Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58011
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張煥宗(Huan-Tsung Chang)
dc.contributor.authorYa-Na Chenen
dc.contributor.author陳亞拿zh_TW
dc.date.accessioned2021-06-16T08:04:31Z-
dc.date.available2014-07-09
dc.date.copyright2014-07-09
dc.date.issued2014
dc.date.submitted2014-06-30
dc.identifier.citationChapter 1
[1] D. Vollath, “Nanomaterials: an Introduction to Synthesis, Properties and Applications”, John Wiley & Sons, 2013.
[2] C. N. R. Rao, A. Muller, and Anthony K. Cheetham, eds. “The Chemistry of Nanomaterials: Synthesis, Properties and Applications”, Vol. 1. John Wiley & Sons, 2006.
[3] G. L. Hornyak, H. F. Tibbals, and J. Dutta. “Introduction to Nanoscience”, Crc Press, 2009.
[4] G. Cao, Guozhong, “Synthesis, Properties and Applications”, London, Imperial College Press, 2004.
[5] C. C. Yang, and Y.-W. Mai, “Thermodynamics at the Nanoscale: A New Approach to the Investigation of Unique Physicochemical Properties of Nanomaterials.”, Materials Science and Engineering: R: Reports, vol. 79 pp. 1–40, 2014.
[6] N. Khlebtsov, and L. Dykman, “Biodistribution and Toxicity of Engineered Gold Nanoparticles: a Review of in Vitro and in Vivo Studies”, Chemical Society Reviews, vol. 40, pp. 1647–1671, 2011.
[7] T. Wang, X. G. Hu, and S. J. Dong, “A Renewable SERS Substrate Prepared by Cyclic Depositing and Stripping of Silver Shells on Gold Nanoparticle Microtubes”, Small, vol. 4, pp. 781–786, 2008.
[8] C.-W. Wang, Z.-H. Lin, P. Roy, and H.-T. Chang, “Detection of Mercury Ions using Silver Telluride Nanoparticles as a Substrate and Recognition Element through Surface-Enhanced Raman Scattering”, Frontiers in Chemistry, vol. 1, 2013.
[9] J. Zheng, P. R. Nicovich, and R. M. Dickson, “Highly Fluorescent Noble Metal Quantum Dots”, Annual Reviews of Physical Chemistry, vol. 58, pp. 409–431, 2007.
[10] E. Roduner, “Size Matters: Why Nanomaterials are Different”, Chemical Society Reviews, vol. 35, pp. 583–592, 2006.
[11] A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots”, Science, vol. 271, pp. 933–937, 1996.
[12] N. Schaeffer, B. Tan, C. Dickinson, M. J. Rosseinsky, A. Laromaine, D. W. McComb, M. M. Stevens, Y. Wang, L. Petit, C. Barentin, D. G. Spiller, A. I. Cooper, and R. Levy, “Fluorescent or Not? Size-Dependent Fluorescence Switching for Polymer-Stabilized Gold Clusters in the 1.1–1.7 nm Size Range”, Chemical Communications, pp. 3986–3988, 2008.
[13] H. Xu, and K. Suslick, “Sonochemical Synthesis of Highly Fluorescent Ag Nanoclusters”, ACS Nano, vol. 4, pp. 3209–3214, 2010.
[14] C.-A. J Lin, T.-Y. Yang, C.-H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J.-L. Shen, H.-H. Wang, H.-I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications”, ACS Nano, vol. 3, pp. 395–401, 2009.
[15] G. de Cremer, E. Coutino-Gonzalez, M. B. J. Roeffaers, B. Moens, J. Ollevier, M. van der Auweraer, R. Schoonheydt, P. A. Jacobs, F. C. de Schryver, J. Hofkens, D. E. de Vos, B. F. Sels, and T. Vosch, “Characterization of Fluorescence in Heat-Treated Silver-Exchanged Zeolites”, Journal of the American Chemical Society, vol. 131, pp. 3049–3056, 2009.
[16] B. Adhikari, A. Banerjee, “Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclusters and HgII Sensing”, Chemistry of Materials, vol. 22, pp. 4364–4371, 2010.
[17] J. Zheng, R. M. Dickson, “Individual Water-Soluble Dendrimer-Encapsulated Silver Nanodot Fluorescence”, Journal of the American Chemical Society, vol. 124, pp. 13982–13983, 2002.
[18] H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou, Y. Lu, “Lysozyme-Stabilized Gold Fluorescent Cluster: Synthesis and Application as Hg2+ Sensor”, Analyst, vol. 135, pp. 1406–1410, 2010.
[19] J. Yu, S. Choi, R. M. Dickson, “Shuttle-Based Fluorogenic Silver Cluster Biolabels”, Angewandte Chemie International Edition, vol. 121, pp. 324–326, 2009.
[20] J. Xie, Y. Zheng, J. Y. Ying, “Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters”, Journal of the American Chemical Society, vol. 131, pp. 888–889, 2009.
[21] Y.-H. Lin, and W.-L. Tseng, “Ultrasensitive Sensing of Hg2+ and CH3Hg+ Based on the Fluorescence Quenching of Lysozyme Type IV-Stabilized Gold Nanoclusters”, Analytical Chemistry, vol. 82, pp. 9194–9200, 2010.
[22] X. Yuan, Z. Luo, Y. Yu, Q. Yao, and J. Xie, “Luminescent Noble Metal Nanoclusters as an Emerging Optical Probe for Sensor Development”, Chemistry – an Asian Journal, vol. 8, pp. 858–871, 2013.
[23] S. Palmal, and N. R. Jana, “Gold Nanoclusters with Enhanced Tunable Fluorescence as Bioimaging Probes”, WIREs Nanomedicine and Nanobiotechnology, vol. 6, pp. 102–110, 2014.
[24] Y.-C. Shiang, C.-C. Huang, W.-Y. Chen, P.-C. Chen, and H.-T. Chang, “Fluorescent Gold and Silver Nanoclusters for the Analysis of Biopolymers and Cell Imaging”, Journal of Materials Chemistry, vol. 22, pp. 12972–12982, 2012.
[25] J. Zheng, J. T. Petty, and R. M. Dickson, “High Quantum Yield Blue Emission from Water Soluble Au8 Nanodots”, Journal of the Americal Chemical Society, vol. 125, pp. 7780–7781, 2003.
[26] J. Zheng, C. Zhang, and R. M. Dickson, “Highly Fluorescent, Water Soluble, Size-Tunable Gold Quantum Dots”, Physical Review Letters, vol. 93, pp. 077402(1–4), 2004.
[27] Y. Bao, C. Zhong, D. M. Vu, J. P. Temirov, R. B. Dyer, and J. S. Martinez, “Nanoparticle-Free Synthesis of Fluorescent Gold Nanoclusters at Physiological Temperature”, The Journal of Physical Chemistry C, vol. 111, pp. 12194–12198, 2007.
[28] O. Varnavski, G. Ramakrishna, J. Kim, D. Lee, and T. Goodson, “Critical Size for the Observation of Quantum Confinement in Optically Excited Gold Clusters”, Journal of the American Chemical Society, vol. 132, pp.16–17, 2010.
[29] M. Yu, C. Zhou, J. Liu, J. D. Hankins, and J. Zheng, “Luminescent Gold Nanoparticles with pH-Dependent Membrane Adsorption”, Journal of the American Chemical Society, vol. 133, pp. 11014–11017, 2011.
[30] L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-Pot Synthesis of Near-Infrared Fluorescent Gold Clusters for Cellular Lifetime Imaging”, Small, vol. 7, pp. 2614–2620, 2011.
[31] C.-C. Huang, Z. Yang, K.-H. Lee, and H.-T. Chang, “Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II)”, Angewandte Chemie, vol. 119, pp. 6948–6952, 2007.
[32] C.-C. Huang, H.-Y. Liao, Y.-C. Shiang, Z.-H. Lin, Z. Yang, and H.-T. Chang, “Synthesis of Wavelength-Tunable Luminescent Gold and Gold/Silver Nanodots”, Journal of Materials Chemistry, vol. 19, pp. 755–759, 2009.
[33] H. Kawasaki, K. Hamaguchi, I. Osaka, and R. Arakawa “pH-Dependent Synthesis of Pepsin-Mediated Gold Nanoclusters with Blue Green and Red Fluorescent Emission”, Advanced Functional Materials, vol. 21, pp. 3508–3515, 2011.
[34] F. Wen, Y. Dong, L. Feng, S. Wang, S. Zhang, and X. Zhang, “Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing”, Analytical Chemistry, vol. 83, pp. 1193–1196, 2011.
[35] P. L. Xavier, K. Chaudhari, P. K. Verma, S. K. Pal, T. Pradeep, “Luminescent Quantum Clusters of Gold in Transferrin Family Protein, Lactoferrin Exhibiting FRET”, Nanoscale, vol. 2, pp. 2769–2776, 2010.
[36] Y. Wang, J. Chen, J. Irudayaraj, “Nuclear Targeting Dynamics of Gold Nanoclusters for Enhanced Therapy of HER2+ Breast Cancer”, ACS Nano, vol. 5, 9718–9725, 2011.
[37] H. Lin, L. Li., C. Lei, X. Xu, Z. Nie, M. Guo, Y. Huang, S. Yao, “Immune-Independent and Label-Free Fluorescent Assay for Cystatin C Detection Based on Protein-Stabilized Au Nanoclusters”, Biosensors and Bioelectronics, vol. 41, pp. 256–261, 2013.
[38] P.-C. Chen, C.-K. Chiang, and H.-T. Chang, “Synthesis of Fluorescent BSA-Au NCs for the Detection of Hg2+”, Journal of Nanoparticle Research, vol. 15, pp. 1336 (1–10), 2013.
[39] L.-C. Ho, C.-W. Wang, P. Roy, and H.-T. Chang, “Sensitive and Selective Gold Nanomaterials Based Optical Probes”, Journal of the Chinese Chemical Society, vol. 61, pp. 163–174, 2013.
[40] P.-C. Chen, P. Roy, L.-Y. Chen, Y.-N. Chen, and H.-T. Chang, “Gold Nanomaterials Based Absorption and Fluorescence Detection of Mercury, Lead, and Copper”, Interactions of Nanomaterials with Emerging Environmental Contaminants, ACS Symposium Series, American Chemical Society, Chapter 3, pp. 39–62, 2013.
[41] M. A. H. Muhammed, P. K. Verma, S. K. Pal, A. Retnakumari, M. Koyakutty, S. Nair, and T. Pradeep, “Luminescent Quantum Clusters of Gold in Bulk by Albumin-Induced Core-Etching of Nanoparticles: Metal Ion Sensing, Metal-Enhanced Luminescence, and Biolabeling”, Chemistry – an European Journal, vol. 16, pp. 10103–10112, 2010.
[42] J. Xie, Y. Zheng, and J. Y. Ying, “Highly Selective and Ultrasensitive Detection of Hg2+ based on Fluorescence Quenching of Au Nanoclusters by Hg2+-Au+ Interactions”, Chemical Communications, vol. 46, pp. 961–963, 2010.
[43] K.-Y. Pu, Z. Luo, K. Li, J. Xie, and B. Liu, “Energy Transfer between Conjugated-Oligoelectrolyte Substituted POSS and Gold Nanocluster for Multicolor Intracellular Detection of Mercury Ion”, The Journal of Physical Chemistry C, vol. 115, pp. 13069–13075, 2011.
[44] J.-M. Liu, J.-T. Chen, and X.-P. Yan, “Near Infrared Fluorescent Trypsin Stabilized Gold Nanoclusters as Surface Plasmon Enhanced Energy Transfer Biosensor and in Vivo Cancer Imaging Bioprobe”, Analytical Chemistry, vol. 85, pp. 3238–3245, 2013.
[45] Y. Wang, J.-T. Chen, and X.-P. Yan, “Fabrication of Transferrin Functionalized Gold Nanoclusters/Graphene Oxide Nanocomposite for the Turn-On Near-Infrared Fluorescent Bioimaging of Cancer Cells and Small Animals”, Analytical Chemistry, vol. 85, pp. 2529–2535, 2013.
[46] P. Lusty, and A. Walters, “Rare Earth Elements”, British Geological Survey, 2010, 1–45.
[47] C. G. dos Remedios, “Lanthanide Ion Probes of Calcium-Binding Sites on Cellular Membranes”, Cell Calcium, vol. 2, pp. 29–51, 1981.
[48] E. Heckert, A. Karakoti, S. Seal, and W. T. Self, “The Role of Cerium Redox State in the SOD Mimetic Activity of Nanoceria”, Biomaterials, vol. 29, pp. 2705–2709, 2008.
[49] R. Le Toquin, and A. K. Cheetham, “Red-Emitting Cerium-Based Phosphor Materials for Solid-State Lighting Applications”, Chemical Physics Letters, vol. 423, pp. 352–356, 2006.
[50] S. Uysal Satilmis, A. Ege, M. Ayvacikli, A. Khatab, E. Ekdal, E. J. Popovici, M. Henini, and N. Can, “Luminescence Characterization of Cerium Doped Yttrium Gadolinium Aluminate Phosphors”, Optical Materials, vol. 34, pp. 1921–1925, 2012.
[51] B. S. Sekhon, and S. L. Chopra, “A Thermodynamic Study of the Complexation Reaction for Some Amino Acids with Cerium(III) and Yttrium(III)”, Thermochimica Acta, vol. 7, pp. 151–157, 1973.
[52] S.-F. Li, X.-M. Zhang, Z.-J. Yao, R. Yu, F. Huang, and X.-W. Wei, “Enhanced Chemiluminescence of the Rhodamine 6G-Cerium(IV) System by Au-Ag Alloy Nanoparticles”, Journal of Physical Chemistry C, vol. 113, pp. 15586–15592, 2009.
[53] T. S. Sreeprasad, M. S. Maliyekkal, K. Deepti, K. Chaudhari, P. L. Xavier, and T. Pradeep, “Transparent, Luminescent, Antibacterial and Patternable Film Forming Composites of Graphene Oxide/Reduced Graphene Oxide”, ACS Applied Materials and Interfaces, vol. 3, pp. 2643–2654, 2011.
[54] K. Chaudhari, P. L. Xavier, and T. Pradeep, “Understanding the Evolution of Luminescent Gold Quantum Clusters in Protein Templates”, ACS Nano, vol. 5, pp. 8816–8827, 2011.
[55] W.-Y. Chen, J.-Y. Lin, W.-J. Chen, L.-Y. Luo, E.-W. G. Diau, and Y.-C. Chen, “Functional Gold Nanoclusters as Antimicrobial Agents for Antibiotic-Resistant Bacteria”, Nanomedicine, vol. 5, pp. 755–764, 2010.
[56] Y. Chen, Y. Wang, C. Wang, W. Li, H. Zhou, H. Jiao, Q. Lin, and C. Yu, “Papain-Directed Synthesis of Luminescent Gold Nanoclusters and the Sensitive Detection of Cu2+”, Journal of Colloid and Interface Science, vol. 396, pp. 63–68, 2013.
[57] C. J. Lin, T. Yang, C. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. Shen, H. Wang, H. Yeh, et al, “Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Application”, ACS Nano, vol. 3, pp. 395–401, 2009.
[58] L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-Pot Synthesis of Near-Infrared Fluorescent Gold Clusters for Cellular Fluorescence Lifetime Imaging”, Small, vol. 7, pp. 2614–2620, 2011.
[59] L. Shang, R. M. Dorlich, S. Brandholt, R. Schneider, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “Facile Preparation of Water Soluble Fluorescent Gold Nanoclusters for Cellular Imaging Applications”, Nanoscale, vol. 3, pp. 2009–2014, 2011.
[60] C.-L. Liu, M.-L. Ho, Y.-C. Chen, C.-C. Hsieh, Y.-C. Lin, Y.-H. Wang, M.-J. Yang, H.-S. Duan, B.-S. Chen, J.-F. Lee, et al, “Thiol-Functionalized Gold Nanodots: Two-Photon Absorption Property and Imaging in Vitro”, Journal of Physical Chemistry C, vol. 113, 21082–21089, 2009.
[61] L. Polavarapu, M. Manna, and Q.-H. Xu, “Biocompatible Glutathione Capped Gold Clusters as One- and Two- Photon Excitation Fluorescence Contrast Agents for Live Cells Imaging”, Nanoscale, vol. 3, pp. 429–434, 2011.
[62] S. Palmal, S. Basiruddin, A. R. Maity, S. C. Ray, and N. R. Jana, “Thiol-Directed Synthesis of Highly Fluorescent Gold Clusters and Their Conversion into Stable Imaging Nanoprobes”, Chemistry – an European Journal, vol. 19, pp. 943–949, 2013.
[63] S.-Y. Lin, N. T. Chen, S.-P. Sun, L.-W. Lo, C.-S. Yang, “Ligand Exchanged Photoluminescent Gold Quantum Dots Functional with Leading Peptides for Nuclear Targeting and Intracellular Imaging”, Chemical Communications, pp. 4762–4764, 2008.
[64] S.-Y. Lin, N.-T. Chen, S.-P. Sun, J. C. Chang, Y.-C. Yang, C. S. Yang, and L.-W. Lo, “The Protease-Mediated Nucleus Shuttle of Subnanometer Gold Quantum Dots for Real-Time Monitoring of Apoptotic Cell Death”, Journal of American Chemical Society, vol. 132, pp. 8309–8315, 2010.
[65] T. Chen, S. Xu, T. Zhao, L. Zhu, D. Wei, Y. Li, H. Zhang, and C. Zhao, “Gold Nanocluster-Conjugated Amphiphilic Block Copolymer for Tumor-Targeted Drug Delivery”, ACS Applied Materials and Interfaces, vol. 4, pp. 5766–5774, 2012.
[66] D.-H. Hu, Z.-H. Sheng, P.-F. Zhang, D.-Z. Yang, S.-H. Liu, P. Gong, D.-Y. Gao, S.-T. Fang, Y.-F. Ma, L.-T. Cai, “Hybrid Gold-Gadolinium Nanoclusters for Tumor-Targeted NIRF/CT/MRI Triple-Modal Imaging In Vivo”, Nanoscale, vol. 5, pp. 1624–1628, 2013.
[67] X. L. Guevel, N. Daum, and M. Schneider, “Synthesis and Characterization of Human Transferrin-Stabilized Gold Nanoclusters”, Nanotechnology, vol. 22, 275103, 2011.
[68] C.-L. Liu, H.-T. Wu, Y.-H. Hsiao, C.-W. Lai, C.-W. Shih, Y.-K. Peng, K.-C. Tang, H.-W. Chang, Y.-C. Chien, J.-K. Hsiao, J.-T. Cheng, and P.-T. Chou, “Insulin-Directed Synthesis of Fluorescent Gold Nanoclusters: Preservation of Insulin Bioactivity and Versatility in Cell Imaging”, Angewandte Chemie International Edition, vol. 50, pp. 7056–7060, 2011.
[69] Y. Kong, J. Chen, F. Gao, R. Brydson, B. Johnson, G. Heath, Y. Zhang, L. Wu, and D. Zhou, “Near-Infrared Fluorescent Ribonuclease-A-Encapsulated Gold Nanoclusters: Preparation, Characterization, Cancer Targeting and Imaging”, Nanoscale, vol. 5, pp. 1009–1017, 2013.
[70] J. Wang, G. Zhang, Q. Li, H. Jiang, C. Liu, C. Amatore, X. Wang, “In Vivo Self-Bio-Imaging of Tumors Through in Situ Biosynthesized Fluorescent Gold Nanoclusters”, Scientific Reports, vol. 3, pp. 1157, 2013.
Chapter 2
[1] A. Roos, and W. F. Boron, “Intracellular pH”, Physiological Reviews, vol. 61, pp. 296–434, 1981.
[2] S. Ohkuma, and B. Poole, “Fluorescence Probe Measurement of the Intralysosomal pH in Living Cells and the Perturbation of pH by Various Agents”, Proceedings of the National Academy of Sciences of the United States of America, vol. 75, pp. 3327–3331, 1978.
[3] I. F. Tannock, and D. Rotin, “Acid pH in Tumors and Its Potential for Therapeutic Exploitation”, Cancer Research, vol. 49, pp. 4373–4384, 1989.
[4] H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, “Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: a Review” Journal of Controlled Release, vol. 65, pp. 271–284, 2000.
[5] A. M. Dennis, W. J. Rhee, D. Sotto, S. N. Dublin, and G. Bao, “Quantum Dot-Fluorescent Protein FRET Probes for Sensing Intracellular pH”, ACS Nano, vol. 6, pp. 2917–2924, 2000.
[6] J. Han, and K. Burgess, “Fluorescent Indicators for Intracellular pH”, Chemical Reviews, vol. 110, pp. 2709–2728, 2010.
[7] L.-C. Ho, C.-M. Ou, C.-L. Li, S.-Y. Chen, H.-W. Li, and H.-T. Chang, “Sensitive pH Probes of Retro-Self-Quenching Fluorescent Nanoparticles”, Journal of Materials Chemistry B, vol. 1, pp. 2425–2432, 2013.
[8] R. C. Somers, R. M. Lanning, P. T. Snee, A. B. Greytak, R. K. Jain, M. G. Bawendi, and D. G. Nocera, “A Nanocrystal-Based Ratiometric pH Sensor for Natural pH Ranges”, Chemical Science, vol. 3, pp. 2980–2985, 2012.
[9] W. Shi, X. Li, and H. Ma, “A Tunable Ratiometric pH Sensor Based on Carbon Nanodots for the Quantitative Measurement of the Intracellular pH of Whole Cells”, Angewandte Chemie International Edition, vol. 124, pp. 6538–6541, 2012.
[10] X. Wang, J. A. Stolwijk, T. Lang, M. Sperber, R. J. Meier, J. Wegener, and O.S. Wolfbeis, “Ultra-Small, Highly Stable, and Sensitive Dual Nanosensors for Imaging Intracellular Oxygen and pH in Cytosol”, Journal of the American Chemical Society, vol. 134, pp. 17011–17014, 2012.
[11] Y.-P. Chen, H.-A. Chen, Y. Hung, F.-C. Chien, P. Chen, and C.-Y. Mou, “Surface Charge Effect in Intracellular Localization of Mesoporous Silica Nanoparticles as Probed by Fluorescent Ratiometric pH Imaging”, RSC Advances, vol. 2, pp. 968–973, 2012.
[12] K. P. McNamara, T. Nguyen, G. Dumitrascu, J. Ji, N. Rosenzweig, and Z. Rosenzweig, “Synthesis, Characterization, and Application of Fluorescence Sensing Lipobeads for Intracellular pH Measurements”, Analytical Chemistry, vol. 73, pp. 3240–3246, 2001.
[13] M. A. O. Magalhaes, D. R. Larson, C. C. Mader, J. J. Bravo-Cordero, H. Gil-Henn, M. Oser, X. Chen, A. J. Koleske, and J. J. Condeelis, “Cortactin Phosphorylation Regulates Cell Invasion through a pH-Dependent Pathway”, Cell Biology, vol. 195, pp. 903–920, 2011.
[14] S. Al-Nasiry, N. Geusens, M. Hanssens, C. Luyten, and R. Pijnenborg, “The Use of Alamar Blue Assay for Quantitative Analysis of Viability, Migration and Invasion of Choriocarcinoma Cells”, Human Reproduction, vol. 22, pp. 1304–1309, 2007.
[15] M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Shatz, and R. Jin, “Correlating the Crystal Structure of a Thiol-Protected Au25 Cluster and Optical Properties”, Journal of the American Chemical Society, vol. 130, pp. 5883–5885, 2008.
[16] P.-C. Chen, C.-K. Chiang, and H.-T. Chang, “Synthesis of Fluorescent BSA-Au NCs for the Detection of Hg2+”, Journal of Nanoparticle Research, vol. 15, pp. 1336 (1–10), 2013.
[17] J. Xie, Y. Zheng, J. Y. Ying, “Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters”, Journal of the American Chemical Society, vol. 131, pp. 888–889, 2009.
[18] P. N. Hazin, C. Lakshminarayan, L. S. Brinen, J. L. Knee, J. W. Bruno, W. Streib, and K. Folting, “Luminescence Spectra and Lifetimes of Cerium(III) Compounds as Indicators of Solution Behavior and Radiative Efficiency” Inorganic Chemistry, vol. 27, pp. 1393–1400, 1988.
[19] X. Le Guevel, B. Hotzer, G. Jung, K. Hollemeyer, V. Trouillet, and M. Schneider, “Formation of Fluorescent Metal (Au, Ag) Nanoclusters Capped in Bovine Serum Albumin Followed by Fluorescence Spectroscopy”, Journal of Physical Chemistry C, vol. 115, pp. 10955–10963, 2011.
[20] J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different Sized Luminescent Gold Nanoparticles”, Nanoscale, vol. 4, pp. 4073–4083, 2012.
[21] A. Beeby, S. W. Botchway, I. M. Clarkson, S. Faulkner, A. W. Parker, D. Parker, and J. A. G. Williams, “Luminescence Imaging Micrscopy and Lifetime Mapping Using Kinetically Stable Lanthanide(III) Complexes”, Journal of Photochemistry and Photobiology B, vol. 57, pp. 83–89, 2000.
[22] Y. Kataoka, S. Shinoda, and H. Tsukube, “Transferrin-Terbium Complexes as Luminescent pH Sensing Devices”, Journal of Nanoscience and Nanotechnology, vol. 9, pp. 655–657, 2000.
[23] X. Le Guevel, N. Daum, and M. Schneider, “Synthesis and Characterization of Human Transferrin-Stabilized Gold Nanoclusters”, Nanotechnology, vol. 22, pp. 275103, 2011.
[24] T. Gunnlaugsson, J. P. Leonard, K. Senechal, and A. J. Harte, “pH Responsive Eu(III)-Phenanthroline Supramolecular Conjugate: Novel ‘Off-On-Off’ Luminescent Signaling in the Physiological pH Range”, Journal of the American Chemical Society, vol. 125, pp. 12062–12063, 2003.
[25] Z. Shang, C. Lu, X. Lu, and L. Gao, “Studies on Syntheses and Properties of Novel CeO2/Polyimide Nanocomposite Films from Ce(Phen)3 Complex”, Polymer, vol. 48, pp. 4041–4046, 2007.
[26] E. Mercadelli, G. Ghetti, A. Sanson, R. Bonelli and S. Albonetti, “Synthesis of CeO2 Nano-Aggregates of Complex Morphology” Ceramics International, vol. 39, pp. 629–634, 2013.
[27] L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M. Cavazzini, and E. Tondello, “Design of Luminescent Lanthanide Complexes: From Molecules to Highly Efficient Photo-Emitting Materials”, Coordination Chemistry Reviews, vol. 254, pp. 487–505, 2010.
[28] S. Shinoda, and H. Tsukube, “Luminescent Lanthanide Complexes as Analytical Tools in Anion Sensing, pH Indication and Protein Recognition”, Analyst, vol. 136, pp. 431–435, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58011-
dc.description.abstract本論文之主軸為以牛血清蛋白為模板合成新穎鈰�金複合金屬奈米團簇(BSA-Ce/Au NCs)。只需一步驟加熱合成,即可得到在325奈米的紫外光激發下,可以得到具有兩個放光波峰的螢光材料,峰值分別位於410奈米以及650奈米。410奈米的放光是源自於鈰(IV)離子與牛血清蛋白形成之錯合物,而650奈米為以蛋白質為模板合成的金奈米團簇之特徵放光波峰。實驗發現,410奈米的螢光強度會受到環境酸鹼值的改變而改變,且在鹼性環境下擁有較高的螢光強度,而650奈米放光峰的螢光強度並不受環境酸鹼值的影響,因此利用這兩個放光峰的光強度比值,可以量測出環境的酸鹼值。根據細胞毒性測試的實驗證明可以得知此複合式奈米材料具有相當好的生物相容性。此外,此材料之螢光十分穩定,其螢光強度在長時間紫外光的照射下及高鹽類濃度的環境下亦無顯著的改變。由此可知,牛血清蛋白-鈰�金複合金屬奈米團簇極適合做為生物系統中酸鹼值的螢光比值顯影劑。而藉由觀察本材料於海拉細胞內的共聚焦螢光顯微鏡影像,並調整海拉細胞環境的酸鹼值,發現此奈米團簇之放光性質仍然會因環境酸鹼值改變而有所不同,證明此奈米團簇感測器可以成功應用於觀察生物系統下酸鹼值的檢測。zh_TW
dc.description.abstractNovel bovine serum albumin (BSA) templated cerium/gold nanoclusters have been prepared using a facile one-pot heating synthetic method. The as-prepared nanoclusters, when irradiated with 325 nm UV light, possess two fluorescence emission peaks at 410 nm and 650 nm. The emission maximum at 410 nm is attributed to the contribution of Ce4+ complexed with BSA, and the emission at 650 nm is in the characteristic emission range of BSA-Au NCs. The peak at 410 nm is found to be sensitive to the pH values of the environment, while the emission at 650 nm is pH-inert. Therefore, BSA-Ce/Au NCs with emission peaks located at 410 nm and 650 nm can serve as a ratiometric pH sensor, using the ratio I410 / I650. Using protein as the synthetic template, BSA-Ce/Au NCs are found to be highly biocompatible, and its fluorescence intensities are stable against salt and constant irradiation. Confocal images of HeLa cells have proven that this probe can be used for detection in biological systems, and that altering the environmental pH of the cells, BSA-Ce/Au NCs could reflect the resulting intracellular changes.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:04:31Z (GMT). No. of bitstreams: 1
ntu-103-R01223101-1.pdf: 3161791 bytes, checksum: 46a8c82454c532700a80cf5fa12aedc0 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iv
ABSTRACT v
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Noble Metal Nanomaterials 2
1.2 Noble Metal Nanoclusters 3
1.3 Synthesis of Gold Nanoclusters 4
1.3.1 Dendrimer / Polymer-Stabilized Au NCs 4
1.3.2 Thiol-Capped Au NCs 5
1.3.3 Protein-Templated Au NCs 6
1.4 Applications of Gold Nanoclusters 6
1.4.1 Fluorescent Au NCs as Sensors 7
1.4.2 Fluorescent Au NCs as Bioimaging Agents 8
1.5 Research Motives 8
1.6 References 10
Chapter 2 One-Pot Synthesis of BSA-Ce/Au NCs as Ratiometric pH Sensors 27
2.1 Introduction 28
2.2 Experimental Section 29
2.2.1 Chemicals and Materials 29
2.2.2 Synthesis of BSA-Ce/Au NCs 30
2.2.3 Spectroscopic Characterization of BSA-Ce/Au NCs 30
2.2.4 Thermo Gravimetric Analysis (TGA) 31
2.2.5 MALDI-MS measurements 31
2.2.6 Cell Culture 32
2.2.7 Cell Viability Assay 32
2.2.8 Cellular uptake of BSA-Ce/Au NCs 32
2.2.9 Confocal fluorescence cell imaging 33
2.3 Results and Discussion 33
2.3.1 Optical properties of BSA-Ce/Au NCs 33
2.3.2 Formation of BSA-Ce complexes 35
2.3.3 One-Pot vs. Two-Step Synthesis of BSA-Ce/Au NCs 35
2.3.4 Precipitation and Re-Suspension of BSA-Ce/Au NCs 36
2.3.5 MALDI-MS Analysis of BSA-Ce/Au NCs 37
2.3.6 X-ray Photoelectron Spectroscopy Characterization of BSA-Ce/Au NCs 38
2.3.7 Thermogravimetric Analysis of BSA-Ce/Au NCs 38
2.3.8 pH-dependent properties and biocompatibility 39
2.3.9 HeLa cell fluorescence imaging 40
2.4 Conclusion 40
2.5 References 42
dc.language.isoen
dc.title螢光鈰�金奈米團簇之合成與酸鹼值偵測zh_TW
dc.titleSynthesis of Fluorescent Cerium/Gold Nanoclusters as pH Sensorsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳秀梅(Shou-Mei Wu),黃志清(Chih-Ching Huang),陳建甫(Chien-Fu Chen)
dc.subject.keyword鈰,金,奈米團簇,細胞影像,酸鹼感測器,zh_TW
dc.subject.keywordcerium,gold,imaging,pH sensor,nanoclusters,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2014-06-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
3.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved