Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58067
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊彬(Chun-Pin Lin)
dc.contributor.authorYu-Chen Luen
dc.contributor.author盧育成zh_TW
dc.date.accessioned2021-06-16T08:05:23Z-
dc.date.available2017-10-15
dc.date.copyright2014-10-15
dc.date.issued2014
dc.date.submitted2014-06-25
dc.identifier.citation1. Darby ET. Dental erosion and the gouty diathesis. Are they associated? Dental Cosmos 1892;34:629-40.
2. Jaeggi T, Lussi A. Prevalence, incidence and distribution of erosion. Monogr Oral Sci 2006;20:44-65.
3. Mantonanaki M, Koletsi-Kounari H, Mamai-Homata E, Papaioannou W. Dental erosion prevalence and associated risk indicators among preschool children in Athens, Greece. Clin Oral Investig 2012.
4. Sovik JB, Tveit AB, Storesund T, Mulic A. Dental erosion: a widespread condition nowadays? A cross-sectional study among a group of adolescents in Norway. Acta Odontol Scand 2014.
5. Zhang S, Chau AM, Lo EC, Chu CH. Dental caries and erosion status of 12-year-old Hong Kong children. BMC Public Health 2014;14:7.
6. Cavadini C, Siega-Riz AM, Popkin BM. US adolescent food intake trends from 1965 to 1996. Arch Dis Child 2000;83(1):18-24.
7. Austin RS, Stenhagen KS, Hove LH, et al. A qualitative and quantitative investigation into the effect of fluoride formulations on enamel erosion and erosion-abrasion in vitro. J Dent 2011;39(10):648-55.
8. Kato MT, Magalhaes AC, Rios D, et al. Protective effect of green tea on dentin erosion and abrasion. J Appl Oral Sci 2009;17(6):560-4.
9. Lussi A, Schlueter N, Rakhmatullina E, Ganss C. Dental erosion--an overview with emphasis on chemical and histopathological aspects. Caries Res 2011;45 Suppl 1:2-12.
10. Holbrook WP, Furuholm J, Gudmundsson K, Theodors A, Meurman JH. Gastric reflux is a significant causative factor of tooth erosion. J Dent Res 2009;88(5):422-6.
11. Buczkowska-Radlinska J, Lagocka R, Kaczmarek W, Gorski M, Nowicka A. Prevalence of dental erosion in adolescent competitive swimmers exposed to gas-chlorinated swimming pool water. Clin Oral Investig 2013;17(2):579-83.
12. Suyama Y, Takaku S, Okawa Y, Matsukubo T. Dental erosion in workers exposed to sulfuric acid in lead storage battery manufacturing facility. Bull Tokyo Dent Coll 2010;51(2):77-83.
13. Lussi A, Jaeggi T. Erosion--diagnosis and risk factors. Clin Oral Investig 2008;12 Suppl 1:S5-13.
14. Rakhmatullina E, Bossen A, Hoschele C, et al. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: correlation with enamel softening, roughness, and calcium release. J Biomed Opt 2011;16(10):107002.
15. Chew HP, Zakian CM, Pretty IA, Ellwood RP. Measuring Initial Enamel Erosion with Quantitative Light-Induced Fluorescence and Optical Coherence Tomography: An in vitro Validation Study. Caries Res 2014;48(3):254-62.
16. Brevik SC, Lussi A, Rakhmatullina E. A new optical detection method to assess the erosion inhibition by in vitro salivary pellicle layer. J Dent 2013;41(5):428-35.
17. Magalhaes AC, Wiegand A, Rios D, Honorio HM, Buzalaf MA. Insights into preventive measures for dental erosion. J Appl Oral Sci 2009;17(2):75-86.
18. Scaramucci T, Hara AT, Zero DT, et al. Development of an orange juice surrogate for the study of dental erosion. Braz Dent J 2011;22(6):473-8.
19. Ganss C, Klimek J, Schlueter N. Erosion/abrasion-preventing potential of NaF and F/Sn/chitosan toothpastes in dentine and impact of the organic matrix. Caries Res 2014;48(2):163-9.
20. Kato MT, Leite AL, Hannas AR, Buzalaf MA. Gels containing MMP inhibitors prevent dental erosion in situ. J Dent Res 2010;89(5):468-72.
21. Bueno MG, Marsicano JA, Sales-Peres SH. Preventive effect of iron gel with or without fluoride on bovine enamel erosion in vitro. Aust Dent J 2010;55(2):177-80.
22. Chunmuang S, Jitpukdeebodintra S, Chuenarrom C, Benjakul P. Effect of xylitol and fluoride on enamel erosion in vitro. J Oral Sci 2007;49(4):293-7.
23. Dawes C. What is the critical pH and why does a tooth dissolve in acid? J Can Dent Assoc 2003;69(11):722-4.
24. 莊岳樵. 市售軟性飲料對於人類恆齒牙釉質表面之酸蝕影響:體外實驗 [台北市: 臺灣大學; 2010.
25. Rirattanapong P, Vongsavan K, Surarit R. Effect of soft drinks on the release of calcium from enamel surfaces. Southeast Asian J Trop Med Public Health 2013;44(5):927-30.
26. Larsen MJ, Nyvad B. Enamel erosion by some soft drinks and orange juices relative to their pH, buffering effect and contents of calcium phosphate. Caries Res 1999;33(1):81-7.
27. Tahmassebi JF, Duggal MS, Malik-Kotru G, Curzon ME. Soft drinks and dental health: a review of the current literature. J Dent 2006;34(1):2-11.
28. He LH, Swain MV. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J Mech Behav Biomed Mater 2008;1(1):18-29.
29. Busch S, Schwarz U, Kniep R. Morphogenesis and Structure of Human Teeth in Relation to Biomimetically Grown Fluorapatite−Gelatine Composites. Chemistry of Materials 2001;13(10):3260-71.
30. Odutuga AA, Prout RE. Lipid analysis of human enamel and dentine. Arch Oral Biol 1974;19(8):729-31.
31. Meurman JH, ten Cate JM. Pathogenesis and modifying factors of dental erosion. Eur J Oral Sci 1996;104(2 ( Pt 2)):199-206.
32. Mjor IA. Human coronal dentine: Structure and reactions. Oral Surgery, Oral Medicine, Oral Pathology 1972;33(5):810-23.
33. Frank RM, Nalbandian J. Structure and Ultrastructure of Dentine. Teeth: Springer Berlin Heidelberg; 1989. p. 173-247.
34. Hara AT, Ando M, Cury JA, et al. Influence of the organic matrix on root dentine erosion by citric acid. Caries Res 2005;39(2):134-8.
35. Hiraishi N, Sono R, Islam MS, et al. Effect of hesperidin in vitro on root dentine collagen and demineralization. J Dent 2011;39(5):391-6.
36. Wang DY, Zhang L, Fan J, et al. Matrix metalloproteinases in human sclerotic dentine of attrited molars. Arch Oral Biol 2012;57(10):1307-12.
37. Azarpazhooh A, Main PA. Fluoride varnish in the prevention of dental caries in children and adolescents: a systematic review. J Can Dent Assoc 2008;74(1):73-9.
38. Tubert-Jeannin S, Auclair C, Amsallem E, et al. Fluoride supplements (tablets, drops, lozenges or chewing gums) for preventing dental caries in children. Cochrane Database Syst Rev 2011(12):CD007592.
39. Wiegand A, Attin T. Influence of fluoride on the prevention of erosive lesions--a review. Oral Health Prev Dent 2003;1(4):245-53.
40. Gallapanayut P. Effect of intensive fluoride varnish application on reducing enamel dissolution. 2004.
41. Wiegand A, Magalhaes AC, Sener B, Waldheim E, Attin T. TiF(4) and NaF at pH 1.2 but not at pH 3.5 are able to reduce dentin erosion. Arch Oral Biol 2009;54(8):790-5.
42. Comar LP, Gomes MF, Ito N, et al. Effect of NaF, SnF(2), and TiF(4) Toothpastes on Bovine Enamel and Dentin Erosion-Abrasion In Vitro. Int J Dent 2012;2012:134350.
43. McCann HG. Reactions of fluoride ion with hydroxyapatite. J Biol Chem 1953;201(1):247-59.
44. Buzalaf MA, Pessan JP, Honorio HM, ten Cate JM. Mechanisms of action of fluoride for caries control. Monogr Oral Sci 2011;22:97-114.
45. Narotzki B, Reznick AZ, Aizenbud D, Levy Y. Green tea: a promising natural product in oral health. Arch Oral Biol 2012;57(5):429-35.
46. Kanwar J, Taskeen M, Mohammad I, et al. Recent advances on tea polyphenols. Front Biosci (Elite Ed) 2012;4:111-31.
47. Miyake T, Yasukawa K, Inouye K. Analysis of the mechanism of inhibition of human matrix metalloproteinase 7 (MMP-7) activity by green tea catechins. Biosci Biotechnol Biochem 2011;75(8):1564-9.
48. Magalhaes AC, Wiegand A, Rios D, et al. Chlorhexidine and green tea extract reduce dentin erosion and abrasion in situ. J Dent 2009;37(12):994-8.
49. Mirkarimi M, Toomarian L. Effect of green tea extract on the treatment of dentin erosion: an in vitro study. J Dent (Tehran) 2012;9(4):224-8.
50. de Almeida Pdel V, Gregio AM, Machado MA, de Lima AA, Azevedo LR. Saliva composition and functions: a comprehensive review. J Contemp Dent Pract 2008;9(3):72-80.
51. Carpenter GH. The secretion, components, and properties of saliva. Annu Rev Food Sci Technol 2013;4:267-76.
52. Buzalaf MA, Hannas AR, Kato MT. Saliva and dental erosion. J Appl Oral Sci 2012;20(5):493-502.
53. Vukosavljevic D, Custodio W, Buzalaf MA, Hara AT, Siqueira WL. Acquired pellicle as a modulator for dental erosion. Arch Oral Biol 2014;59(6):631-38.
54. Ionta FQ, Mendonca FL, de Oliveira GC, et al. In vitro assessment of artificial saliva formulations on initial enamel erosion remineralization. J Dent 2014;42(2):175-9.
55. Sales-Peres Ade C, Marsicano JA, Garcia RP, et al. Effect of natural gel product on bovine dentin erosion in vitro. J Appl Oral Sci 2013;21(6):597-600.
56. Magalhaes AC, Rios D, Delbem AC, Buzalaf MA, Machado MA. Influence of fluoride dentifrice on brushing abrasion of eroded human enamel: an in situ/ex vivo study. Caries Res 2007;41(1):77-9.
57. Chow LC, Takagi S. Deposition of fluoride on tooth surfaces by a two-solution mouthrinse in vitro. Caries Res 1991;25(6):397-401.
58. Bruun C, Givskov H. Calcium fluoride formation in enamel from semi- or low-concentrated F agents in vitro. Caries Res 1993;27(2):96-9.
59. Petzold M. The influence of different fluoride compounds and treatment conditions on dental enamel: a descriptive in vitro study of the CaF(2) precipitation and microstructure. Caries Res 2001;35 Suppl 1:45-51.
60. Yu H, Oho T, Xu LX. Effects of several tea components on acid resistance of human tooth enamel. J Dent 1995;23(2):101-5.
61. Pettinga C. Darvon safety. Science 1979;204(4388):6.
62. Buzalaf MA, Kato MT, Hannas AR. The role of matrix metalloproteinases in dental erosion. Adv Dent Res 2012;24(2):72-6.
63. Sen T, Moulik S, Dutta A, et al. Multifunctional effect of epigallocatechin-3-gallate (EGCG) in downregulation of gelatinase-A (MMP-2) in human breast cancer cell line MCF-7. Life Sci 2009;84(7-8):194-204.
64. Demeule M, Brossard M, Page M, Gingras D, Beliveau R. Matrix metalloproteinase inhibition by green tea catechins. Biochim Biophys Acta 2000;1478(1):51-60.
65. Birkedal-Hansen H. Role of matrix metalloproteinases in human periodontal diseases. J Periodontol 1993;64(5 Suppl):474-84.
66. Ganss C, Neutard L, von Hinckeldey J, Klimek J, Schlueter N. Efficacy of a tin/fluoride rinse: a randomized in situ trial on erosion. J Dent Res 2010;89(11):1214-8.
67. Kato MT, Bolanho A, Zarella BL, et al. Sodium fluoride inhibits MMP-2 and MMP-9. J Dent Res 2014;93(1):74-7.
68. Ganss C, Lussi A, Sommer N, Klimek J, Schlueter N. Efficacy of fluoride compounds and stannous chloride as erosion inhibitors in dentine. Caries Res 2010;44(3):248-52.
69. Sinija VR, Mishra HN. Green tea: Health benefits. Journal of Nutritional and Environmental Medicine 2008;17(4):232-42.
70. Jha A, Shah K, Verma RJ. Effects of sodium fluoride on DNA, RNA and protein contents in liver of mice and its amelioration by Camellia sinensis. Acta Pol Pharm 2012;69(3):551-5.
71. Milton P, Thanga P. Epigallocatechin gallate potentially ameliorates sodium fluoride-induced genotoxicity in rats; 2013.
72. Millward A, Shaw L, Harrington E, Smith AJ. Continuous monitoring of salivary flow rate and pH at the surface of the dentition following consumption of acidic beverages. Caries Res 1997;31(1):44-9.
73. Hannig C, Hannig M, Attin T. Enzymes in the acquired enamel pellicle. Eur J Oral Sci 2005;113(1):2-13.
74. Hannig M. Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period. Clin Oral Investig 1999;3(2):88-95.
75. Ganss C, Schlueter N, Klimek J. Retention of KOH-soluble fluoride on enamel and dentine under erosive conditions--A comparison of in vitro and in situ results. Arch Oral Biol 2007;52(1):9-14.
76. Hara K, Ohara M, Hayashi I, et al. The green tea polyphenol (-)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: biochemical implications for oral health. Eur J Oral Sci 2012;120(2):132-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58067-
dc.description.abstract目的
  牙齒酸蝕是近年來越來越值得重視的一個牙齒問題,常見於大量飲用酸性軟性飲料的人群。本實驗的目的為以體外實驗的方法來探討氟化物及兒茶素對於降低軟性飲料所引起之牙釉質及牙本質齒酸蝕之效果。
材料與方法
  本實驗使用市面上常見的碳酸軟性飲料來當作牙齒酸蝕之酸性來源。本實驗共使用了40個人類牙釉質樣本及40個人類牙本質樣本,將其各平均分成四組,事前分別以去離子水(DW)、0.5M氟化鈉溶液(F)、400μM兒茶素溶液(EGCG)、0.5M氯化鈉,及400μM兒茶素混合溶液(Mix)做事前處理4分鐘。之後以軟性飲料浸泡處理15分鐘及人工唾液浸泡處理1小時之循環4次。最後以雷射掃描共軛焦顯微鏡分析酸蝕後平均喪失高度、表面圖像及表面積變化,並使用維氏微小硬度計來測量酸蝕後表面硬度變化,以及使用掃瞄式電子掃描顯微鏡觀察表面影像。
結果
  牙釉質樣本方面,和DW組相比,F組有顯著較高之表面硬度,但平均喪失高度部分和表面積變化則無顯著差異。EGCG組和Mix組在之表面硬度變化、平均喪失高度及表面積變化和DW組相比都有顯著較少之變化。其中,EGCG組在表面硬度方面有最高之表面硬度,優於F組及Mix組。
  牙本質樣本方面,和DW組相比,F組相比有較高之表面硬度、較少之平均喪失高度,EGCG組及Mix組則是有高之表面硬度,表面積變化則無顯著差異。
結論
  本實驗顯示,0.5M氟化鈉及400μM兒茶素及其混合溶液在體外實驗中皆能顯著抑制牙釉質及牙本質酸蝕,其中兒茶素也展示了抗牙釉質酸蝕之能力,氟化物也展示了抗牙本質酸蝕之能力。混合溶液之抑制效果非簡單之加成效果,可能的原因為兒茶素與氟化物之間可能有交互作用之存在,或是彼此的抑制途徑類似而有競爭效果,尚待進一步之研究去確認。
zh_TW
dc.description.abstractObjectives
  Dental erosion is a rising problem recently, and the frequently soft-drink consuming nowadays might be one of the reasonable attributions. The present study is aim to evaluate the effect of fluoride and EGCG against soft-drink-induced dental erosion in vitro.
Materials and methods
  A soft drink is used as acid source of erosion in the present study. 40 enamel samples and 40 dentin samples, which were made of human extracted teeth, were distributed into 4 group and received pre-treatment by deionized water (DW), 0.5M NaF (F), 400μM EGCG (EGCG), and combination of 0.5M NaF and 400μM EGCG (Mix) in rinse for 4 minutes respectively. Afterwards, the samples were immersed in the soft drink for 15 minutes for 4 times with 60 minutes interval in artificial saliva. Then, the samples were analyzed of the change of average height, surface area changing, surface hardness and surface structure after erosion by confocal laser scanning microscope, Vickers’s hardness tester, and scanning electronic microscope.
Results
  In enamel samples, the F group showed higher surface hardness in contrast to the DW group, but it made no difference in surface area change and average height. The EGCG group and the Mix group, in contrast to the DW group, showed higher surface hardness, less surface area change and lower average height. Besides, the EGCG group exhibited highest surface hardness of 4 groups.
  In dentin samples, compared to the DW group, the F group showed higher surface hardness and lower average height. In the other hand, the EGCG group and the Mix group exhibited higher surface compared to the DW group. As for surface area change, the outcomes were similar in all groups.
Conclusion
  The present study demonstrated that all of 0.5M NaF, 400μM EGCG, and combination of both rinse could reduce the amount of soft-drink-induced dental erosion in vitro. EGCG demonstrated anti-enamel-erosion effect and fluoride showed anti-dentin-erosion effect. The inhibitory effect of Mix rinse was neither simply combination effect nor the best of all. There might be a interaction or competitive effect between NaF and EGCG, and it needs further studies to assure.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:05:23Z (GMT). No. of bitstreams: 1
ntu-103-R00422023-1.pdf: 23495496 bytes, checksum: 4e9afdcba95890871463eab08a0c3472 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目 錄
口試委員會審定書 i
中文摘要 ii
ABSTRACT iii
目 錄 v
圖目錄 x
表目錄 xii
第1章 緒論 1
1.1 牙齒酸蝕 1
1.1.1 定義 1
1.1.2 成因 2
1.1.3 診斷 2
1.1.4 預防方法 2
1.2 軟性飲料 3
1.2.1 定義 3
1.2.2 與牙齒酸蝕之關係 3
1.3 牙釉質 3
1.3.1 結構 3
1.3.2 酸蝕過程 4
1.4 牙本質 5
1.4.1 結構 5
1.4.2 酸蝕過程 5
1.5 氟化物 6
1.5.1 與牙齒酸蝕之作用 6
1.6 兒茶素 7
1.6.1 與牙齒酸蝕之關係 8
1.7 唾液與人工唾液 8
1.7.1 與牙齒酸蝕之關係 8
1.7.2 人工唾液 9
第2章 實驗目的 10
第3章 實驗材料與方法 11
3.1 軟性飲料 11
3.2 測量pH值 11
3.2.1 pH計 11
3.2.2 校正步驟 11
3.2.3 測量步驟 12
3.3 牙齒樣本 12
3.3.1 樣本來源 12
3.3.2 牙齒樣本之製備 13
3.3.3 樣本分組 14
3.4 實驗溶液 14
3.5 人工唾液 15
3.5.1 成份 15
3.5.2 製備步驟 15
3.6 牙齒酸蝕過程 16
3.6.1 事前處理 16
3.6.2 酸蝕處理 16
3.6.3 事後處理 17
3.7 雷射掃描共軛焦顯微鏡 17
3.7.1 原理與特色 17
3.7.2 掃描樣本步驟: 18
3.7.3 分析影像步驟 18
3.8 維氏微小硬度計 19
3.8.1 原理 19
3.8.2 測量步驟 20
3.9 電子掃描顯微鏡 20
3.9.1 原理 20
3.9.2 測量項目 21
3.10 統計分析 21
第4章 實驗結果 22
4.1 各種溶液酸鹼值 22
4.2 雷射掃描共軛焦顯微鏡之影像 22
4.2.1 牙釉質 22
4.2.2 牙本質 22
4.3 電子掃描顯微鏡之影像 23
4.3.1 牙釉質 23
4.3.2 牙本質 23
4.4 表面硬度之變化 24
4.4.1 牙釉質 24
4.4.2 牙本質 24
4.5 平均喪失高度 24
4.5.1 牙釉質 24
4.5.2 牙本質 25
4.6 表面積之變化 25
4.6.1 牙釉質 25
4.6.2 牙本質 25
第5章 討論 26
5.1 氟化物對牙釉質之抗酸蝕效果 26
5.2 兒茶素對牙釉質之抗酸蝕效果 27
5.3 兒茶素對牙本質之抗酸蝕效果 28
5.4 氟化物對牙本質之抗酸蝕效果 29
5.5 混合溶液對牙釉質之抗酸蝕效果 30
5.6 混合溶液對牙本質之抗酸蝕效果 31
5.7 體外實驗及體內實驗之差異 32
第6章 結論 34
第7章 實驗未來展望 35
參考文獻 36
圖目錄
圖 1 pH計主要結構。 40
圖 2 硬組織研磨機 40
圖 3 超音波震盪器 41
圖 4 牙釉質樣本製備及各階段照片。 41
圖 5 酸蝕模型流程示意圖。 42
圖 6 雷射掃描共軛焦顯微鏡 43
圖 7 維氏微小硬度計 43
圖 8 維氏微小硬度計印痕示意圖及其計算式 44
圖 9 電子掃描顯微鏡。 44
圖 10 牙釉質DW組雷射顯微鏡影像及3D圖。 45
圖 11 牙釉質F組雷射顯微鏡影像及3D圖。 46
圖 12 牙釉質EGCG組雷射顯微鏡影像及3D圖。 47
圖 13 牙釉質Mix組雷射顯微鏡影像及3D圖。 48
圖 14 牙本質DW組雷射顯微鏡影像及3D圖。 49
圖 15 牙本質F組雷射顯微鏡影像及3D圖。 50
圖 16 牙本質EGCG組雷射顯微鏡影像及3D圖。 51
圖 17 牙本質Mix組雷射顯微鏡影像及3D圖。 52
圖 18 牙釉質DW組電子掃描顯微鏡影像。 53
圖 19 牙釉質F組電子掃描顯微鏡影像。 54
圖 20 牙釉質EGCG組電子掃描顯微鏡影像。 55
圖 21 牙釉質Mix組電子掃描顯微鏡影像。 56
圖 22 牙本質DW組電子掃描顯微鏡影像。 57
圖 23 牙本質F組電子掃描顯微鏡影像。 58
圖 24 牙本質EGCG組電子掃描顯微鏡影像。 59
圖 25 牙本質Mix組電子掃描顯微鏡影像。 60
圖 26 牙釉質各組在酸蝕後之表面硬度變化量(%)。 61
圖 27 牙釉質各組在酸蝕後之平均喪失高度(μm)。 61
圖 28 牙釉質各組在酸蝕後之表面積變化量(%)。 62
圖 29 牙本質各組在酸蝕後之表面硬度變化量(%)。 62
圖 30 牙本質各組在酸蝕後之平均喪失高度(μm)。 63
圖 31 牙本質各組在酸蝕後之表面積變化量(%)。 63
表目錄
表 1 人工唾液成分表 64
表 2 牙釉質樣本各組在表面硬度、平均喪失高度及表面積之變化 64
表 3 牙釉質樣本各組在表面硬度、平均喪失高度及表面積變化之統計分析 65
表 4 牙本質樣本各組在表面硬度、平均喪失高度及表面積之變化 65
表 5 牙本質樣本各組在表面硬度、平均喪失高度及表面積變化之統計分析 65
dc.language.isozh-TW
dc.title兒茶素與氟化物對於降低軟性飲料引起之牙齒酸蝕之影響:體外實驗zh_TW
dc.titleEffect of EGCG and Fluoride against Soft-drink-induced Dental Erosion: an in vitro studyen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖運炫(Yunn-Shiuan Liao),朱瑾(Jinn Chu),張曉華(Hsiao-Hua Chang),張志涵(Chih-Han Chang)
dc.subject.keyword牙齒酸蝕,軟性飲料,氟化物,兒茶素,牙釉質,牙本質,zh_TW
dc.subject.keyworddental erosion,soft drinks,fluoride,EGCG,enamel,dentin,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2014-06-25
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
22.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved