請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58104完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳信志 | |
| dc.contributor.author | Yi-Jung Kao | en |
| dc.contributor.author | 高藝榕 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:06:02Z | - |
| dc.date.available | 2016-07-01 | |
| dc.date.copyright | 2014-08-11 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-06-23 | |
| dc.identifier.citation | Abdel Aziz, M. T., H. M. Atta, S. Mahfouz, H. H. Fouad, N. K. Roshdy, H. H. Ahmed, L. A. Rashed, D. Sabry, A. A Hassouna, and N. M. Hasan. 2007. Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clinical Biochemistry 40: 893-899.
Arthur, M. J. 2000. Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. American Journal of Physiology. Gastrointestinal and liver physiology 279: G245-249. Baksh, D., R. Yao, and R. S. Tuan. 2007. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells (Dayton, Ohio) 25: 1384-1392. Banas, A., T. Teratani, Y. Yamamoto, M. Tokuhara, F. Takeshita, G. Quinn, H. Okochi, and T. Ochiya. 2007. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology (Baltimore, Md.) 46: 219-228. Bataller, R., and D. A. Brenner. 2005. Liver fibrosis. The Journal of Clinical Investigation 115: 209-218. Bianco, P., M. Riminucci, S. Gronthos, and P. G. Robey. 2001. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19: 180-192. Bjorklund, L. M., R. Sanchez-Pernaute, S. Chung, T. Andersson, I. Y. Chen, K. S McNaught,. A. L. Brownell, B. G. Jenkins, C. Wahlestedt, K. S. Kim, and O. Isacson. 2002. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proceedings of the National Academy of Sciences of the United States of America 99: 2344-2349. Cameron, G. R., and W. A. E. Karunaratne. 1936. Carbon tetrachloride cirrhosis in relation to liver regeneration. The Journal of Pathology and Bacteriology 42: 1-21. Cananzi, M., A. Atala, and P. De Coppi. 2009. Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reproductive Biomedicine Online 18 Suppl 1: 17-27. Caplan, A. I., and J. E. Dennis. 2006. Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry 98: 1076-1084. Chamberlain, G., J. Fox, B. Ashton, and J. Middleton. 2007. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25: 2739-2749. Cheng, N. C., S. Y. Chen, J. R. Li, and T. H. Young. 2013. Short-term spheroid formation enhances the regenerative capacity of adipose-derived stem cells by promoting stemness, angiogenesis, and chemotaxis. Stem Cells Translational Medicine 2: 584-594. Cho, K. A., G. W. Lim, S. Y. Joo, S. Y. Woo, J. Y. Seoh, S. J. Cho, H. S. Han, and K. H. Ryu. 2011. Transplantation of bone marrow cells reduces CCl4 -induced liver fibrosis in mice. Liver International : Official Journal of the International Association for the Study of the Liver 31: 932-939. Crisan, M., S. Yap, L. Casteilla, C. W. Chen, M. Corselli, T. S. Park, G. Andriolo, B. Sun, B. Zheng, L. Zhang, C. Norotte, P. N. Teng, J. Traas, R. Schugar, B. M. Deasy, S. Badylak, H. J. Buhring, J. P. Giacobino, L. Lazzari, J. Huard, and B. Peault. 2008. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3: 301-313. De Coppi, P., G., Jr. Bartsch, M. M. Siddiqui, T. Xu, C. C. Santos, L. Perin, G. Mostoslavsky, A. C. Serre, E. Y. Snyder, J. J. Yoo, M. E. Furth, S. Soker, and A. Atala. 2007. Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology 25: 100-106. Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, Dj Prockop, and E. Horwitz. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 8: 315-317. Dor, Y., J. Brown, O. I. Martinez, and D. A. Melton. 2004. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429: 41-46. Eirin, A., X. Y. Zhu, J. D. Krier, H. Tang, K. L. J. P. Grande, Jordan, A. Lerman, S. C. Textor, and L. O. Lerman. 2012. Adipose tissue-derived mesenchymal stem cells improve revascularization outcomes to restore renal function in swine atherosclerotic renal artery stenosis. Stem Cells (Dayton, Ohio) 30: 1030-1041. Evans, M. J., and M. H. Kaufman. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154-156. Friedman, S. L. 2003. Liver fibrosis -- from bench to bedside. Journal of Hepatology 38 Suppl 1: S38-53. Friedman, S. L. 2010. Evolving challenges in hepatic fibrosis. Nature Reviews. Gastroenterology & Hepatology 7: 425-436. Fukuchi, Y., H. Nakajima, D. Sugiyama, I. Hirose, T. Kitamura, and K. Tsuji. 2004. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells (Dayton, Ohio) 22: 649-658. Gressner, A. M., C. F. Gao, and O. A. Gressner. 2009. Non-invasive biomarkers for monitoring the fibrogenic process in liver: a short survey. World Journal of Gastroenterology : WJG 15: 2433-2440. Guillot, P. V., C. Gotherstrom, J. Chan, H. Kurata, and N. M. Fisk. 2007. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells (Dayton, Ohio) 25: 646-654. Hernandez-Gea, V., and S. L. Friedman. 2011. Pathogenesis of liver fibrosis. Annual Review of Pathology 6: 425-456. Herrmann, R. P., and M. J. Sturm. 2014. Adult human mesenchymal stromal cells and the treatment of graft versus host disease. Stem Cells and Cloning : Advances and Applications 7: 45-52. Huang, G. S., L. G. Dai, B. L. Yen, and S. H. Hsu. 2011. Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials 32: 6929-6945. Huang, G. T., S. Gronthos, and S. Shi. 2009. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Journal of Dental Rresearch 88: 792-806. In't Anker, P., S. Scherjon, and C. Kleijburg-van der Keur. 2004. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic application. Blood. Iwamuro, M., T. Komaki, Y. Kubota, M. Seita, H. Kawamoto, T. Yuasa, J. M. Shahid, R. A. Hassan, W. A. Hassan, S. Nakaji, Y. Nishikawa, E. Kondo, K. Yamamoto, I. J. Fox, and N. Kobayashi. 2010. Hepatic differentiation of mouse iPS cells in vitro. Cell Transplantation 19: 841-847. Joo, S., I. K. Ko, A. Atala, J. J. Yoo, and S. J. Lee. 2012. Amniotic fluid-derived stem cells in regenerative medicine research. Archives of Pharmacal Research 35: 271-280. Kagami, H., H. Agata, and A. Tojo. 2011. Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation. The International Journal of Biochemistry & Cell Biology 43: 286-289. Kamiya, A., T. Kinoshita, and A. Miyajima. 2001. Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways. FEBS Letters 492: 90-94. Kim, K., K. Ohashi, R. Utoh, K. Kano, and T. Okano. 2012. Preserved liver-specific functions of hepatocytes in 3D co-culture with endothelial cell sheets. Biomaterials 33: 1406-1413. Koc, O. N., S. L. Gerson, B. W. Cooper, S. M. Dyhouse, S. E. Haynesworth, A. I. Caplan, and H. M. Lazarus. 2000. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology 18: 307-316. Lee, K. D., T. K. Kuo, J. Whang-Peng, Y. F. Chung, C. T. Lin, S. H. Chou, J. R. Chen, Y. P. Chen, and O. K. Lee. 2004. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40: 1275-1284. Lee, R. H., M. J. Seo, R. L. Rege r, J. L. Spees, A. A. Pulin, S. D. Olson, and D. J. Prockop. 2006. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proceedings of the National Academy of Sciences of the United States of America 103: 17438-17443. Liu, H., D. Q. Liu, B. W Li,. L. D. Guan, Z. F. Yan, Y. L. Li, X. T. Pei, W. Yue, M. Wang, Y. P. Lu, H. M. Peng, and Y. Lv. 2011. Human amniotic fluid-derived stem cells can differentiate into hepatocyte-like cells in vitro and in vivo. In vitro cellular & developmental biology. Animal 47: 601-608. Lu, T., C. Yang, H. Sun, J. Lv, F. Zhang, and X. J. Dong. 2014. FGF4 and HGF promote differentiation of mouse bone marrow mesenchymal stem cells into hepatocytes via the MAPK pathway. Genetics and Molecular Research : GMR 13: 415-424. Martin-Rendon, E., D. Sweeney, F. Lu, J. Girdlestone, C. Navarrete, and S. M. Watt. 2008. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sanguinis 95: 137-148. Meng, Q., A. Haque, B. Hexig, and T. Akaike. 2012. The differentiation and isolation of mouse embryonic stem cells toward hepatocytes using galactose-carrying substrata. Biomaterials 33: 1414-1427. Moorefield, E. C., E. E. McKee, L. Solchaga, G. Orlando, J. J. Yoo, S. Walker, M. E. Furth, and C. E. Bishop. 2011. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PloS one 6: e26535. Moschidou, D., S. Mukherjee, M. P. Blundell, G. N. Jones, A. J. Atala, A. J. Thrasher, N. M. Fisk, P. De Coppi, and P. V. Guillot. 2013. Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with valproic acid acquire pluripotent characteristics. Stem Cells and Development 22: 444-458. Orlic, D., J. Kajstura, S. Chimenti, D. M Bodine, A. Leri, and P. Anversa. 2001. Bone marrow stem cells regenerate infarcted myocardium. Nature 410: 701-705. Pellicoro, A., P. Ramachandran, and J. P. Iredale. 2012. Reversibility of liver fibrosis. Fibrogenesis & Tissue Repair 5 Suppl. 1: S26. Pozzobon, M., M. Piccoli, and P. De Coppi. 2014. Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy. Cell and Tissue Banking. Prusa, A. R., and M. Hengstschlager. 2002. Amniotic fluid cells and human stem cell research: a new connection. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research 8: Ra253-257. Prusa, A. R., E. Marton, M. Rosner, G. Bernaschek, and M. Hengstschlager. 2003. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Human Reproduction (Oxford, England) 18: 1489-1493. Puche, J. E., Y. Saiman, and S. L. Friedman. 2013. Hepatic stellate cells and liver fibrosis. Comprehensive Physiology 3: 1473-1492. Ratcliffe, E., K. E. Glen, M. W. Naing, and D. J. Williams. 2013. Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. British Medical Bulletin 108: 73-94. Robinton, D. A., and G. Q. Daley. 2012. The promise of induced pluripotent stem cells in research and therapy. Nature 481: 295-305. Ruhnke, M., H. Ungefroren, G. Zehle, M. Bader, B. Kremer, and F. Fandrich. 2003. Long-term culture and differentiation of rat embryonic stem cell-like cells into neuronal, glial, endothelial, and hepatic lineages. Stem Cells 21: 428-436. Schmidt, C., F. Bladt, S. Goedecke, V. Brinkmann, W. Zschiesche, M. Sharpe, E. Gherardi, and C. Birchmeier. 1995. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373: 699-702. Schwartz, R. E., M. Reyes, L. Koodie, Y. Jiang, M. Blackstad, T. Lund, T. Lenvik, S. Johnson, W. S. Hu, and C. M. Verfaillie. 2002. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. The Journal of Clinical Investigation 109: 1291-1302. Sekiya, S., and A. Suzuki. 2011. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475: 390-393. Snykers, S., J. De Kock, V. Tamara, and V. Rogiers. 2011. Hepatic differentiation of mesenchymal stem cells: in vitro strategies. Methods in Molecular Biology (Clifton, N.J.) 698: 305-314. Subramanian, K., D. J. Owens, R. Raju, M. Firpo, T. D. O'Brien, C. M. Verfaillie, and W. S. Hu. 2014. Spheroid culture for enhanced differentiation of human embryonic stem cells to hepatocyte-like cells. Stem Cells and Development 23: 124-131. Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861-872. Takahashi, K., and S. Yamanaka. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676. Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145-1147. Trounson, A., R. G. Thakar, G. Lomax, and D. Gibbons. 2011. Clinical trials for stem cell therapies. BMC Medicine 9: 52. Tsai, M. S., J. L. Lee, Y. J. Chang, and S. M. Hwang. 2004. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Human Reproduction (Oxford, England) 19: 1450-1456. Wang, X., S. Ge, G. McNamara, Q. L. Hao, G. M. Crooks, J. A. Nolta. 2003. Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells. Blood 101: 4201-4208. Young, R. A. 2011. Control of the embryonic stem cell state. Cell 144: 940-954. Zagoura, D. S., M. G. Roubelakis, V. Bitsika, O. Trohatou, K. I. Pappa, A. Kapelouzou, A. Antsaklis, and N. P. Anagnou. 2012. Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut 61: 894-906. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58104 | - |
| dc.description.abstract | 根據行政院衛生福利部之報告顯示,慢性肝病及肝硬化已長年位居國人十大死因之一,肝纖維化 (liver fibrosis) 是由於肝臟慢性損傷後反覆癒合造成肝臟功能性細胞死亡及細胞外基質 (extracellular matrix, ECM) 大量累積之結果。嚴重之肝纖維化將演變為肝硬化 (cirrhosis) 及肝功能衰竭 (liver failure),此階段之肝病只能依靠器官移植做為治療方式,但礙於肝臟捐贈來源短缺、治療費用高及台灣法律對於器官捐贈親等因素之諸多限制,多數嚴重肝病患者往往無法等到合適器官之捐贈。因此發展肝臟疾病之新治療方式,在惡化至肝硬化及肝功能衰竭等不可逆階段之前得能有效減緩肝纖維化之進程,確有其迫切之需要性。
就臨床醫學而言,取用第二孕期之胎兒羊水 (amniotic fluid) 提供進行胎兒健康檢測乃是例行工作,在羊水中已知內含大量之幹細胞,是謂羊水幹細胞 (amniotic fluid stem cells, AFSCs),AFSCs已知具較他種成體幹細胞更佳的端粒酶活性 (telomerase) 及較長之端粒 (telomere) 長度,除其具高度增殖性外,且能表現胚幹細胞特有之多分化潛能表面標誌 Oct-4,其應用不僅可以無實際道德爭議,且不會有發展成為畸胎瘤之危險,因此AFSCs乃被視為新興之細胞治療材料。 本試驗由小鼠之羊水中成功分離出羊水幹細胞,經由流式細胞儀完成檢測其表面抗體,結果發現純化出之小鼠羊水幹細胞,得能表現包括:CD29, CD44, Sca-1, 及 MHC-I 等細胞標誌,且不表現諸如:CD11b, CD166, CD34, CD45, CD31, CD105, CD86, CD133, CD117, 及 MHC-II等細胞標誌;此外,進一步在體外誘導分化之試驗結果,證實羊水幹細胞確實具有分化成為類肝臟細胞之潛能,以此可作為後續肝纖維化小鼠之幹細胞治療試驗之依據。進一步透過體內細胞移植試驗結果證實,彼等肝纖維化小鼠接受同種異體羊水幹細胞移植後四週,無論於小鼠羊水幹細胞之懸浮細胞與不同大小之球狀細胞團包括:<40 μm, 40~70 μm, 及 >70 μm 等直徑大小不同之處理組別者,分別均呈現有顯著降低其肝臟細胞大量死亡導致其血液生化指標包括GOT/AST及 GPT/ALT等測定值之顯著改善效果外 (p<0.05) ,且有降低其肝臟體重比及其肝臟內原蓄積纖維之含量,惟血清中白蛋白 (albumin) 之含量在細胞移植組及未移植之對照組中二者並未有顯著差異產生。此外,在細胞移植後之遷移命運,檢測結果發現,其中部分經植入源自綠色螢光小鼠之羊水幹細胞者於24小時後,呈現有與紅色螢光小鼠之肝臟細胞發生細胞融合之現象,而尚有部分植入之羊水幹細胞仍維持原單一綠色螢光蛋白之表現狀態,進一步試驗在48小時後取其組織切片中驗證結果,則發現有共同表現包括綠色及紅色螢光蛋白之細胞,惟於細胞移植四週後再次取樣測試結果顯示,無論於肝臟組織切片或流式細胞儀之檢測者,分別皆未能發現彼等表現有綠色螢光蛋白之細胞者。 綜合上述試驗結果,移植同種異體之小鼠羊水幹細胞,確能有效減緩彼等受試小鼠肝臟纖維化之症狀,惟其移植後呈現療效之確實作用機制,則有待進一步研究釐清之。 | zh_TW |
| dc.description.abstract | According to the statistic results from the Ministry of Health and Welfare, Executive Yuan, Taiwan, chronic liver disease and cirrhosis have been ranking on the top 10 major causes of death for decades in Taiwan. Liver fibrosis results from the wound-healing response of the liver to the chronic damage. Repeating injury raises the loss of functional hepatocytes and the accumulation of extracellular matrix (ECM) proteins on liver. Advanced liver fibrosis will result in cirrhosis and liver failure, and liver transplantation is often the only option for effective therapy. However, the shortage of available donor livers limits this treatment. Thus, alternatively investigate a new therapy for such kind of liver disease is essential.
Amniotic fluid, which is routinely sampled for prenatal diagnosis in the second trimester of pregnant contains abundant of stem cells. Amniotic fluid stem cells (AFSCs) exhibit long telomere length, also have high levels of telomerase activity. In spite of the outstanding proliferative rate, AFSCs can also differentiate to all three germ layer cells and express pluripotent stem cell marker, Oct4. These characteristics imply that AFSCs are more primitive than other stem cells isolated form adult tissues. Furthermore, unlike embryonic stem cells, AFSCs do not induce teratoma in vivo and do not pose any ethical concerns. For these reasons, AFSCs is regarded as a new promising source of stem cells for tissue engineering and stem cell therapy. This study is carried out to investigate whether mouse AFSCs are able to ameliorate the symptom of liver fibrosis through allogenic transplantation. In the establishment of amniotic fluid stem cells, flow cytometry was used to assess markers expressed by mouse AFSCs. It comes out that mouse AFSCs express the markers of CD29, CD44, Sca-1, MHC-I, and do not express CD11b, CD166, CD34, CD45, CD31, CD105, CD86, CD133, CD117, MHC-II. Besides, mouse AFSCs could differentiate into hepatocytes in vitro, which implies that AFSCs has the potential to be applied to the therapeutic strategy of liver disease. Allogenic AFSCs single cells and spheres with three groups of diameters including 40μm, 40~70μm and over 70μm were injected via portal vein of liver CCl4 treated mice respectively. The treated results of liver fibrosis mice show that all groups of AFSCs transplantation have a significant antifibrotic effect as evidenced by the significant decrease in the blood biochemical analysis of GOT, GPT and liver-body weight ratio compared to the control group (p<0.05). However, there is no significant difference in the albumin expression of the serum analysis between each group. In addition, the fibrotic tissues were evaluated less by Masson's trichrome staining 4 weeks after cell transplantation compared to the control group. To investigate the cell fate of transplanted AFSCs in liver injured mice, we transplant EGFP-mouse AFSCs into CCl4 treated Ds-red mice. Tissue section results show that most EGFP AFSCs are found around the blood vessel of liver in 24 to 48 hours after transplantation. Some of the transplanted cells are already fused with the cells of recipient and express EGFP and Ds-red protein in the same time. The same results can also be found in the fluorescent analysis of flow cytometry. However, no EGFP cells is found after four week of transplantation. In conclusion, AFSCs have a potential therapeutic effect on ameliorate the damage of liver fibrosis, and there might be somewhat antifibrotic processes would be clarified in addition to their capacity to differentiate into hepatocytes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:06:02Z (GMT). No. of bitstreams: 1 ntu-103-R00626029-1.pdf: 7878261 bytes, checksum: 34d0384a774d68526c5a1ee991a08382 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 頁碼
口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT v 目次 vii 圖次 ix 表次 xi 第1章 前言 12 第2章 文獻檢討 14 2.1 肝臟的構造與構造 14 2.1.1 肝臟之解剖構造 14 2.1.2 肝臟之生理功能 17 2.2 肝臟疾病 18 2.2.1 急性肝炎及慢性肝炎 ( acute hepatitis and chronic hepatitis) 18 2.2.2 猛爆性肝炎 (fulminant hepatitis) 19 2.2.3 肝纖維化 (liver fibrosis) 20 2.3 四氯化碳誘導肝損傷 23 2.3.1 四氯化碳簡介 23 2.3.2 四氯化碳誘導肝損傷之機制 23 2.4 幹細胞 24 2.4.1 幹細胞之分類 24 2.4.2 間葉幹細胞 29 2.4.3 羊水幹細胞及其臨床應用 30 2.5 幹細胞團 (cell sphere) 33 第3章 試驗研究 34 3.1 小鼠羊水幹細胞之分離與純化 34 3.1.1 前言 34 3.1.2 材料與方法 35 3.1.3 結果討論 38 3.2 小鼠羊水幹細胞誘導分化為類肝細胞之研究 41 3.2.1 前言 41 3.2.2 材料與方法 42 3.2.3 結果討論 44 3.3 同種移植-小鼠羊水幹細胞應用於改善小鼠肝纖維化之研究 50 3.3.1 前言 50 3.3.2 材料與方法 51 3.3.3 結果與討論 56 3.4 同種移植-綠色螢光小鼠羊水幹細胞移植入肝纖維化紅色螢光小鼠細胞命運之探討 67 3.4.1 前言 67 3.4.2 材料與方法 68 3.4.3 結果討論 70 第4章 綜合討論 75 第5章 結論 77 第6章 未來展望 78 REFERENCES 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肝纖維化 | zh_TW |
| dc.subject | 小鼠羊水幹細胞 | zh_TW |
| dc.subject | 同種異體細胞移植 | zh_TW |
| dc.subject | Amniotic fluid stem cells | en |
| dc.subject | Allogenic cell transplantation | en |
| dc.subject | Liver fibrosis | en |
| dc.title | 同種羊水幹細胞應用於改善肝纖維化小鼠之治療潛能 | zh_TW |
| dc.title | Therapeutic Potential of Allogenic Amniotic Fluid Stem Cells in Liver Fibrosis Mice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭登貴,鄭安生 | |
| dc.subject.keyword | 小鼠羊水幹細胞,肝纖維化,同種異體細胞移植, | zh_TW |
| dc.subject.keyword | Amniotic fluid stem cells,Liver fibrosis,Allogenic cell transplantation, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-06-24 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 7.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
