M. (2001). Photoelectrochemical cells. nature, 414(6861), 338-344. 17. Hay, J. X. W., Wu, T. Y., and Juan, J. C. (2013). Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: Overview, economics, and future prospects of hydrogen usage. Biofuels, Bioproducts and Biorefining, 7(3), 334-352. 18. Henglein, A. (1982). Photo‐Degradation and fluorescence of colloidal‐cadmium sulfide in aqueous solution. Berichte der Bunsengesellschaft fur physikalische Chemie, 86(4), 301-305. 19. Herrmann, J. M. (1999). Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53(1), 115-129. 20. Hu, C., Ting, S. W., Tsui, J., and Chan, K. Y. (2012). Formic acid dehydrogenation over PtRuBiOxC catalyst for generation of CO-free hydrogen in a continuous-flow reactor. International Journal of Hydrogen Energy, 37(8), 6372-6380. 21. Jang, J. S., Hwang, D. W., and Lee, J. S. (2007). CdS-AgGaS2 photocatalytic diodes for hydrogen production from aqueous Na2S/Na2SO3 electrolyte solution under visible light (λ≥ 420 nm). Catalysis Today, 120(2), 174-181. 22. Jang, J. S., Li, W., Oh, S. H., and Lee, J. S. (2006). Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light. Chemical Physics Letters, 425(4), 278-282. 23. Kapdan, I. K., and Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38(5), 569-582. 24. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K. (1998). Formation of Titanium Oxide Nanotube. Langmuir, 14(12), 3160-3163. 25. Keller, V., and Garin, F. (2003). Photocatalytic behavior of a new composite ternary system: WO3/SiC-TiO2. Effect of the coupling of semiconductors and oxides in photocatalytic oxidation of methylethylketone in the gas phase. Catalysis Communications, 4(8), 377-383. 26. Kim, H., Tak, Y., Senthil, K., Joo, J., Jeon, S., and Yong, K. (2009). Novel heterostructure of CdS nanoparticle/WO3 nanowhisker: Synthesis and photocatalytic properties. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 27(5), 2182-2186. 27. Kim, H. I., Kim, J., Kim, W., and Choi, W. (2011). Enhanced photocatalytic and photoelectrochemical activity in the ternary hybrid of CdS/TiO2/WO3 through the cascadal electron transfer. The Journal of Physical Chemistry C, 115(19), 9797-9805. 28. Lee, Y. L., and Lo, Y. S. (2009). Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe. Advanced Functional Materials, 19(4), 604-609. 29. Li, C., Yuan, J., Han, B., Jiang, L., and Shangguan, W. (2010). TiO2 nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation. International Journal of Hydrogen Energy, 35(13), 7073-7079. 30. Li, Q., and Lu, G. (2007). Visible-light driven photocatalytic hydrogen generation on Eosin Y-sensitized Pt-loaded nanotube Na2Ti2O4(OH)2. Journal of Molecular Catalysis A: Chemical, 266(1–2), 75-79. 31. Luo, H., Takata, T., Lee, Y., Zhao, J., Domen, K., and Yan, Y. (2004). Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chemistry of Materials, 16(5), 846-849. 32. Maeda, K., and Domen, K. (2007). New non-oxide photocatalysts designed for overall water splitting under visible light. The Journal of Physical Chemistry C, 111(22), 7851-7861. 33. Maeda, K., Higashi, M., Lu, D., Abe, R., and Domen, K. (2010). Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. Journal of the American Chemical Society, 132(16), 5858-5868. 34. Momirlan, M., and Veziroglu, T. N. (2005). The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. International Journal of Hydrogen Energy, 30(7), 795-802. 35. Mor, G., Varghese, O. K., Paulose, M., Mukherjee, N., and Grimes, C. (2003). Fabrication of tapered, conical-shaped titania nanotubes. Journal of Materials Research, 18(11), 2588-2593. 36. Navarro, R., Del Valle, F., and Fierro, J. (2008). Photocatalytic hydrogen evolution from CdS–ZnO–CdO systems under visible light irradiation: Effect of thermal treatment and presence of Pt and Ru cocatalysts. International Journal of Hydrogen Energy, 33(16), 4265-4273. 37. Ni, M., Leung, M. K., Leung, D. Y., and Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 11(3), 401-425. 38. Ou, H. H., and Lo, S. L. (2007a). Effect of Pt/Pd-doped TiO2 on the photocatalytic degradation of trichloroethylene. Journal of Molecular Catalysis A: Chemical, 275(1), 200-205. 39. Ou, H. H., and Lo, S. L. (2007b). Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and Purification Technology, 58(1), 179-191. 40. Ou, H. H., Lo, S. L., and Liou, Y. H. (2007). Microwave-induced titanate nanotubes and the corresponding behaviour after thermal treatment. nanotechnology, 18(17), 175702. 41. Parayil, S. K., Baltrusaitis, J., Wu, C. M., and Koodali, R. T. (2013). Synthesis and characterization of ligand stabilized CdS-Trititanate composite materials for visible light-induced photocatalytic water splitting. International Journal of Hydrogen Energy, 38(6), 2656-2669. 42. Peng, S., Li, Y., Jiang, F., Lu, G., and Li, S. (2004). Effect of Be2+ doping TiO2 on its photocatalytic activity. Chemical Physics Letters, 398(1–3), 235-239. 43. Peng, Y. P., Lo, S. L., Ou, H. H., and Lai, S. W. (2010). Microwave-assisted hydrothermal synthesis of N-doped titanate nanotubes for visible-light-responsive photocatalysis. Journal of Hazardous Materials, 183(1), 754-758. 44. QingaLu, G. (2009). Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chemical communications(23), 3452-3454. 45. Rane, K., Mhalsiker, R., Yin, S., Sato, T., Cho, K., Dunbar, E., and Biswas, P. (2006). Visible light-sensitive yellow TiO2−xNx and Fe–N co-doped Ti1−yFeyO2−xNx anatase photocatalysts. Journal of Solid State Chemistry, 179(10), 3033-3044. 46. Rengifo-Herrera, J., and Pulgarin, C. (2010). Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. Solar Energy, 84(1), 37-43. 47. Rice, C., Ha, S., Masel, R., and Wieckowski, A. (2003). Catalysts for direct formic acid fuel cells. Journal of Power Sources, 115(2), 229-235. 48. Shi, J.W., Yan, X., Cui, H. J., Zong, X., Fu, M. L., Chen, S., and Wang, L. (2012). Low-temperature synthesis of CdS/TiO2 composite photocatalysts: Influence of synthetic procedure on photocatalytic activity under visible light. Journal of Molecular Catalysis A: Chemical, 356, 53-60. 49. Su, C., Tseng, C. M., Chen, L. F., You, B. H., Hsu, B. C., and Chen, S. S. (2006). Sol–hydrothermal preparation and photocatalysis of titanium dioxide. Thin Solid Films, 498(1–2), 259-265. 50. Sugano, Y., Shiraishi, Y., Tsukamoto, D., Ichikawa, S., Tanaka, S., and Hirai, T. (2013). Supported Au–Cu Bimetallic Alloy Nanoparticles: An Aerobic Oxidation Catalyst with Regenerable Activity by Visible‐Light Irradiation. Angewandte Chemie, 125(20), 5403-5407. 51. Tedsree, K., Li, T., Jones, S., Chan, C. W. A., Yu, K. M. K., Bagot, P. A., Tsang, S. C. E. (2011). Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. Nature Nanotechnology, 6(5), 302-307. 52. Wang, X., Liu, G., Chen, Z.-G., Li, F., Lu, G. Q., and Cheng, H.-M. (2010). Highly efficient H2 evolution over ZnO-ZnS-CdS heterostructures from an aqueous solution containing SO32-and S2-ions. Journal of Materials Research, 25(1), 39. 53. Wang, Y., Yang, J., Zhang, J., Liu, H., and Zhang, Z. (2005). Microwave-assisted preparation of titanate nanotubes. Chemistry Letters, 34(8), 1168-1169. 54. Wu, N. L., and Lee, M. S. (2004). Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy, 29(15), 1601-1605. 55. Wu, X., Jiang, Q. Z., Ma, Z. F., Fu, M., and Shangguan, W. F. (2005). Synthesis of titania nanotubes by microwave irradiation. Solid state communications, 136(9), 513-517. 56. Xiang, D., Zhu, Y., Cai, C., He, Z., Liu, Z., Yin, D., and Luo, J. (2011). A new simple synthesis of CdS nano-particles by composite-molten-salt method and their high photocatalytic degradation activity. Physica E: Low-dimensional Systems and Nanostructures, 44(3), 733-737. 57. Yan, M., Chen, F., Zhang, J., and Anpo, M. (2005). Preparation of controllable crystalline titania and study on the photocatalytic properties. The Journal of Physical Chemistry B, 109(18), 8673-8678. 58. Yang, X., Xiao, T., and Edwards, P. P. (2011). The use of products from CO2 photoreduction for improvement of hydrogen evolution in water splitting. International Journal of Hydrogen Energy, 36(11), 6546-6552. 59. Yang, Y., Li, X.J., Chen, J.T., and Wang, L.Y. (2004). Effect of doping mode on the photocatalytic activities of Mo/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 163(3), 517-522. 60. Yeh, H. M., Lo, S. L., Chen, M. J., and Chen, H. Y. (2014). Hydrogen production from formic acid solution by modified TiO2 and titanate nanotubes in a two-step system under visible light irradiation. Water Sci Technol, 69(8), 1676-1681. 61. Zhang, Y., Lv, F., Wu, T., Yu, L., Zhang, R., Shen, B., and Chu, P. K. (2011). F and Fe co-doped TiO2 with enhanced visible light photocatalytic activity. Journal of sol-gel science and technology, 59(2), 387-391. 62. Zhang, Y. J., and Zhang, L. (2009). Photocatalytic degradation of formic acid with simultaneous production of hydrogen over Pt and Ru-loaded CdS/Al-HMS photocatalysts. Desalination, 249(3), 1017-1021. 63. Zou, Z., Ye, J., Sayama, K., and Arakawa, H. (2001). Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. nature, 414(6864), 625-627. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58119 | - |
dc.description.abstract | 能源需求日益擴大的今日,開發環境友好的新能源成為人們關注的焦點。氫能源燃燒熱值高,燃燒唯一產物即為水,是極具潛力的替代能源。近年來,不少研究利用光催化分解水製氫。研發在可見光下具有高活性的光觸媒,將大大提升對光能的利用率,擴大其運用範圍。
本研究採用CdS,TiO2,WO3三種半導體,通過熱合成與物理結合方式構成三觸媒系統,藉助兩步反應,有效降低電子電洞對複合的機率,提高光催化效率。並進一步對系統進行優化,如: 探究三種半導體的較佳比例,使其發揮較好的整體效能;用微波法合成氧化鈦奈米管,擴大觸媒接觸面積;用金屬批覆法修飾WO3,延長電子電洞對分開的週期。另外,甲酸作為光催化系統的犧牲劑,能夠有效的儲存氫氣並擔任電洞捕捉劑,延緩電子、電洞對再結合。 常溫下以150 W可見光燈源 (350≤λ≤800)催化20 vol%甲酸溶液。TNTs作為載體,相較於TiO2,能批覆較高比例之CdS,28 wt%為較佳之批覆比例。0.2 g 28 wt% CdS/TNTs在可見光下的產氫效率為179.35 μmol.h-1,而單純CdS與TNTs的產氫效率僅分別為69.79 μmol.h-1與0.35 μmol.h-1。引入WO3後的三觸媒系統,得益於二步反應,產氫效率提升到212.68 μmol.h-1。其中,CdS/TNTs與WO3各0.2 g為較佳之觸媒比例。本研究之最佳產氫結果為428.43 μmol.h-1,使用之觸媒為0.2 g 28 wt% CdS/TNTs與0.2 g 0.1 wt% Pt/WO3。在批覆鉑金屬後,產氫效率提高了一倍。 | zh_TW |
dc.description.abstract | Hydrogen gas is one of the most promising renewable energy nowadays as it has high energy yield and zero carbon emission. An attractive and effective method for converting solar energy to hydrogen energy is photocatalytic water splitting over semiconductors. This study investigated the photocatalytic conversion of formic acid solution to hydrogen using visible light (150 W, 350 < λ < 800 nm). The resultant materials were well characterized by high-resolution transmission electron microscope (HR-TEM), X-ray diffraction (XRD), scanning electron microscopy/energy dispersive X-ray (SEM/EDX), and UV-Vis spectra.
The study aimed at utilizing organic sacrificial agents in water, modeled by formic acid, in combination with visible light driven photocatalysts to produce hydrogen with high efficiencies. CdS/TiO2-WO3 ternary hybrid was used as photoactive composite. Microwave induced titanate nanotubes (TNTs) were used as the main carrier to incorporate with CdS for the reason that it holds higher surface area than TiO2. The optimized CdS content is 28 wt% and the production rate of 28 wt%CdS/TNTs achieved 179.35 μmol.h-1. Furthermore, WO3 was physically mixed with the optimized CdS/TNTs binary hybrid. The enhanced photocatalytic activity could be attributed to the electron transfer from CdS to TiO2 to WO3 through the interfacial potential gradient in the ternary hybrid conduction bands, which effectively reduces the chance of charge recombination compared with the binary hybrids. The hydrogen production rate reached 212.68 μmol.h-1. Coating of platinum metal onto the WO3 could further promote the reaction. Results showed that 0.2 g 0.1 wt%Pt/WO3 + 0.2 g 28 wt%CdS/TNTs had the best hydrogen production rate of 428.43 μmol.h-1 , which was more than double compared with CdS/TNTs+ WO3. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:06:19Z (GMT). No. of bitstreams: 1 ntu-103-R01541135-1.pdf: 4646991 bytes, checksum: f5c1dc73bf1c7fb134b032b60d4b7f6b (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 iii 中文摘要 v 英文摘要 vii 目錄 ix 圖目錄 xii 表目錄 xiv 第一章 緒論 1 1.1前言 1 1.2研究目的 2 1.3研究內容 2 第二章 文獻回顧 3 2.1光催化水分解原理 3 2.2光催化材料 5 2.2.1 二氧化鈦 5 2.2.2氧化鈦奈米管 7 2.2.3二氧化鈦的改質 9 2.3犧牲劑 15 2.3.1甲酸的物化性質 15 2.3.2甲酸溶液產氫理論 16 2.4三觸媒催化水分解系統 18 第三章 材料與方法 21 3.1所用試劑 21 3.2所用設備 21 3.3材料製備 24 3.3.1微波法製備氧化鈦奈米管 24 3.3.2水熱法製備CdS/TiO2, CdS/ TNTs 24 3.3.3無電電鍍法製備Pt/WO3 25 3.4光催化材料物化分析 26 3.5光催化材料製氫活性評價 29 3.5.1氫氣發生裝置 29 3.5.2產物檢測裝置 30 3.6實驗設計 31 第四章 結果與討論 33 4.1光觸媒材料特性鑑定 33 4.1.1掃描式電子顯微鏡觀察 (SEM) 33 4.1.2穿透式電子顯微鏡觀察 (TEM) 37 4.1.3 X射線能量分散光譜儀 (EDS) 39 4.1.4紫外光-可見光光譜儀 (UV-Vis) 42 4.1.5廣角X光粉末繞射儀 (XRD) 45 4.2光觸媒材料產氫性能分析 47 4.2.1空白實驗 47 4.2.2單觸媒系統 49 4.2.3雙觸媒系統 50 4.2.4鉑金屬批覆效應 55 4.3 甲酸的降解反應 57 4.4 光催化反應機制 63 4.5 光催化反應結果分析 67 第五章 結論與建議 71 5.1 結論 71 5.2 建議 72 第六章 參考文獻 73 附錄 81 | |
dc.language.iso | zh-TW | |
dc.title | CdS/TiO2-WO3三觸媒系統之可見光的催化產氫研究 | zh_TW |
dc.title | Photocatalytic Hydrogen Production of the CdS/TiO2-WO3 Ternary Hybrid under Visible Light Irradiation | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 闕蓓德(Pei-Te Chiueh),劉雅瑄(Ya﹣Hsuan Liou) | |
dc.subject.keyword | 氫氣,奈米鈦管,硫化鎘,鉑,氧化鎢,三觸媒,甲酸, | zh_TW |
dc.subject.keyword | Hydrogen,Titanate nanotubes,Cadium sulfide,Tungsten trioxide,Platinum,Ternary hybrid,Formic acid, | en |
dc.relation.page | 90 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-06-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 4.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。