請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57996
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳勁吾(Chin-Wu Chen) | |
dc.contributor.author | Tung-Yuan Hou | en |
dc.contributor.author | 侯統源 | zh_TW |
dc.date.accessioned | 2021-06-16T08:04:19Z | - |
dc.date.available | 2014-07-08 | |
dc.date.copyright | 2014-07-08 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-01 | |
dc.identifier.citation | Bastow, I. (2010), 4.3-4.4-Receiver Functions, University of Bristol, UK. website: http://crystal2plate.gm.univ-montp2.fr/SAC/Lecture-4.3.pdf
Camp, V. E., and M. E. Ross (2004), Mantle dynamics and genesis of mafic magmatism in the intermontane Pacific Northwest, Journal of Geophysical Research: Solid Earth, 109(B8), B08204. Carlson, R. W., and W. K. Hart (1987), Crustal genesis on the Oregon Plateau, Journal of Geophysical Research: Solid Earth, 92(B7), 6191-6206. Carlson, R. W., D. E. James, M. J. Fouch, T. L. Grove, W. K. Hart, A. L. Grunder, R. A. Duncan, G. R. Keller, S. H. Harder, and C. R. Kincaid (2005), On the cause of voluminous magmatism in the northwestern united states, Geological Society of America Abstracts with Programs, 37, 125. Chen, C.-W., D. E. James, M. J. Fouch, and L. S. Wagner (2013), Lithospheric structure beneath the High Lava Plains, Oregon, imaged by scattered teleseismic waves, Geochemistry, Geophysics, Geosystems, 14(11), 4835-4848. Christiansen, R. L., and E. H. McKee (1978), Late Cenozoic volcanic and tectonic evolution of the Great Basin and Columbia Intermontane regions, Geological Society of America Memoirs, 152, 283-312. Cox, C., G. R. Keller, and S. H. Harder (2013), A controlled-source seismic and gravity study of the High Lava Plains (HLP) of Eastern Oregon, Geochemistry, Geophysics, Geosystems, 14(12), 5208-5226. Cross, T. A., and R. H. Pilger (1978), Constraints on absolute motion and plate interaction inferred from Cenozoic igneous activity in the western United States, American Journal of Science, 278(7), 865-902. Druken, K. A., M. D. Long, and C. Kincaid (2011), Patterns in seismic anisotropy driven by rollback subduction beneath the High Lava Plains, Geophysical Research Letters, 38(13), L13310. Eagar, K. C., M. J. Fouch, D. E. James, and R. W. Carlson (2011), Crustal structure beneath the High Lava Plains of eastern Oregon and surrounding regions from receiver function analysis, Journal of Geophysical Research: Solid Earth, 116(B2), B02313. Ford, M. T., A. L. Grunder, and R. A. Duncan (2013), Bimodal volcanism of the High Lava Plains and Northwestern Basin and Range of Oregon: Distribution and tectonic implications of age-progressive rhyolites, Geochemistry, Geophysics, Geosystems, 14(8), 2836-2857. Frederiksen, A. W., and M. G. Bostock (2000), Modelling teleseismic waves in dipping anisotropic structures, Geophysical Journal International, 141(2), 401-412. Graham, D. W., M. R. Reid, B. T. Jordan, A. L. Grunder, W. P. Leeman, and J. E. Lupton (2009), Mantle source provinces beneath the Northwestern USA delimited by helium isotopes in young basalts, Journal of Volcanology and Geothermal Research, 188(1–3), 128-140. Gurrola, H., G. E. Baker, and J. B. Minster (1995), Simultaneous time-domain deconvolution with application to the computation of receiver functions, Geophysical Journal International, 120(3), 537-543. Hales, T. C., D. L. Abt, E. D. Humphreys, and J. J. Roering (2005), A lithospheric instability origin for Columbia River flood basalts and Wallowa Mountains uplift in northeast Oregon, Nature, 438(7069), 842-845. Hanson-Hedgecock, S., L. S. Wagner, M. J. Fouch, and D. E. James (2012), Constraints on the causes of mid-Miocene volcanism in the Pacific Northwest US from ambient noise tomography, Geophysical Research Letters, 39(5), L05301. Hopper, E., H. A. Ford, K. M. Fischer, V. Lekic, and M. J. Fouch (2014), The lithosphere–asthenosphere boundary and the tectonic and magmatic history of the northwestern United States, Earth and Planetary Science Letters(0). Jordan, B. T., A. L. Grunder, R. A. Duncan, and A. L. Deino (2004), Geochronology of age-progressive volcanism of the Oregon High Lava Plains: Implications for the plume interpretation of Yellowstone, Journal of Geophysical Research: Solid Earth, 109(B10), B10202. Kincaid, C., K. A. Druken, R. W. Griffiths, and D. R. Stegman (2013), Bifurcation of the Yellowstone plume driven by subduction-induced mantle flow, Nature Geoscience, 6(5), 395-399. Langston, C. A. (1979), Structure under Mount Rainier, Washington, inferred from teleseismic body waves, Journal of Geophysical Research: Solid Earth, 84(B9), 4749-4762. Leahy, G. M., R. L. Saltzer, and J. Schmedes (2012), Imaging the shallow crust with teleseismic receiver functions, Geophysical Journal International, 191(2), 627-636. Lin, F.-C., M. H. Ritzwoller, Y. Yang, M. P. Moschetti, and M. J. Fouch (2011), Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States, Nature Geoscience, 4(1), 55-61. Long, M. D., H. Gao, A. Klaus, L. S. Wagner, M. J. Fouch, D. E. James, and E. Humphreys (2009), Shear wave splitting and the pattern of mantle flow beneath eastern Oregon, Earth and Planetary Science Letters, 288(3–4), 359-369. Long, M. D., C. B. Till, K. A. Druken, R. W. Carlson, L. S. Wagner, M. J. Fouch, D. E. James, T. L. Grove, N. Schmerr, and C. Kincaid (2012), Mantle dynamics beneath the Pacific Northwest and the generation of voluminous back-arc volcanism, Geochemistry, Geophysics, Geosystems, 13(8), Q0AN01. McBirney, A. R. (1978), Volcanic Evolution of the Cascade Range, Annual Review of Earth and Planetary Sciences, 6, 437-456. Nagaya, M., H. Oda, H. Akazawa, and M. Ishise (2008), Receiver Functions of Seismic Waves in Layered Anisotropic Media: Application to the Estimate of Seismic Anisotropy, Bulletin of the Seismological Society of America, 98(6), 2990-3006. Pesce, K. A. (2010), Comparation of Reciever Function Deconvolution Techniques, 61 pp, Massachusetts Institute of Technology. Pierce, K. L., and L. A. Morgan (2009), Is the track of the Yellowstone hotspot driven by a deep mantle plume? — Review of volcanism, faulting, and uplift in light of new data, Journal of Volcanology and Geothermal Research, 188(1–3), 1-25. Ritzwoller, M. H., F.-C. Lin, and W. Shen (2011), Ambient noise tomography with a large seismic array, Comptes Rendus Geoscience, 343(8–9), 558-570. Rondenay, S. (2009), Upper Mantle Imaging with Array Recordings of Converted and Scattered Teleseismic Waves, Surv Geophys, 30(4-5), 377-405. Savage, M. K. (1998), Lower crustal anisotropy or dipping boundaries? Effects on receiver functions and a case study in New Zealand, Journal of Geophysical Research: Solid Earth, 103(B7), 15069-15087. Schellart, W. P., D. R. Stegman, and J. Freeman (2008), Global trench migration velocities and slab migration induced upper mantle volume fluxes: Constraints to find an Earth reference frame based on minimizing viscous dissipation, Earth-Science Reviews, 88(1–2), 118-144. Shoemaker, K. A. (2004), The tectonomagmatic evolution of the late Cenozoic Owyhee Plateau, Northwestern United States, Miami University. Smith, R. B., M. Jordan, B. Steinberger, C. M. Puskas, J. Farrell, G. P. Waite, S. Husen, W.-L. Chang, and R. O'Connell (2009), Geodynamics of the Yellowstone hotspot and mantle plume: Seismic and GPS imaging, kinematics, and mantle flow, Journal of Volcanology and Geothermal Research, 188(1–3), 26-56. Till, C. B., T. L. Grove, R. W. Carlson, J. M. Donnelly-Nolan, M. J. Fouch, L. S. Wagner, and W. K. Hart (2013), Depths and temperatures of <10.5 Ma mantle melting and the lithosphere-asthenosphere boundary below southern Oregon and northern California, Geochemistry, Geophysics, Geosystems, 14(4), 864-879. Trench, D., A. Meigs, and A. Grunder (2012), Termination of the northwestern Basin and Range province into a clockwise rotating region of transtension and volcanism, southeast Oregon, Journal of Structural Geology, 39(0), 52-65. Wagner, L. S., D. W. Forsyth, M. J. Fouch, and D. E. James (2010), Detailed three-dimensional shear wave velocity structure of the northwestern United States from Rayleigh wave tomography, Earth and Planetary Science Letters, 299(3–4), 273-284. Wagner, L. S., M. J. Fouch, D. E. James, and S. Hanson-Hedgecock (2012), Crust and upper mantle structure beneath the Pacific Northwest from joint inversions of ambient noise and earthquake data, Geochemistry, Geophysics, Geosystems, 13(12), Q0AN03. Wagner, L. S., and M. D. Long (2013), Distinctive upper mantle anisotropy beneath the High Lava Plains and Eastern Snake River Plain, Pacific Northwest, USA, Geochemistry, Geophysics, Geosystems, 14(10), 4647-4666. Wernicke, B., G. J. Axen, and J. K. Snow (1988), Basin and Range extensional tectonics at the latitude of Las Vegas, Nevada, Geological Society of America Bulletin, 100(11), 1738-1757. West, J. D., and M. J. Fouch (2012), EMERALD: A Web Application for Seismic Event Data Processing, Seismological Research Letters, 83(6), 1061-1067. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57996 | - |
dc.description.abstract | High Lava Plains與奧懷希高原(Owyhee Plateau)位於美國西北傍太平洋地區(Pacific Northwest)奧勒岡(Oregon)州東部。自中新世(Miocene)以來,此區域發生大量劇烈且持續的火山活動,包括於一千六百六十萬年前(16.6 Ma)所噴發的哥倫比亞河洪流玄武岩(Columbia River flood basalts)。之後於約一千兩百萬年前(12 Ma)開始發展出兩條隨時間遷徙的火山軌跡,即著名的蛇河平原-黃石公園(Snake River Plain-Yellowstone)與High Lava Plains,此兩條火山軌跡約以奧懷希高原為中心,分別往東北與西北方向發展。先前的研究發現High Lava Plains地殼中體波的泊松比(Poisson’s ratio)較高,並且在此區域地殼與淺部地幔中S波波速皆較低。另一方面,奧懷希高原相較於周圍火山活動地區則相對平靜。過去的震波成像研究指出此處有較厚的地殼,環境噪訊成像亦顯示奧懷希高原地殼中的S波波速相對於周圍區域高,支持其為一未受火山活動干擾的微型陸塊。散射波移位成像與Sp接收函數均發現High Lava Plains與奧懷希高原區域中有較薄的岩石圈。本研究利用接收函數(receiver functions)進一步分辨High Lava Plains與奧懷希高原地殼與淺部地幔內不連續面的分布情形。我們選用146個High Lava Plains與USArray寬頻地震網在此區域的測站,在2004年到2009年間記錄的遠震資料進行接收函數分析,觀察Ps轉換波相的到時與波形特徵,推算其對應的不連續面深度與分布。我們發現High Lava Plains岩石圈中普遍存在明顯的低速不連續面的訊號,暗示地殼仍受到熱作用的影響,並可能有部分熔融。High Lava Plains的淺部地幔約50公里深處與奧懷希高原下75公里深皆發現顯著低速不連續面,可能代表岩石圈與軟流圈的交界。我們認為High Lava Plains火山軌跡的起源與胡安•德富卡隱沒板塊roll back所牽動弧後擴張的作用有關。 | zh_TW |
dc.description.abstract | The High Lava Plains and the Owyhee Plateau are located in the eastern Oregon, Pacific Northwest, USA. The Pacific Northwest has experienced continuous intraplate volcanism from the mid-Miocene to present, including the Columbia River flood basalts and the Steens Mountains flood basalts which erupted 16.6 Ma ago. In addition, there are two prominent age-progressive volcanic tracks, the Snake River Plain-Yellowstone and the High Lava Plains, both of which appear to have originated from near the Owyhee Plateau at approximately 12 Ma. Previous seismic studies have characterized the High Lava Plains with thinned crust, high Poisson’s ratio and low S-wave velocities in the crust and the uppermost mantle. In contrast, the Owyhee Plateau possesses thick crust with low Poisson’s ratio, and high intracrustal S-wave velocities, as well as distinct, albeit thin, mantle lithosphere. Recent ambient noise tomography and scattered-wave imaging reveal the presence of low velocity in the crust of the High Lava Plains and the high velocity layering in the Owyhee mid-crust. On the other hand, low velocities dominate the uppermost mantle. In this study, we perform detailed single station Ps receiver function analysis to better constrain the discontinuity structures within the High Lava Plains and the Owyhee lithosphere. We use teleseismic waveform data recorded at 115 High Lava Plains seismic array and 31 USArray Transportable Array broadband stations from 2004 to 2009. Our results show the coherent signals of low velocity discontinuity in the curst of the High Lava Plains, suggesting the presence of weakened crust and partial melt. We observe coherent signals of high velocity discontinuity at ~20 km depth beneath the Owyhee Plateau, possibly marking the upper bound of the high velocity layer imaged in previous studies, and suggesting that the Plateau represents an isolated block of older, and less modified, continental crust. Our results also reveal low velocity discontinuity in the uppermost mantle, at ~50 km depth beneath the High Lava Plains and ~75 km depth beneath the Owyhee Plateau. We interpret this low velocity discontinuity as the lithosphere-asthenosphere boundary (LAB), and thus both regions have relatively thin mantle lithospheres. We suggest that the origin of the High Lava Plans volcanic track is associated with the Cascadian back-arc extension, induced by the change of mantle flow field related to subduction processes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:04:19Z (GMT). No. of bitstreams: 1 ntu-103-R01241305-1.pdf: 80450619 bytes, checksum: 2784622b68d2e4afcc16067847b9d22c (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書 #
謝誌 i 中文摘要 ii ABSTRACT iii 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 本文內容 1 1.2 研究區域介紹 1 1.2.1 熱柱與岩石圈的交互作用 4 1.2.2 隱沒板塊與地幔流場 4 1.3 前人研究 7 1.4 研究目的 8 第二章 研究方法與原理 14 2.1 接收函數原理 14 2.2 接收函數計算 16 2.3 接收函數非均向性 19 第三章 資料處理 24 3.1 資料篩選與流程 24 3.1.1 地震波形初步處理 24 3.1.2 處理流程 25 3.2 接收函數解迴旋水準值設定 32 3.3 一維模型 34 第四章 結果與討論 39 4.1 奧懷希高原 39 4.2 High Lava Plains 45 4.2.1 High Lava Plains火山軌跡 45 4.2.2 西經119°測線 51 4.3 弧後擴張的影響 55 第五章 結論 57 參考文獻 59 | |
dc.language.iso | zh-TW | |
dc.title | 美國奧勒岡州奧懷希高原與High Lava Plains岩石圈構造之接收函數分析 | zh_TW |
dc.title | The Lithospheric Structure Beneath the High Lava Plains and the Owyhee Plateau, Oregon, USA, from Receiver Function Analysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曾泰琳(Tai-Lin Tseng),梁文宗(Wen-Tzong Liang),洪淑蕙(Shu-Huei Hung),喬凌雲(Ling-Yun Chiao) | |
dc.subject.keyword | High Lava Plains,奧懷希高原,接收函數,不連續面,岩石圈構造, | zh_TW |
dc.subject.keyword | High Lava Plains,Owyhee Plateau,receiver function analysis,discontinuity,lithospheric structure, | en |
dc.relation.page | 131 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-07-01 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 78.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。