請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58083完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙坤茂(Kun-Mao Chao) | |
| dc.contributor.author | Chia-Jung Chang | en |
| dc.contributor.author | 張家榮 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:05:39Z | - |
| dc.date.available | 2016-07-08 | |
| dc.date.copyright | 2014-07-08 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-06-25 | |
| dc.identifier.citation | [1] Joaquin AbellAn, Manuel Gomez-Olmedo, and Serafin Moral. Some Variations on
the PC Algorithm. In Milan Studeny and Jiri Vomlel, editors, Probabilistic Graphical Models, pages 1 8, 2006. [2] Tatsuya Akutsu, Morihiro Hayashida, Wai-Ki Ching, and Michael K. Ng. Control of Boolean Networks: Hardness Results and Algorithms for Tree Structured Networks. Journal of Theoretical Biology, 244(4):670 679, February 2007. [3] Tatsuya Akutsu, Morihiro Hayashida, and Takeyuki Tamura. Algorithms for Infer- ence, Analysis and Control of Boolean Networks. Springer, 2008. [4] Tatsuya Akutsu, Sven Kosub, Avraham A. Melkman, and Takeyuki Tamura. Finding a Periodic Attractor of a Boolean Network. IEEE/ACM Transactions on Computa- tional Biology and Bioinformatics, 9(5):1410 1421, 2012. [5] Tatsuya Akutsu, Avraham A. Melkman, and Takeyuki Tamura. Singleton and 2- periodic Attractors of Sign-de nite Boolean Networks. Information Processing Let- ters, 112(1):35 38, 2012. [6] Tatsuya Akutsu, Avraham A. Melkman, Takeyuki Tamura, and Masaki Yamamoto. Determining a Singleton Attractor of a Boolean Network with Nested Canalyzing Functions. Journal of Computational Biology, 18(10):1275 1290, 2011. [7] ROka Albert and Albert-LAszlo BarabAsi. Statistical Mechanics of Complex Networks. Reviews of Modern Physics, 74, January 2002. [8] Julio Aracena, Jacques Demongeot, and Eric Goles. Positive and Negative Circuits in Discrete Neural Networks. IEEE Transactions on Neural Networks, 15(1):77 83, 2004. 57[9] Christoph Bandt. Ordinal Time Series Analysis. Ecological Modelling, 182(3-4):229 238, 2005. [10] Gustavo EAPA Batista, Xiaoyue Wang, and Eamonn J. Keogh. A Complexity- Invariant Distance Measure for Time Series. SDM, 2011. [11] Michael A. Bender, Martin Farach-colton, Giridhar Pemmasani, Steven Skiena, and Pavel Sumazin. Lowest Common Ancestors in Trees and Directed Acyclic Graphs. Journal of Algorithms, 57:2005, 2005. [12] Jon L. Bentley and Thomas A. Ottmann. Algorithms for Reporting and Count- ing Geometric Intersections. IEEE Transactions on Computers, C-28(9):643 647, September 1979. [13] Kellogg S. Booth and George S. Lueker. Testing for the Consecutive Ones Prop- erty, Interval Graphs, and Graph Planarity Using PQ-tree Algorithms. Journal of Computer and System Sciences, 13(3):335 379, 1976. [14] William H. Campbell. Indexing permutations. Journal of Computing Sciences in Colleges, 19(3):296 300, 2004. [15] Chia-Jung Chang. Path consistency with minimum edges. Proceedings of the 31st Workshop on Combinatorial Mathematics and Computation Theory, pages 208 215, 2014. [16] Chia-Jung Chang and Kun-Mao Chao. E cient Algorithms for Local Ranking. In- formation Processing Letters, 112(13):517 522, 2012. [17] Chia-Jung Chang, Tamura Takeyuki, Kun-Mao Chao, and Akutsu Tatsuya. A Fixed- Parameter Algorithm for Detecting a Singleton Attractor in an AND/OR Boolean Network with Bounded Treewidth. IEICE TRANSACTIONS on Fundamentals of Electronics,Communications and Computer Sciences. Submitted. [18] Li Chen and F. W. M. Stentiford. Video Sequence Matching Based on Temporal Ordinal Measurement. Pattern Recognition Letters, 29(13):1824 1831, 2008. 58[19] Min Chen, Judy Cho, and Hongyu Zhao. Incorporating Biological Pathways via a Markov Random Field Model in Genome-wide Association Studies. PLoS genetics, 7(4):e1001353, April 2011. [20] Daizhan Cheng and Hongsheng Qi. Controllability and observability of boolean control networks. Automatica, 45(7):1659 1667, 2009. [21] Fu-Lai Chung, Tak-Chung Fu, Vincent T. Y. Ng, and Robert W. P. Luk. An evo- lutionary Approach to Pattern-based Time Series Segmentation. IEEE Transactions on Evolutionary Computation, 8(5):471 489, 2004. [22] Claudio Cobelli and Giorgio Romanin-Jacur. Controllability, Observability and Structural Identi ability of Multi Input and Multi Output Biological Compartmental Systems. IEEE Transactions on Biomedical Engineering, 2:93 100, 1976. [23] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli ord Stein. Introduction to Algorithms. The MIT Press, third edition, 2009. [24] RonAn Daly, Qiang Shen, and Stuart Aitken. Learning Bayesian Networks: Ap- proaches and Issues. The Knowledge Engineering Review, 26(02):99 157, May 2011. [25] Mark De Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computa- tional Geometry: Algorithms and Applications. Springer, third edition, 2008. [26] Vincent Devloo, Pierre Hansen, and Martine LabbO. Identi cation of All Steady States in Large Networks by Logical Analysis. Bulletin of Mathematical Biology, 65(6):1025 1051, 2003. [27] Elena Dubrova and Maxim Teslenko. A SAT-Based Algorithm for Finding Attrac- tors in Synchronous Boolean Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 8(5):1393 1399, 2011. [28] Uriel Feige. A Threshold of ln n for Approximating Set Cover. Journal of the ACM, 45(4):634 652, July 1998. [29] Jorg Flum and Martin Grohe. Parameterized Complexity Theory, volume 3. Springer Heidelberg, 2006. 59[30] Ettore Fornasini and Maria Elena Valcher. Observability, Reconstructibility and State Observers of Boolean Control Networks. IEEE Transactions on Automatic Control, 58(6):1390 1401, June 2013. [31] Tak-Chung Fu. A review on time series data mining. Engineering Applications of Arti cial Intelligence, 24(1):164 181, February 2011. [32] Tak-Chung Fu, Fu-Lai Chung, Robert Luk, and Chak-Man Ng. Representing Fi- nancial Time Series Based on Data Point Importance. Engineering Applications of Arti cial Intelligence, 21(2):277 300, March 2008. [33] Harold N. Gabow, Jon Louis Bentley, and Robert E. Tarjan. Scaling and Related Techniques for Geometry Problems. In Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing - STOC ’84, pages 135 143, New York, New York, USA, 1984. ACM Press. [34] Michael R. Garey and David S. Johnson. Computers and Intractability. Freeman, New York, 1979. [35] Abhishek Garg, Alessandro Di Cara, Ioannis Xenarios, Luis Mendoza, and Giovanni De Micheli. Synchronous versus Asynchronous Modeling of Gene Regulatory Net- works. Bioinformatics, 24(17):1917 1925, 2008. [36] Eric Goles and Lilian Salinas. Sequential Operator for Filtering Cycles in Boolean networks. Advances in Applied Mathematics, 45(3):346 358, 2010. [37] Clive W. J. Granger. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica: Journal of the Econometric Society, pages 424 438, 1969. [38] Dan Gus eld. Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, 1997. [39] Trygve Haavelmo. The Probability Approach in Econometrics. Econometrica: Jour- nal of the Econometric Society, pages iii 115, 1944. [40] Dov Harel and Robert Endre Tarjan. Fast Algorithms for Finding Nearest Common Ancestors. SIAM Journal on Computing, 13(2):338, 1984. 60[41] Abderrahman Iggidr. Controllability, Observability, and Stability of Mathematical Models. Encyclopedia of Life Support Systems (EOLSS), 2004. [42] Abdul Salam Jarrah, Blessilda Raposa, and Reinhard Laubenbacher. Nested Cana- lyzing, Unate Cascade, and Polynomial Functions. Physica D: Nonlinear Phenomena, 233(2):167 174, 2007. [43] Stuart Kau man. The Origins of Order: Self Organization and Selection in Evolu- tion. Oxford University Press, 1993. [44] Stuart A. Kau man. Metabolic Stability and Epigenesis in Randomly Constructed Genetic Nets. Journal of Theoretical Biology, 22(3):437 467, 1969. [45] Karsten Keller, Mathieu Sinn, and Jan Emonds. Time Series from the Ordinal Viewpoint. Stochastics and Dynamics, 7(02):247 272, 2007. [46] Eamonn Keogh. Fast Similarity Search in the Presence of Longitudinal Scaling in Time Series Databases. In Proceedings of Ninth IEEE International Conference on Tools with Arti cial Intelligence, 1997., pages 578 584. IEEE, 1997. [47] Eamonn Keogh, Li Wei, Xiaopeng Xi, Michail Vlachos, Sang-Hee Lee, and Pavlos Protopapas. Supporting Exact Indexing of Arbitrarily Rotated Shapes and Periodic Time Series under Euclidean and Warping Distance Measures. The VLDB Jour- nal The International Journal on Very Large Data Bases, 18(3):611 630, 2009. [48] Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt. Fast Pattern Match- ing in Strings. SIAM Journal on Computing, 6(2):323, 1977. [49] Dae-Heum Kwon and David A. Bessler. Graphical Methods, Inductive Causal Infer- ence, and Econometrics: A Literature Review. Computational Economics, 38(1):85 106, 2011. [50] Harri Lahdesmaki, Sampsa Hautaniemi, Ilya Shmulevich, and Olli Yli-Harja. Rela- tionships between Probabilistic Boolean Networks and Dynamic Bayesian Networks as Models of Gene Regulatory Networks. Signal Processing, 86(4):814 834, 2006. [51] Peter Langfelder and Steve Horvath. WGCNA: An R Package for Weighted Corre- lation Network Analysis. BMC Bioinformatics, 9(1):559, 2008. 61[52] Dmitriy Laschov, Michael Margaliot, and Guy Even. Observability of Boolean Net- works: A Graph-Theoretic Approach. Automatica, 49(8):2351 2362, August 2013. [53] Wenyuan Li, Min Xu, and Xianghong Jasmine Zhou. Unraveling Complex Temporal Associations in Cellular Systems across Multiple Time-Series Microarray Datasets. Journal of Biomedical Informatics, 43(4):550 559, 2010. [54] Yang-Yu Liu, Jean-Jacques Slotine, and Albert-LAszlo BarabAsi. Controllability of Complex Networks. Nature, 473(7346):167 173, May 2011. [55] Jessica Lin Eamonn Keogh Stefano Lonardi and Pranav Patel. Finding Motifs in Time Series. In Proceedings of the 2nd Workshop on Temporal Data Mining, pages 53 68, 2002. [56] Anders L. Madsen, Michael Lang, U e B. Kjarul , and Frank Jensen. The Hugin Tool for Learning Bayesian Networks. In Proceedings of 7th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pages 594 605, 2003. [57] Rosario N. Mantegna. Hierarchical Structure in Financial Markets. The European Physical Journal B-Condensed Matter and Complex Systems, 11(1):193 197, 1999. [58] Adam a Margolin, Ilya Nemenman, Katia Basso, Chris Wiggins, Gustavo Stolovitzky, Riccardo Dalla Favera, and Andrea Califano. ARACNE: an Algorithm for the Re- construction of Gene Regulatory Networks in a Mammalian Cellular Context. BMC bioinformatics, 7 Suppl 1:S7, January 2006. [59] Mark I. McCarthy, Goncalo R. Abecasis, Lon R. Cardon, David B. Goldstein, Julian Little, John P. A. Ioannidis, and Joel N. Hirschhorn. Genome-Wide Association Studies for Complex Traits: Consensus, Uncertainty and Challenges. Nature Reviews Genetics, 9(5):356 369, 2008. [60] Avraham A. Melkman, Takeyuki Tamura, and Tatsuya Akutsu. Determining a Ain- gleton Attractor of an AND/OR Boolean Network in O(1.587 n ) Time. Information Processing Letters, 110:565 569, 2010. 62[61] Isabel Nepomuceno-Chamorro, Francisco Azuaje, Yvan Devaux, Petr V. Nazarov, Arnaud Muller, Jesœs S. Aguilar-Ruiz, and Daniel R. Wagner. Prognostic Transcrip- tional Association Networks: a New Supervised Approach Based on Regression Trees. Bioinformatics (Oxford, England), 27(2):252 8, January 2011. [62] Mark E. J. Newman. The Structure and Function of Complex Networks. SIAM Review, 15(3):247 262, September 2003. [63] Judea Pearl. Bayesian Networks: A Model of Self-Activated Memory for Evidential Reasoning. Proceedings 7th Cognitive Science Conference, 1985. [64] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, 1988. [65] Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge Univ Press, 2nd edition, 2009. [66] Chang-Shing Perng, Haixun Wang, Sylvia R. Zhang, and D. Stott Parker. Landmarks : A New Model for Similarity-Based Pattern Querying in Time Series Databases. Data Engineering, 2000., 2000. [67] Shigeru Saito and Katsuhisa Horimoto. Co-expressed Gene Assessment Based on the Path Consistency Algorithm: Operon Detention in Escherichia Coli. In International Conference on Systems, Man and Cybernetics, pages 4280 4286. IEEE, October 2009. [68] Hiroaki Sakoe and Seibi Chiba. Dynamic Programming Algorithm Optimization for Spoken Word Recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, 26(1):43 49, 1978. [69] Yasushi Sakurai, Masatoshi Yoshikawa, and Christos Faloutsos. FTW: Fast Similarity Search under the Time warping Distance. In Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 326 337. ACM, 2005. [70] Ramon Sanguesa and Ulises CortOs. Learning Causal Networks from Data: A Survey and a New Algorithm for Recovering Possibilistic Causal Networks. AI Communica- tions, 10(1):31 61, 1997. 63[71] Baruch Schieber and Uzi Vishkin. On Finding Lowest Common Ancestors: Simpli- cation and Parallelization. SIAM Journal on Computing, 17(6):1253 1262, 1988. [72] Shai S. Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. Network Motifs in the Transcriptional Regulation Network of Escherichia Coli. Nature Genetics, 31(1):64 68, 2002. [73] Wei-Kuan Shih and Wen-Lian Hsu. A New Planarity Test. Theoretical Computer Science, 223(1-2):179 191, 1999. [74] Leonard M. Silverman and Brian D. O. Anderson. Controllability, Observability and Stability of Linear Systems. SIAM Journal on Control, 6(1):121 130, 1968. [75] Herbert A. Simon. Causal Ordering and Identi ability. In Models of Discovery, pages 53 80. Springer, 1977. [76] Peter Spirtes, Clark N. Glymour, and Richard Scheines. Causation, Prediction, and Search. The MIT Press, second edition, 2000. [77] Harald Steck. Constraint-Based Structural Learning in Bayesian Networks Using Finite Data Sets. Ph.D. Thesis, Der Technischen Universitat Munchen, Munich, Germany, 2001. [78] George Sugihara, Robert May, Hao Ye, Chih-Hao Hsieh, Ethan Deyle, Michael Fog- arty, and Stephan Munch. Detecting Causality in Complex Ecosystems. Science, 338(6106):496 500, 2012. [79] Hisao Tamaki. A Directed Path-Decomposition Approach to Exactly Identifying Attractors of Boolean Networks. In Communications and Information Technologies (ISCIT), 2010 International Symposium on, pages 844 849. IEEE, 2010. [80] Takeyuki Tamura and Tatsuya Akutsu. Algorithms for Singleton Attractor Detection in Planar and Nonplanar AND/OR Boolean Networks. Mathematics in Computer Science, 2(3):401 420, 2009. [81] Takeyuki Tamura and Tatsuya Akutsu. Detecting a Singleton Attractor in a Boolean Network Utilizing SAT Algorithms. IEICE Transactions on Fundamentals of Elec- tronics, Communications and Computer Sciences, 92(2):493 501, 2009. 64[82] Esko Ukkonen. On-line Construction of Su x Trees. Algorithmica, 14(3):249 260, September 1995. [83] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, 2001. [84] Dragomir Yankov, Eamonn Keogh, Jose Medina, Bill Chiu, and Victor Zordan. De- tecting Time Series Motifs under Uniform Scaling. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’07, page 844, 2007. [85] Byoung Yi, H. V. Jagadish, and Christos Faloutsos. E cient Retrieval of Similar Time Sequences under Time Warping. In Proceedings of 14th International Confer- ence on Data Engineering, 1998., pages 201 208. IEEE, 1998. [86] Shu-Qin Zhang, Morihiro Hayashida, Tatsuya Akutsu, Wai-Ki Ching, and Michael K. Ng. Algorithms for Finding Small Attractors in Boolean Networks. EURASIP Jour- nal on Bioinformatics and Systems Biology, 2007:4 4, 2007. [87] Xiujun Zhang, Xing-Ming Zhao, Kun He, Le Lu, Yongwei Cao, Jingdong Liu, Jin- Kao Hao, Zhi-Ping Liu, and Luonan Chen. Inferring Gene Regulatory Networks from Gene Expression Data by Path Consistency Algorithm Based on Conditional Mutual Information. Bioinformatics, 28(1):98 104, January 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58083 | - |
| dc.description.abstract | 因果網路圖可以用來表示變數或事件之間的因果關係,此類圖由來已久, 所以用來替因果網路圖建立模型,或建構網路圖的演算法早已所在多有,例如包含馬可夫網路圖,貝氏網路圖,布林網路圖等。 然而隨著科技的進步和新測量方法的發明,產生了新形式的資料, 因果網路圖的研究也需要新的演算法協助,而我們的研究則針對因果網路建構及特徵辨識的演算法上。 第一部份的研究是設計新的演算法以比較一對隨時間而變化的變數,藉以找出兩者之間的關聯性,而比較的方式則是根據兩時間序列局部的高低排列方式。 我們採用區段樹的資料結構,並加入新的指標,能有效地從整段時間序列中擷取和比較局部的高低排列。 有了兩兩變數之間的關聯,就可以建構一個因果網路圖。 第二部份的研究則是想在因果網路中,刪除變數間的間接關聯,只保留直接的關聯。 我們將該問題模型化為一個最佳化的問題,證明該問題是NP-hard,並為這個問題提出了一個近似演算法。 第三部份的研究則是替因果網路圖做特徵的辨識,辨識的方式則是找該圖的穩定狀態。 在布林網路圖中,則是找該圖的獨身吸引子,而我們又只有著重在特殊的布林網路,也就是:呈現類似樹狀的結構布林網路,即該網路有一定範圍內的樹寬。 而對於不同的布林函數:AND/OR 布林函數、巢狀串聯函數和一般的布林函數,我們提出各自關於參數化複雜度的分析和演算法。 | zh_TW |
| dc.description.abstract | The causal network is a common representation showing causal relations between variables or events. There have been different algorithms to model and to construct causal
networks such as Markov networks, Bayesian Networks, Boolean Networks, etc. With the advance of technologies and new types of data, new algorithms are needed for causal networks. We focus on the algorithms to construct and to characterize causal networks. The rst study is to design new algorithms to compare a pair of temporal variables in terms of local rankings to establish association. We adapt the segment tree data structure by adding new pointers to extract and compare local rankings efficiently. The second is to eliminate indirect relations in a causal network. We model the problem as an optimization problem and prove its NP-hardness. We also give an approximation algorithm for this problem. The third part is to characterize causal networks by finding their stable states in terms of singleton attractors in Boolean networks. We focus on AND/OR Boolean networks with bounded treewidth and give a fixed-parameter algorithm. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:05:39Z (GMT). No. of bitstreams: 1 ntu-103-D98922004-1.pdf: 1174084 bytes, checksum: 613bd934e464f0aecdf91f2c895b5c30 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Association and Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Causal Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Problems and Manuscript Plan . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Association Inference by Comparing Local Ranking Sequences 8 2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Segment Tree: to Store a Ranking Sequence . . . . . . . . . . . . . . . . . 11 2.3 Canonical Covering: to Extract Sorted Partitions . . . . . . . . . . . . . . 13 2.4 The Local Ranking Problem and Its Solution . . . . . . . . . . . . . . . . . 17 2.5 The Ranking Sequence Matching Problem and Its Solution . . . . . . . . . 18 2.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Constructing Causal Networks by Removing Indirect Associations 22 3.1 The Path Consistency with Minimum Edges (PCME) Problem . . . . . . . 23 3.2 NP-hardness of the PCME Problem . . . . . . . . . . . . . . . . . . . . . . 27 3.3 A Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 Characterizing Boolean Networks in terms of Attractors 38 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Finding Singleton Attractors in BNs with Bounded Treewidth . . . . . . . 41 4.3 In an AND/OR BN with Bounded Treewidth . . . . . . . . . . . . . . . . 42 i4.4 In a Constant-Depth NC-BN with Bounded Treewidth . . . . . . . . . . . 47 4.5 In a General BN with Bounded Treewidth . . . . . . . . . . . . . . . . . . 48 4.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5 Concluding Remarks 54 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2.1 The Longest Common Local Ranking Sequences . . . . . . . . . . . 55 5.2.2 Detection of SA of a NCBN with Bounded Treewidth . . . . . . . . 56 Bibliography 57 | |
| dc.language.iso | en | |
| dc.subject | 因果網路 | zh_TW |
| dc.subject | 時間序列 | zh_TW |
| dc.subject | 最佳化 | zh_TW |
| dc.subject | 布林網路 | zh_TW |
| dc.subject | 吸引子 | zh_TW |
| dc.subject | 基因調控網路 | zh_TW |
| dc.subject | 排名序列 | zh_TW |
| dc.subject | attractor | en |
| dc.subject | gene regulatory network | en |
| dc.subject | ranking sequence | en |
| dc.subject | time series | en |
| dc.subject | optimization | en |
| dc.subject | Boolean network | en |
| dc.subject | causality | en |
| dc.title | 用以建構因果網路與檢視其特徵的演算法 | zh_TW |
| dc.title | Algorithms for Constructing and Characterizing Causal Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 劉邦鋒,陳健輝,呂育道,歐陽彥正 | |
| dc.subject.keyword | 因果網路,基因調控網路,排名序列,時間序列,最佳化,布林網路,吸引子, | zh_TW |
| dc.subject.keyword | causality,gene regulatory network,ranking sequence,time series,optimization,Boolean network,attractor, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-06-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
