Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57987
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷(Chih-Ting Lin)
dc.contributor.authorTing-Ru Linen
dc.contributor.author林廷儒zh_TW
dc.date.accessioned2021-06-16T08:04:12Z-
dc.date.available2016-12-01
dc.date.copyright2014-08-11
dc.date.issued2014
dc.date.submitted2014-07-01
dc.identifier.citation[1] U.S. Energy Information Administration (2012).
[2] Renewable 2012 Global Status Report (2012).
[3] K. Miyamoto (1997), “Biological energy production” In: Kazuhisa Miyamoto (eds), “Renewable biological systems for alternative sustainable energy production.” pp 1-6.
[4] H. Dau, and I. Zaharieva (2009), “Principles, Efficiency, and Blueprint Character of Solar-Energy Conversion in Photosynthetic Water Oxidation.” Accounts of Chemical Research 42(12): 1861-1870.
[5] M. Kugler, L. Jansch, V. Kruft, U. K. Schmitz, and H.-P. Braun (1997), “Analysis of the chloroplast protein complexes by blue-native polyacrylamide gel electrophoresis (BN-PAGE).” Photosynthesis Research 53(1): 35-44.
[6] E. Govindjee (2004), “Chlorophyll a Fluorescence: A Bit of Basics and Histroy.” In: G. C. Papageorgiou, and Govindjee (eds), “Chlorophyll a Fluorescence: A Signature of Photosynthesis.” pp 1-42.
[7] V. N. Kurashov, S. I. Allakhverdiev, S. K. Zharmukhamedov, T. Nagata, V. V. Klimov, A. Yu. Semenov, and M. D. Mamedov (2009), “Electrogenic reactions on the donor side of Mn-depleted photosystem II core particles in the presence of MnCl2 and synthetic trinuclear Mn-complexes.” Photochemical and Photobiological Science 8(2): 162-166.
[8] B. Loll, J. Kern, W. Saenger, A. Zouni, and J. Biesiadka (2005), “Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II” Nature 348: 1040-1044.
[9] B. Kok, B. Forbush, and M. McGloin (1970), “Cooperation of charges in photosynthetic O2 evolution-I. a linear four step mechanism.” Photochemistry and Photobiology 11(6): 457-475.
[10] W. Lubitz, E. J. Reijerse, and J. Messinger (2008), “Solar water-splitting into H2 and O2: design principles of photosystem II and hydrogenases.” Energy and Environmental Science 1(1): 15-31.
[11] M. Haumann, O. Bogershausen, D. Cherepanov, R. Ahlbrink, and W. Junge (1997), “Photosynthetic oxygen evolution: H/D isotope effects and the coupling between electron and proton transfer during the redox reactions at the oxidizing side of Photosystem II” Photosynthesis Research 51(3): 193-208.
[12] D. Mauzerall, and M. Malley (1971), “The light-induced increase in fluorescence yield in chlorella is complete in 60 nanoseconds.” Photochemistry and Photobiology 14(2): 225-227.
[13] K. Brettel, E. Schlodder, and H. T. Witt (1984), “Nanosecond reduction kinetics of photooxidized chlorophyll-aII (P-680) in single flashes as a probe for the electron pathway, H+-release and charge accumulation in the O2-evolving complex.” Biochimica et Biophysica Acta 766(2): 403-415.
[14] E. Schlodder, K. Brettel, G. H. Schatz, and H. T. Witt (1984), “Analysis of the Chl-aII+ reduction kinetics with nanosecond time resolution in oxygen-evolving Photosystem II particles from Synechococcus at 680 and 824 nm.” Biochimica et Biophysica 765(2): 178-185.
[15] B. Meyer, E. Schlodder, J. Dekker, H. Witt (1989), “Oxygen evolution and Chl aII+ (P-680+) nanosecond reduction kinetics in single flashes as a function of pH.” Biochimica et Biophysica Acta 974(1): 36-43.
[16] M. Karge, K.-D. Irrgang, S. Sellin, R. Feinaugle, B. Liu, H.-J. Eckert, H. J. Eichler, and G. Renger (1996), “Effects of hydrogen/deuterium exchange on photosynthetic water cleavage in PS II core complexes from spinach” FEBS Letters 378(2): 140-144.
[17] A. Ralf, H. Michael, C. Dmitry, B. Oliver, M. Armen, and J. Wolfgang (1998), “Function of tyrosine Z in water oxidation by photosystem II: Electrostatistical promoter instead of hydrogen abstractor.” Biochemistry 37(4): 1131-1142.
[18] M. J. Schilstra, F. Rappaport, J. H. Nugent, C. J. Barnett, and D. R. Klug (1998), “Proton/Hydrogen Transfer Affects the S-State-Dependent Microsecond Phases of P680+ Reduction during Water Splitting.” Biochemistry 37(11): 3974-3981.
[19] B. A. Diner, and R. D. Britt (2005), “The Redox-Active Tyrosines YZ and YD” In: T.J. Wydrzynski, K. Satoh, “Photosystem II: The Light-Driven water: Plastoquinon Oxidoreductase.” pp 207-233.
[20] F. Rappaport, M. Blanchard-Desce, and J. Lavergne (1994), “Kinetics of electron transfer and electrochromic change during the redox transitions of the photosynthetic oxygen-evolving complex” Biochimica et Biophysica Acta-Bioenergetic 1184(2-3): 178-192.
[21] B. A. Diner, and G. T. Babcock (1996), “Structure, Dynamics, and Energy Conversion Efficiency in Photosystem II.” In: Donald R. Ort, Charles F. Yocum (eds) “Oxygenic Photosynthesis: The Light Reactions.” pp 213-247.
[22] M. R. Razeghifard, and R. J. Pace (1997), “Electron paramagnetic resonance kinetic studies of the S states in spinach PSII membranes.” Biochimica et Biophysica Acta 1322(2-3): 141-150.
[23] M. Haumann, O. Bogershausen, D. Cherepanov, R. Ahlbrink, and W. Junge (1997), “Photosynthetic oxygen evolution: H/D isotope effects and the coupling between electron and proton transfer during the redox reactions at the oxidizing side of Photosystem II” Photosynthesis Research 51(3): 193-208.
[24] M. Karge, K.-D. Irrgang, and G. Renger (1997) “Analysis of the Reaction Coordinate of Photosynthetic Water Oxidation by Kinetic Measurements of 355 nm Absorption Changes at Different Temperatures in Photosystem II Preparations Suspended in Either H2O or D2O.” Biochemistry 36(29): 8904-8913.
[25] K. L. Westphal, C. Tommos, R. I. Cukie, and G. T. Babcock (2000), “Concerted hydrogen-atom abstraction in photosynthetic water oxidation.” Current Opinion in Plant Biology 3(3): 236-242.
[26] R. K. Shamsudeen, S. Nair, and V. G. Jayakumari (2006), “Equilibrium swelling, conductivity and electroactive characteristics of polyacrylamide hydrogels.” Indian Journal of Engineering and Material Sciences 13(1): 62-68.
[27] H. Schagger, and G. von Jagow (1991), “Blue Native Electrophoresis for Isolation of Membrane Protein Complexes in Enzymatically Active Form.” Analytical Biochemistry 199(2): 223-131.
[28] H. Schagger (2003), “SDS Electrophoresis Techniques.” In: C. Hunte, G. von Jagow, and H. Schagger (eds), “Membrane Protein Purification and Crystallization: A Practical Guide.” pp 85-103.
[29] W. Wieczorek, Z. Florjanczyk, and J. R. Stevens, (1995) “Proton conducting polymer gels based on a polyacrylamide matrix.” Electrochimica Acta 40: 2327-2330.
[30] P. Pissis, and A. Kyritsis (1997), “Electrical conductivity studies in hydrogels” Solid State Ionics 97: 105-113.
[31] Q. Tang, J. Lin, and J. Wu (2008), “The preparation and electrical conductivity of polyacrylamide/graphite conducting hydrogel.” Journal of Applied Polymer Science 108(3): 1490-1495.
[32] P. Pissis, A. Kyritsis (1997), “Electrical conductivity studies in hydrogels” Solid State Ionics 97: 105-113.
[33] J. C. Lassegues, B. Desbat, O. Trinquet, and F. Cruege (1989), “From model solid-state protonic conductors to new polymer electrolytes.” Solid State Ionics 35: 17-25.
[34] Z. Dai, and H. Ju (2001), “Effect of chain length on the surface properties of ω-carboxy alkanethiol self-assembled monolayers.” Physical Chemistry Chemical Physics 3(17): 3769-3773.
[35] J. Maly, A. Masci, J. Masojidek, M. Sugiura, and R. Pilloton (2004), “Monolayers of Natural and Recombinant Photosystem II on Gold Electrodes—Potentials for Use as Biosensors for Detection of Herbicides.” Analytical Letters 37(8): 1645-1656.
[36] V. Bhalla, X. Zhao, and V. Zazubovich (2011), “Detection of explosive compounds using Photosystem II-based biosensor.” Journal of Electroanalytical Chemistry 657: 84-90.
[37] V. Bhalla, and V. Zazubovich (2011), “Self-assembly and sensor response of photosynthetic reaction centers on screen-printed electrodes.” Analytica Chimica Acta 707: 184-190.
[38] P. N. Ciesielski, C. J. Faulkner, M. T. Irwin, J. M. Gregory, N. H. Tolk, D. E. Cliffel, and G. K. Jennings (2010), “Enhanced Photocurrent Production by Photosystem I Multilayer Assemblies.” Advanced Functional Materials 20: 4048-4054.
[39] I. Lee, J. W. Lee, and E. Greenbaum (1997), “Biomolecular Electronics: Vectorial Arrays of Photosynthetic Reaction Centers.” Physical Review Letters 79(17): 3294-3297.
[40] D. Mukherjee, M. May, M. Vaughn, B. D. Bruce, and B. Khomami (2010), “Controlling the Morphology of Photosystem I Assembly on Thiol-Activated Au Substrates.” Langmuir 26(20): 16048-16054.
[41] P. N. Ciesielski, D. E. Cliffel, and G. K. Jennings (2011), “Kinetic Model of the Photocatalytic Effect of a Photosyste I Monolayer on a Planar Electrode Surface.” The Journal of Physical Chemistry A 115(15): 3326-3334.
[42] P. N. Ciesielski, F. M. Hijazi, A. M. Scott, C. J. Faulkner, L. Beard, K. Emmett, S. J. Rosenthal, D. Cliffel, and G. K. Jennings (2010), “Photosystem I – Based biohybrid photoelectrochemical cells.” Bioresource Technology 101(9): 3047-3053.
[43] H. Conjeaud, and P. Mathis (1980), “The effect of pH on the reduction kinetics of P-680 in Tris-treated chloroplasts.” Biochimica et Biophysica Acta 590(3): 353-359.
[44] A.-M. A. Hays, I. R. Vassiliev, J. H. Golbeck, and R. J. Debus (1999), “Role of D1-His 190 in the proton-coupled oxidation of tyrosine YZ in manganese-depleted photosystem II.” Biochemistry 38(37): 11851-11865.
[45] A.-M. A. Hays, I. R. Vassiliev, J. H. Golbeck, and R. J. Debus (1998), “Role of D1-His190 in Proton-Coupled Electron Transfer Reactions in Photosystem II: A Chemical Complementation Study.” Biochemistry 37(32): 11352-11362.
[46] F. Rappaport, J. Lavergne (1997), “Charge Recombination and Proton Transfer in Manganese-Depleted Photosystem II.” Biochemistry 36(49): 15294-15302.
[47] O. A. Gopta, A. A. Tyunyatkina, V. N. Kurashov, A. Yu. Semenov, and M. D. Mamedov (2008), “Effect of redox mediators on the flash-induced membrane potential generation in Mn-depleted photosystem II core particles” European Biophysics Journal 37(6): 1045-1050.
[48] C. T. Yerkes, G. T. Babcock, and A. R. Crofts (1983), “A Tris-induced change in the midpoint potential of Z, the donor to photosystem II, as determined by the kinetics of the back reaction.” FEBS Letters 158(2): 359-363.
[49] D. A. Berthold, G. T. Babcock, and C. F. Yocum (1981), “A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes: EPR and electron-transport properties” FEBS Letter 134(2): 231-234.
[50] D. F. Ghanotakis, J. Topper, G. T. Babcock, and C. F. Yocum (1984), “Structural Organization of the Oxidizing Side of Photosystem II Exogenous Reductants Reduce and Destroy the Mn-Complex in Photosystem II Membranes Depleted of the 17 and 23 kDa Polypeptides.” Biochimica et Biophysica Acta 767: 524-531.
[51] V. D. Noto, G. A. Giffin, K. Vezzu, M. Piga, and S. Lavina (2012), “Broadband Dielectric Spectroscope: A Powerful Tool for the Determination of Charge Transfer Mechanisms in Ion Conductors.” In: P. Knauth, and M. L. Di Vona (eds), “Solid State Proton Conductors: Properties and Applications in Fuel Cells” pp 109-183.
[52] M. L. Di Vona, E. Sgreccia, and S. Tosto (2012), “Diffusion in Solid Proton Conductors: Theoretical Aspects and Nuclear Magnetic Resonance Analysis.” In: P. Knauth, M.L. Di Vona (eds), “Solid State Proton Conductors: Properties and Applications in Fuel Cells” pp 25-70.
[53] C. Tommos, X.-S. Tang, K. Wamcke, C. W. Hoganson, S. Styring, J. McCracken, B. A. Diner, and G. T. Babcock (1995), “Spin-Density Distribution, Conformation, and Hydrogen Bonding of the Redox-Active Tyrosine Yz in Photosystem II from Multiple Electron Magnetic-Resonance Spectroscopies: Implications for Photosynthetic Oxygen Evolution.” Journal of American Chemistry 117(41): 10325-10335.
[54] A. Pokorny, K. Wulf, and H.-W. Trissl (1994), “An electrogenic reaction associated with the re-reduction of P680 by Tyr Z in Photosystem II.” Biochimica et Biophysics Acta 1184(1): 65-70.
[55] M. Haumann, A. Mulkidjanian, and W. Junge (1997), “Electrogenicity of Electron and Proton Transfer at the Oxidizing Side of Photosystem II.” Biochemistry 36(31): 9304-9315.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57987-
dc.description.abstract由市售波菜抽取而出的光系統二(PSII)可用於光能轉換系統,系統中光能轉換效率的增加可藉由組合polyacrylamide gels及Mn-depleted PSII兩者的技術來達成。前者利用膠體的組成可確保光系統二在網狀結構當中的穩定性及活性,並藉由多離子導電通道的組成來增加材料的導電性。進一步的,去除Mn-cluster後的光系統可避免原先在光電能轉換反應中為穩定四個氧化等價物所需的四顆光子能量,故吸收的外界能量能更有效率的進行轉換。依照上述方法製造的元件可展現出大於過去研究十倍以上的光電流。此突破性成果顯示將polyacrylamide gels及Mn-depleted PSII兩技術結合在多方領域上的可能應用,如光感器、生物感測器及光能轉換元件。zh_TW
dc.description.abstractThe photo-energy conversion efficiency of photosystem II (PSII) complexes extracted from spinach was enhanced in a long-term period through the combination of polyacrylamide gels and Mn-depleted photosystem II complexes. The formation of PSII complexes within polyacrylamide gels demonstrated sustainable activity and motility where counterions were conducted through multiple paths in the matrix structure. The depletion of tetranuclear manganese cluster of PSII complexes by Tris-washed treatment prevented the utilization of four quanta of light for four oxidizing equivalents during the conversion, resulting in the increase of external energy conversion efficiency. This methodology asserted 262 nA photocurrent, a fourfold photocurrent of the past reported on self-assembled monolayer or mutilayer structures in both short-term and long-term statistics. To conclude, this new combination of polyacylaimde gels and Mn-deleted PSII complexes may be employed in many research fields such as photovoltaic devices, photosensors, biosensors, or photoelectrochemical cells in future.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:04:12Z (GMT). No. of bitstreams: 1
ntu-103-R01945002-1.pdf: 9356576 bytes, checksum: 4475b7a3a8f9cb13d09846f898745558 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書...i
ACKNOWLEDGEMENTS...ii
摘要...iii
ABSTRACT.iv
LIST OF TABLES...1
LIST OF FIGURES...2
ABBREBIATIONS...5
Chapter I Introduction...6
1.1 Preamble...6
1.2 Introduction of Photosynthesis...8
1.3 Introduction of Tetranuclear Manganese Complexes...11
1.4 Introduction of Polyacrylamide Gels...14
1.5 Introduction of a Self-Assembled Monolayer and Multilayer Assemblies...16
Chapter II Paper Reviews with Notations...18
2.1 Studies of Photosystem Complexes in SAM and Multilayer Assemble Architectures....18
2.2 The employment of Polyacrylamide Gels... 21
2.3 The characteristics of Mn-depleted PSII Complexes..22
Chapter III Materials and Methods...24
3.1 Materials...25
3.1.1 PSII complexes buffer solutions...25
3.1.2 Self-Assembled Monolayer...27
3.1.3 Polyacrylamide Gels...29
3.2 Methods...31
3.2.1 Methods of SAM-PSII Devices...31
3.2.2 Methods of PSII complexes in Multilayer Assemblies devices……….........32
3.2.3 Methods of PSII in Polyacrylamide Gels between two ITO electrodes...33
3.2.4 Experiment Setup...35
Chapter IV Results and Discussion...37
4.1 SAM-PSII and PSII complexes Multilayer Assemblies devices...37
4.2 PSII in Polyacrylamide Gels containing Trizma Hydrochloride Solution (pH=9) or Bis-Tris Hydrochloride Solution (pH=6)...41
4.3 Comparison of SAM-PSII, PSII Multilayer Assemblies, and PSII in Polyacrylamide Gels...49
4.4 Mn-depleted PSII Complexes in Polyacrylamide Gels...51
Chapter V Conclusion...58
Reference...60
dc.language.isoen
dc.title去錳光合系統二與聚丙烯醯胺水膠於光擷取系統媒介之應用zh_TW
dc.titleThe application of Mn-depleted PSII within polyacrylamide gels as a medium of light-harvesting systemsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭柏齡(Po-Ling Kuo),朱修安(Hsiu-An Chu),楊啟伸(Chii-Shen Yang),董奕鍾(Yi-Chung Tung)
dc.subject.keyword光系統二,電子傳遞蛋白,光能擷取元件,zh_TW
dc.subject.keywordPhotosystem II,PS II,polyacrylamide gels,light-harvesting system,Mn-depleted PSII,proton conductor,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2014-07-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
9.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved