Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58117
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 王弘毅(Hurng-Yi Wang) | |
dc.contributor.author | I-Chun Chung | en |
dc.contributor.author | 鐘意淳 | zh_TW |
dc.date.accessioned | 2021-06-16T08:06:16Z | - |
dc.date.available | 2020-08-25 | |
dc.date.copyright | 2020-08-25 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-05 | |
dc.identifier.citation | 大地地理雜誌(The Earth Geographic Monthly)。大地地理文化科技事業股份有限公司。1998/4月號 #121。P.54。 巫奇勳、謝佳宏。2015。觀霧山椒魚溫度生理耐受性測量及族群遺傳多樣性分析。雪霸國家公園管理處委託辦理計畫成果報告。 巫奇勳、謝佳宏。2016。觀霧山椒魚偏好環境選擇及潛在分布推估。雪霸國家公園管理處委託辦理計畫期末報告書。 賴俊祥。2008。臺灣產山椒魚的分類與阿里山山椒魚族群生態與族群遺傳研究。國立臺灣師範大學生命科學研究所博士論文。 Allio, R., Donega, S., Galtier, N., Nabholz, B. (2017). Large Variation in the Ratio of Mitochondrial to Nuclear Mutation Rate across Animals: Implications for Genetic Diversity and the Use of Mitochondrial DNA as a Molecular Marker. Molecular Biology and Evolution, 34(11): 2762–2772. Alford, R. A., Richards, S. J. (1999). Global Amphibian Declines: A Problem in Applied Ecology. Annual Review of Ecology and Systematics, 30(1): 133-165. Anil Raj, Matthew Stephens, and Jonathan K. Pritchard. (2014). fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets. Genetics, 197: 573-589. Bazin, E. (2006). Population Size Does Not Influence Mitochondrial Genetic Diversity in Animals. Science, 312(5773): 570-572. Blaustein, A. R., Wake, D. B., Sousa, W. P. (1994). Amphibian Declines: Judging Stability, Persistence, and Susceptibility of Populations to Local and Global Extinctions. Conservation Biology, 8(1): 60-71. Blacket, M.J., C. Robin, R.T. Good, S.F. Lee and A.D. Miller. (2011). Universal primers for fluorescent labelling of PCR Fragments-an efficient and cost-effective approach to genotyping by flourescence. Molecular Ecology Resources, 12: 456-463. Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., … Drummond, A. J. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Computational Biology, 15(4): e1006650. Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., Cresko, W. A. (2013). Stacks: an analysis tool set for population genomics. Molecular Ecology, 22(11): 3124-3140. Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., Postlethwait, J. H. (2011). Stacks: building and genotyping loci de novo from short-read sequences. Genes, Genomes, Genetics, 1(3): 171-182. Daniel Barry and J. A. Hartigan. (1987). Statistical Analysis of Hominoid Molecular Evolution. Statistical Science, 2 : 209-210. Després, L. (2019). One, two or more species? Mitonuclear discordance and species delimitation. Molecular Ecology. doi:10.1111/mec.15211 Drummond, A.J., M. A. Suchard, D. Xie, and A. Rambaut. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969-1973. Dunn ER. (1923). The salamander of the family Hynobiidae. Proc. American Acard. Arts Sci. 58: 455-523. Earl, D. A. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation genetics resources, 4(2): 359-361. Excoffier, L. , Peter E. Smouse Joseph M. Quattro. (1992). Analysis of Molecular Variance Inferred From Metric Distances Among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics, 131(2):479-91. Excoffier, L. Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. Genetics, 10(3): 564-567. Fay, J. C., Wu, C.-I. (2000). Hitchhiking under positive Darwinian selection. Genetics, 155(3): 1450-1413. Feder, J. L., Egan, S. P., Nosil, P. (2012). The genomics of speciation-with-gene-flow. Trends in Genetics, 28(7): 342-350. Felsenstein, J., Churchill, G. A. (1996). A Hidden Markov Model approach to variation among sites in rate of evolution. Molecular Biology and Evolution, 13(1): 93-104. Fu, Y.-X., Li, W.-H. (1993). Statistcal tests of neutrality of mutations. Genetics, 133(3): 693-709. Goudet, J. (1995). FSTAT (Version 2.9.3.2): A computer program to calculate F-statistics. J. Hered. 86(6): 485-486. Green, D. E. (2001). Anesthesia of amphibians in the field. USGS Standard Operating Procedure. ARMI SOP. Guo, S. W., and Thompson, E. A. (1992). Performing the Exact Test of Hardy-Weinberg Proportion for Multiple Alleles. Biometrics, 48(2): 361-372. Harris, Alexandre M. and DeGiorgio, Michael. (2016). Admixture and ancestry inference from ancient and modern samples through measures of population genetic drift. Human Biology Open Access Pre-Prints. 114. Hebert, P. D., Ratnasingham, S., deWaard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings. Biological sciences, 270 Suppl 1, S96-S99. Huelsenbeck, J. P., and F. Ronquist. (2001). MRBAYES:Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754-755. Jo, B., Choi, S. S. (2015). Introns: The Functional Benefits of Introns in Genomes. Genomics Informatics, 13(4): 112. Jukes, T. H., Cantor, C. R. (1969). Evolution of Protein Molecules. Mammalian Protein Metabolism, 21-132. Kimura Motoo. (1980). A Simple Method for Estimating Evolutionary Rates of Base Substitutions Through Comparative Studies of Nucleotide Sequences. Journal of Molecular Evolution, 16: 111-120. Kimura Motoo. (1983). The Neutral Theory of Molecular Evolution. 3: 34-45. Kumar, S., Stecher, G., Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7): 1870-1874. Li, J., Fu, C., and Lei, G. (2011). Biogeographical Consequences of Cenozoic Tectonic Events within East Asian Margins: A Case Study of Hynobius Biogeography. PLoS ONE, 6(6): e21506. Librado P. and J. Rozas. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 1451-1452. Lue, K. and K. Chuang. (1992). The discovery of metamorphosed juveniles of formosan salamander (Hynobius formosanus) in Yu-Shan national park. Bulletin Institute Zoology. Academia Sinica, 31: 312-316. Lue, K.Y. and J.S. Lai. (2008). Two new Hynobius (Caudata:Hynobiidae) salamanders from Tawan. Herpetologica, 6: 63-80. Maki, M. (1922). Notes on the salamanders found in the island of Formosa. Zoological Magazine Tokyo 34:635-639. Moritz, C., Schneider, C. J., Wake, D. B. (1992). Evolutionary Relationships Within the Ensatina Eschscholtzii Complex Confirm the Ring Species Interpretation. Systematic Biology, 41(3): 273-291. Nei, M., Tajima, F., Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution, 19(2): 153-170. Nosil, P., Funk, D. J., Ortiz-Barrientos, D. (2009). Divergent selection and heterogeneous genomic divergence. Molecular Ecology, 18(3): 375-402. Paris, J. R., Stevens, J. R., Catchen, J. M. (2017). Lost in parameter space: a road map for stacks. Methods in Ecology Evolution, 8(10): 1360-1373. Peter J. Lockhart, Michael A. Steel, Michael D. Hendy, and David Penny. (1994). Recovering evolutionary trees under a more realistic model of sequence evolution. Molecular Biology and Evolution, 11(4): 605-612. Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., Hoekstra, H. E. (2012). Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS ONE, 7(5): e37135. Pickrell, J. K., Pritchard, J. K. (2012). Inference of Population Splits and Mixtures from Genome-Wide Allele Frequency Data. PLoS Genetics, 8(11): e1002967. Pritchard J. K., Stephens, M., Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2): 945-959. Rannala, B., Mountain, J. L. (1997). Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences, 94(17): 9197-9201. Rochette, N. C., Catchen, J. M. (2017). Deriving genotypes from RAD-seq short-read data using Stacks. Nature Protocols, 12(12): 2640-2659. Rozas, J., S. E., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado P., Ramos-Onsins S.E., Sánchez-Gracia A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34(12): 3299-3302. Scott Freeman Jon C. Herron. (1994). Evolutionary Analysis 3rd edition. Pearson Education. ISBN 0-13-101859-0. Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3): 585-595. Tajima, F. (1996). The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics, 143(3): 1457-1465. Templeton, A. R., and C. F. Sing. (1993). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analysis with cladogram uncertainty and recombination. Genetics, 134: 659-669. Thompson, J. D., Gibson, T. J., Higgins, D. G. (2002). Multiple Sequence Alignment Using ClustalW and ClustalX. Current Protocols in Bioinformatics, (1): 2.3.1-2.3.22. Toews, D. P. L., Brelsford, A. (2012). The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology, 21(16): 3907-3930. Weisrock, D.W., J.R. Macey, I.H. Ugurtas, A. Larson, and T. J. Papenfuss. (2001). Molecular phylogenetics and historical biogeography among salamandrids of the ‘‘true’’ salamander clade: rapid branching of numerous highly divergent lineages in Mertensiella luschani associated with the rise of Anatolia. Molecular Phylogenetic Evolution, 18:434-448. Wright Sewall. (1978). Evolution the Genetics of Populations (4) Zhao E Hu Q, Jiang Y, Yang Y. (1988). Studies on Chinese Salamanders. Society for the Study of Amphibians and Reptiles, Oxford Ohio, U. S. A. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58117 | - |
dc.description.abstract | 觀霧山椒魚(Hynobius fuca)為臺灣產山椒魚中,海拔分佈最低的物種,主要分佈於雪山山脈的西北部地區,因全球暖化以及棲地開發等壓力,使觀霧山椒魚生存面臨危機。本研究藉由遺傳分析推估觀霧山椒魚在過去歷史中族群變動情形,進而了解其分類地位及分化歷史,利於未來保育工作上的實施。本研究使用觀霧遊憩區、北插天山、拉拉山與棲蘭山的觀霧山椒魚樣本。應用粒線體序列、核基因序列及簡化基因組序列(ddRADseq)進行族群遺傳分析。首先,利用次世代定序所得轉錄體(transcriptome)序列開發出2類型核基因標記,第一種為微衛星(microsatellites):具有演化快速且易累積變異,利於探討族群遺傳結構;第二種為核基因內含子序列(nuclear gene introns):因無功能上的限制,所以可累積更多的突變。另外,又再應用次世代定序技術獲得ddRADseq並以SNPs來進行分析。粒線體細胞色素b (mitochondrial cytochrome b, cyt-b)分析結果,把觀霧山椒魚分成3大系群,分別為觀霧系群、北橫系群與棲蘭山系群,其中觀霧群與北橫群較為接近,而棲蘭山群為獨立的支系。而觀霧地區與棲蘭山族群間遺傳距離為0.0442–0.0503,接近種間遺傳差異(0.0364–0.750)。觀霧遊憩區4個採樣點間無明顯分化,可視為一個族群。微衛星演化樹也可將觀霧山椒魚分成3大支系,其中北橫群與棲蘭山群較為接近。內含子演化樹顯示觀霧山椒魚在各個族群間無顯著遺傳分化,視為一大族群。ddRADseq分析所得演化樹與微衛星演化樹大致相同。親緣關係樹分群結果在粒線體與核基因標記有不一致的現象,其原因可能是演化速度為粒線體最快,微衛星次之,核基因序列最慢,故猜測觀霧山椒魚族群正處於不完全譜系排序(Incomplete lineage sorting)的狀態。所以棲蘭山族群雖未是一個獨立種,但為保留觀霧山椒魚的遺傳多樣性,應對該棲蘭山地區進行更全面性的調查以達保育目的。 | zh_TW |
dc.description.abstract | Hynobius is a member of Hynobiidae, Caudata, Amphibia. Taiwan is the southernmost habitat of this genus. Because of global warming and excess of habitat utilization, Hynobius fuca are critically endangered. Through genetic study, the author tried to investigate genetic variation, construct phylogeography, and estimate population demography of H. fuca. It aims to provide the reference for conservation design. Samples of H. fuca were collected from Guanwu, Lalashan and North Chatianshan (combined as North-cross group), and Qilanshan. MtDNA was more often utilized to proceed the genetic variance analysis in the past studies; however, it only represents partial history of population differentiation. To offer overall genetic information, it is able to be reinforced to adopt the nuclear markers in the meantime. Based on transcriptome data, I developed two genetic markers, microsatellites and nuclear introns. Both of them are less constrained and are used as neutral markers. In addition, SNPs (Single Nucleotide Polymorphism) obtained from ddRADseq (double digest Restriction Associated DNA) were used for analysis. The result of mitochondrial cytochrome b subunit I analysis showed that samples from four spots around Guanwu area have limited difference and can be considered as a single population. The genetic distance between Guanwu and Qilanshan is 0.0452–0.051 which is close to the differences between species ranging is 0.0361–0.727. H. fuca can be divided into three groups Guanwu, North-Cross, and Qilanshan groups. Guanwu and North-Cross groups are close to each other with Qilanshan group as their sister group. The phylogenetic tree of microsatellite can be divided into three monophyletic groups as well. North-Cross and Qilanshan groups are close to each other with Guanwu group being their sister group. The nuclear introns show no sign of population differentiation among groups. From the phylogenetic tree of ddRADseq is similar to that of microsatellites. In consistent results derived from different markers may suggest that H. fuca are experiencing the stage of incomplete lineage sorting among different populations. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:06:16Z (GMT). No. of bitstreams: 1 U0001-1507202011455800.pdf: 3402307 bytes, checksum: 85168e1c5f566d5aa7333a3422d1ea3c (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 i 中文摘要 ii ABSTRACT iii 目錄 v 表目錄 viii 圖目錄 x 第壹章 前言 1 第貳章 材料與方法 4 1. 研究材料 4 1.1 樣本採集 4 2. 粒線體cyt-b基因分子實驗 4 2.1 DNA萃取 4 2.2 粒線體cyt-b基因增幅與定序 5 2.3 粒線體cyt-b基因分析 6 3. 微衛星基因座分子實驗 9 3.1 RNA萃取與次世代定序 9 3.2 微衛星基因座開發 9 3.3 微衛星基因座實驗與資料判讀 10 3.4 微衛星基因座資料分析 10 4. 核基因內含子分子實驗 11 4.1 設計核基因內含子 11 4.2 核基因內含子實驗與資料判讀 12 4.3 核基因內含子資料分析 12 5. 簡化基因組(ddRADseq)分子實驗 13 5.1 樣本備製、建庫與定序 13 5.2 簡化基因組資料分析 14 第參章 結果 17 1. 粒線體cyt-b基因分析 17 1.1 親緣關係樹重建與親緣地理分析 17 1.2 遺傳多樣性分析與中性檢測 17 1.3 遺傳結構與AMOVA分析 18 1.4 貝氏天際線與最近共祖時間 19 2. 微衛星基因座分析 20 2.1 資料整理與遺傳多樣性分析 20 2.2 親緣關係樹重建與遺傳距離 20 2.3 遺傳結構與AMOVA分析 21 3. 核基因內含子分析 22 3.1 序列排序與比對 22 3.2 親緣關係樹重建與遺傳距離 22 3.3 遺傳多樣性分析與中性檢測 23 3.4 遺傳結構與AMOVA分析 23 3.5 貝氏天際線 24 4. ddRADseq分析 24 4.1 資料庫整理與遺傳多樣性 24 4.2 親緣關係樹重建與遺傳分化指數 25 4.3 遺傳結構 26 第肆章 討論 27 1. 親緣關係重建 27 2. 遺傳結構 27 3. 族群變動史 29 第伍章 結論 31 第陸章 參考文獻 32 | |
dc.language.iso | zh-TW | |
dc.title | 以粒線體、微衛星與核基因序列探討觀霧山椒魚的族群分化 | zh_TW |
dc.title | Population differentiation of Hynobius fuca based on mtDNA, microsatellites and nuclear sequence markers | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 謝佳宏(Chia-Hung Hsieh) | |
dc.contributor.oralexamcommittee | 丁照棣(Chau-Ti Ting),林思民(Si-Min Lin),巫奇勳(Chi-Shiun Wu) | |
dc.subject.keyword | 族群遺傳,粒線體基因,微衛星基因座,核基因內含子,簡化基因組, | zh_TW |
dc.subject.keyword | population genetics,mtDNA,microsatellites,nuclear gene,ddRADseq, | en |
dc.relation.page | 69 | |
dc.identifier.doi | 10.6342/NTU202001532 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-05 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
Appears in Collections: | 生態學與演化生物學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
U0001-1507202011455800.pdf Restricted Access | 3.32 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.