請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57984完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈湯龍(Tang-Long Sheng) | |
| dc.contributor.author | Dan-Rong Jhuang | en |
| dc.contributor.author | 莊丹榕 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:04:10Z | - |
| dc.date.available | 2025-07-16 | |
| dc.date.copyright | 2020-07-27 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-17 | |
| dc.identifier.citation | Adnan, M., Ashraf, S. A., Khan, S., Alshammari, E., and Awadelkareem, A. M. 2017. Effect of pH, Temperature and Incubation Time on Cordycepin Production From Cordyceps militaris using Solid-State Fermentation on Various Substrates. CyTA-Journal of Food 15: 617-621. Bartelt, A., and Heeren, J. 2014. Adipose Tissue Browning and Metabolic Health. Nat. Rev. Endocrinol. 10: 24. Brun, R. P., Kim, J. B., Hu, E., Altiok, S., and Spiegelman, B. M. 1996. Adipocyte Differentiation: a Transcriptional Regulatory Cascade. Curr. Opin. Cell Biol. 8: 826-832. Cunningham, K. G., Manson, W., Spring, F. S., and Hutchinson, S. A. 1950. Cordycepin, a Metabolic Product Isolated from Cultures of Cordyceps militaris (Linn.) Link. Nature 166: 949-949. Choi, S., Lim, M. H., Kim, K. M., Jeon, B. H., Song, W. O., and Kim, T. W. 2011. Cordycepin-Induced Apoptosis and Autophagy in Breast Cancer Cells are Independent of the Estrogen Receptor. Toxicol. Appl. Pharmacol. 257: 165-173. Chooi, Y. C., Ding, C., and Magkos, F. 2019. The Epidemiology of Obesity. Metabolism 92: 6-10. Chou, S. M., Lai, W. J., Hong, T. W., Lai, J. Y., Tsai, S. H., Chen, Y. H., Yu, S. H., Kao, C. H., Chu, R., Ding, S. T., Li, T. K., and Shen, T. L. 2014. Synergistic Property of Cordycepin in Cultivated Cordyceps militaris-Mediated Apoptosis in Human Leukemia Cells. Phytomedicine 21: 1516-1524. Chen, Q., Shou, P., Zheng, C., Jiang, M., Cao, G., Yang, Q., Cao, J., Xie, N., Velletri, T., and Zhang, X. 2016. Fate Decision of Mesenchymal Stem Cells: Adipocytes or Osteoblasts? Cell Death Differ. 23: 1128. Chiu, C. P., Hwang, T. L., Chan, Y., El-Shazly, M., Wu, T. Y., Lo, I. W., Hsu, Y. M., Lai, K. H., Hou, M. F., Yuan, S. S., Chang, F. R., and Wu, Y. C. 2016. Research and development of Cordyceps in Taiwan. Food Sci Human Wellness. 5: 177-185. Cheng, W., Zhang, X., Song, Q., Lu, W., Wu, T., Zhang, Q., and Li, C. 2017. Determination and comparative analysis of 13 nucleosides and nucleobases in natural fruiting body of Ophiocordyceps sinensis and its substitutes. Mycology. 8: 318-326. Chang, S. H., Song, N. J., Choi, J. H., Yun, U. J., and Park, K. W. 2019. Mechanisms Underlying UCP1 Dependent and Independent Adipocyte Thermogenesis. Obes. Rev. 20: 241-251. Dawkins, M. J. R., and Scopes, J. W. 1965. Non-shivering Thermogenesis and Brown Adipose Tissue in the Human New-born Infant. Nature. 206: 201-202. Debuchy, R., Turgeon, B. 2006. Mating-type structure, evolution, and function in Euascomycetes. In Growth, Differentiation and Sexuality. Springer, 293-323. Das, S. K., Masuda, M., Sakurai, A., and Sakakibara, M. 2010. Medicinal Uses of the Mushroom Cordyceps militaris: Current State and Prospects. Fitoterapia. 81: 961-968. Dong, J. Z., Lei, C., Ai, X. R., and Wang, Y. 2012. Selenium Enrichment on Cordyceps militaris Link and Analysis on Its Main Active Components. Appl. Biochem. 166: 1215-1224. Dong, C. H., Yang, T., and Lian, T. 2014. A Comparative Study of the Antimicrobial, Antioxidant, and Cytotoxic Activities of Methanol Extracts From Fruit Bodies and Fermented Mycelia of Caterpillar Medicinal Mushroom Cordyceps militaris (Ascomycetes). Int. J. Med. Mushrooms. 16: 485-495. Fan, H., Li, S., Xiang, J., Lai, C., Yang, F., Gao, J., and Wang, Y. 2006. Qualitative and Quantitative Determination of Nucleosides, Bases and Their Analogues in Natural and Cultured Cordyceps by Pressurized Liquid Extraction and High Performance Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry (HPLC–ESI–MS/MS). Analytica. Chimica. Acta. 567: 218-228. Flatt, J. 1987. The Difference in the Storage Capacities for Carbohydrate and for Fat, and Its Implications in the Regulation of Body Weight. Ann. N. Y. Acad. Sci. 499: 104-123. Guan, J., Yang, F. Q., and Li, S. P. 2010. Evaluation of Carbohydrates in Natural and Cultured Cordyceps by Pressurized Liquid Extraction and Gas Chromatography Coupled with Mass Spectrometry. Molecules. 15: 4227-4241. Garcia, R. A., Roemmich, J. N., and Claycombe, K. J. 2016. Evaluation of Markers of Beige Adipocytes in White Adipose Tissue of the Mouse. Nutr. Metab. (Lond) 13: 24-24. Huang, C. W., Hong, T. W., Wang, Y. J., Chen, C. K., Pei, J. C., Chuang, T. Y., Lai, W. S., Tsai, S. H., Chu, R., Chen, W. C., Sheen, L. Y., Takahashi, S., Ding, S. T., and Shen, T. L. 2016. Ophiocordyceps formosana Improves Hyperglycemia and Depression-Like Behavior in an STZ-Induced Diabetic Mouse Model. BMC Complem. Altern. M. 16: 310. Imai, T., Takakuwa, R., Marchand, S., Dentz, E., Bornert, J. M., Messaddeq, N., Wendling, O., Mark, M., Desvergne, B., Wahli, W., Chambon, P., and Metzger, D. 2004. Peroxisome Proliferator-Activated Receptor Gamma is Required in Mature White and Brown Adipocytes for Their Survival in the Mouse. Proc. Natl. Acad. Sci. U. S. A. 101: 4543-4547. Ishibashi, J., and Seale, P. 2015. Functions of Prdm16 in Thermogenic Fat Cells. Temperature (Austin) 2: 65-72. Kobayasi, Y., and Shimizu, D. 1981. The genus Cordyceps and Its Allies from Taiwan (Formosa) Fungi, New Taxa. Botany. 7(4): 113-122. Kodama, E. N., McCaffrey, R. P., Yusa, K., and Mitsuya, H. 2000. Antileukemic Activity and Mechanism of Action of Cordycepin Against Terminal Deoxynucleotidyl Transferase-Positive (TdT+) Leukemic Cells. Biochem. Pharmacol. 59: 273-281. Kim, H. O., and Yun, J. W. 2005. A Comparative Study on the Production of Exopolysaccharides Between Two Entomopathogenic Fungi Cordyceps militaris and Cordyceps sinensis in Submerged Mycelial Cultures. J. Appl. Microbiol. 99(4): 728-738. Kang, C., Wen, T. C., Kang, J. C., Meng, Z. B., Li, G. R., and Hyde, K. D. 2014. Optimization of Large-Scale Culture Conditions for the Production of Cordycepin with Cordyceps militaris by Liquid Static Culture. Sci. World J. 2014: 510627. Kusminski, C. M., Bickel, P. E., and Scherer, P. E. 2016. Targeting Adipose Tissue in the Treatment of Obesity-Associated Diabetes. Nat. Rev. Drug Discov. 15: 639. Kwok, K. H., Lam, K. S., and Xu, A. 2016. Heterogeneity of White Adipose Tissue: Molecular Basis and Clinical Implications. Exp. Mol. Med. 48: e215. Kang, N., Lee, H.-H., Park, I., and Seo, Y.-S. 2017. Development of High Cordycepin-Producing Cordyceps militaris Strains. Mycobiology. 45: 31-38. Linhart, H. G., Ishimura-Oka, K., DeMayo, F., Kibe, T., Repka, D., Poindexter, B., Bick, R. J., and Darlington, G. J. 2001. C/EBPα is Required for Differentiation of White, but Not Brown, Adipose Tissue. PNAS. 98: 12532. Liu, L., Wang, X., Hu, Y., Kang, J., Wang, L., and Li, S. 2004. Effects of a Fatty Acid Synthase Inhibitor on Adipocyte Differentiation of Mouse 3T3-L1 Cells. Acta Pharmacol. Sin. 25: 1052-1057. Lowe, C. E., O'Rahilly, S., and Rochford, J. J. 2011. Adipogenesis at a Glance. J. Cell Sci. 124: 2681-2686. Lo, K. A., and Sun, L. 2013. Turning WAT into BAT: a Review on Regulators Controlling the Browning of White Adipocytes. Biosci. Rep. 33: e00065. Liu, X., Huang, K., and Zhou, J. 2014. Composition and Antitumor Activity of the Mycelia and Fruiting Bodies of Cordyceps militaris. J. Food. Nutr. Res. 2: 74-79. Lou, H., Lin, J., Guo, L., Wang, X., Tian, S., Liu, C., Zhao, Y., and Zhao, R. 2019. Advances in Research on Cordyceps militaris Degeneration. Appl. Microbiol. Biot. 103: 7835-7841. Menendez, J. A., Vazquez-Martin, A., Ortega, F. J., and Fernandez-Real, J. M. 2009. Fatty Acid Synthase: Association with Insulin Resistance, Type 2 Diabetes, and Cancer. Clin. Chem. 55: 425-438. Morrison, S., and McGee, S. L. 2015. 3T3-L1 Adipocytes Display Phenotypic Characteristics of Multiple Adipocyte Lineages. Adipocyte 4: 295-302. Nakamura, K., Yoshikawa, N., Yamaguchi, Y., Kagota, S., Shinozuka, K., and Kunitomo, M. 2006. Antitumor Effect of Cordycepin (3'-Deoxyadenosine) on Mouse Melanoma and Lung Carcinoma Cells Involves Adenosine A3 Receptor Stimulation. Anticancer Res. 26: 43-47. Nyhan, W. L. 2005. Disorders of Purine and Pyrimidine Metabolism. Mol. Genet. Metab. 86: 25-33. Olatunji, O. J., Tang, J., Tola, A., Auberon, F., Oluwaniyi, O., and Ouyang, Z. 2018. The Genus Cordyceps: An Extensive Review of Its Traditional Uses, Phytochemistry and Pharmacology. Fitoterapia. 129: 293-316. Prakash, O., Nimonkar, Y., and Shouche. Y. S. 2017. Practice and Prospects of Microbial Preservation. FEMS Microbiol. Lett. 339: 1-9. Poti, J. M., Braga, B., and Qin, B. 2017. Ultra-processed Food Intake and Obesity: What Really Matters for Health—Processing or Nutrient Content? Curr. Obes. Rep. 6: 420-431. Reznikoff, C. A., Brankow, D. W., and Heidelberger, C. 1973. Establishment and Characterization of a Cloned Line of C3H Mouse Embryo Cells Sensitive to Postconfluence Inhibition of Division. Cancer Res. 33: 3231-3238. Rosen, E. D., Hsu, C. H., Wang, X., Sakai, S., Freeman, M. W., Gonzalez, F. J., and Spiegelman, B. M. 2002. C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes Dev. 16: 22-26. Rehner, S. A., and Buckley, E. 2005. A Beauveria Phylogeny Inferred from Nuclear ITS and EF1-α Sequences: Evidence for Cryptic Diversification and Links to Cordyceps Teleomorphs. Mycologia. 97: 84-98. Rosen, E. D. and MacDougald, O. A. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7: 885-896. Ruiz-Ojeda, F. J., Ruperez, A. I., Gomez-Llorente, C., Gil, A., and Aguilera, C. M. 2016. Cell Models and Their Application for Studying Adipogenic Differentiation in Relation to Obesity: A Review. Int. J. Mol. Sci. 17. Shrestha, B., Kim, H. K., Sung, G. H., Spatafora, J. W., and Sung, J. M. 2004. Bipolar Heterothallism, a Principal Mating System of Cordycpes militaris In Vitro. Biotechnol. Bioproc. E. 9: 440-446. Sundqvist, A., Bengoechea, A., M. T., Ye, X., Lukiyanchuk, V., Jin, J., Harper, J. W., and Ericsson, J. 2005. Control of Lipid Metabolism by Phosphorylation-Dependent Degradation of the SREBP Family of Transcription Factors by SCF(Fbw7). Cell Metab. 1: 379-391. Seale, P., Kajimura, S., Yang, W., Chin, S., Rohas, L. M., Uldry, M., Tavernier, G., Langin, D., and Spiegelman, B. M. 2007. Transcriptional Control of Brown Fat Determination by PRDM16. Cell Metab. 6: 38-54. Shimada, T., Hiramatsu, N., Kasai, A., Mukai, M., Okamura, M., Yao, J., Huang, T., Tamai, M., Takahashi, S., Nakamura, T., and Kitamura, M. 2008. Suppression of Adipocyte Differentiation by Cordyceps militaris Through Activation of the Aryl Hydrocarbon Receptor. Am. J. Physiol. Endocrinol Metab. 295: E859-867. Sam, S., and Mazzone, T. 2014. Adipose Tissue Changes in Obesity and the Impact on Metabolic Function. Transl. Res. 164: 284-292. Sheng, X., Tucci, J., Malvar, J., and Mittelman, S. D. 2014. Adipocyte Differentiation is Affected by Media Height Above the Cell Layer. Int. J. Obes. 38: 315. Sun, S. J., Deng, C. H., Zhang, L. Y., and Hu, K. H. 2017. Molecular Analysis and Biochemical Characteristics of Degenerated Strains of Cordyceps militaris. Arch. Microbiol. 199(6): 939-944. Sun, H., Hu, T., Guo, Y., and Liang, Y. 2018. Preservation Affects the Vegetative Growth and Fruiting Body Production of Cordyceps militaris. World J. Microb. Biot. 34: 166. Tamura, K., and Nei, M. 1993. Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in Humans and Chimpanzees. Mol. Biol. Evol. 10: 512-526. Tai, T.-A. C., Jennermann, C., Brown, K. K., Oliver, B. B., MacGinnitie, M. A., Wilkison, W. O., Brown, H. R., Lehmann, J. M., Kliewer, S. A., and Morris, D. C. 1996. Activation of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor γ Promotes Brown Adipocyte Differentiation. J. Biol. 271: 29909-29914. Tang, Q. Q., Otto, T. C., and Lane, M. D. 2004. Commitment of C3H10T1/2 Pluripotent Stem Cells to the Adipocyte Lineage. PNAS. 101: 9607-9611. Thomadaki, H., Tsiapalis, C. M., and Scorilas, A. 2005. Polyadenylate Polymerase Modulations in Human Epithelioid Cervix and Breast Cancer Cell Lines, Treated with Etoposide or Cordycepin, Follow Cell Cycle Rather Than Apoptosis Induction. Biol. Chem. 386: 471-480. Tontonoz, P. and Spiegelman, B. M. 2008. Fat and Beyond: The Diverse Biology of PPARγ. Annu. Rev. Biochem. 77: 289–312. Tchoukalova, Y. D., Votruba, S. B., Tchkonia, T., Giorgadze, N., Kirkland, J. L., and Jensen, M. D. 2010. Regional Differences in Cellular mechanisms of adipose tissue gain with overfeeding. PNAS. 107: 18226-18231. Tyagi, S., Gupta, P., Saini, A. S., Kaushal, C., and Sharma, S. 2011. The Peroxisome Proliferator-Activated Receptor: A Family of Nuclear Receptors Role in Various Diseases. J. Adv. Pharm. Technol. Res. 2: 236-240. Takahashi, S., Tamai, M., Nakajima, S., Kato, H., Johno, H., Nakamura, T., and Kitamura, M. 2012. Blockade of Adipocyte Differentiation by Cordycepin. Br. J. Pharmacol. 167: 561-575. Tuli, H. S., Sandhu, S. S., and Sharma, A. K. 2014. Pharmacological and Therapeutic Potential of Cordyceps with Special Reference to Cordycepin. 3 Biotech. 4: 1-12. Warnke, I., Goralczyk, R., Fuhrer, E., and Schwager, J. 2011. Dietary constituents reduce lipid accumulation in murine C3H10 T1/2 adipocytes: A novel fluorescent method to quantify fat droplets. Nutr. Metab. 8: 30. Wang, Y. W., Hong, T. W., Tai, Y. L., Wang, Y. J., Tsai, S. H., Lien, P. T. K., Chou, T. H., Lai, J. Y., Chu, R., and Ding, S. T. 2015. Evaluation of an Epitypified Ophiocordyceps formosana (Cordyceps sl) for Its Pharmacological Potential. Evid.-Based Complementary Altern. Med. 2015: 13. Wang, Y. J. 2017. Characterization of mating loci, metabolites and anti-cancer activity of Ophiocordyceps formosana. National Taiwan University, Department of Plant Pathology of Bioresources and Agriculture Master Thesis, unpublished, Taipei, Taiwan. Xia, Y., Luo, F., Shang, Y., Chen, P., Lu, Y., and Wang, C. 2017. Fungal Cordycepin Biosynthesis Is Coupled with the Production of the Safeguard Molecule Pentostatin. Cell Chem Biol. 24: 1479-1489. Yu, L., Zhao, J., Li, S. P., Fan, H., Hong, M., Wang, Y. T., and Zhu, Q. 2006. Quality Evaluation of Cordyceps Through Simultaneous Determination of Eleven Nucleosides and Bases by RP‐HPLC. J. Sep. Sci. 29: 953-958. Yin, Y., Yu, G., Chen, Y., Jiang, S., Wang, M., Jin, Y., Lan, X., and Sun, H. 2012. Genome-Wide Transcriptome and Proteome Analysis on Different Developmental Stages of Cordyceps militaris. PLoS ONE. 7(12): e51853. doi: 10.1371. Yue, K., Ye, M., Zhou, Z., Sun, W., and Lin, X. 2013. The Genus Cordyceps: a Chemical and Pharmacological Review. J. Pharm. Pharmacol 65: 474-493. Yin, J., Xin, X. D., Weng, Y. J., Li, S. H., Jia, J. Q., and Gui, Z. Z. 2017. Genotypic Analysis of Degenerative Cordyceps militaris Cultured in the Pupa of Bombyx mori. Entomol. Res. 48 (3): 137-144. Yin, J., Xin, X., Weng, Y., Gui, Z. 2017. Transcriptome-wide analysis reveals the progress of Cordyceps militaris subculture degeneration. PLoS ONE. 12(10): e0186279. Zhao, L., Li, G., Chan, K.-M., Wang, Y., and Tang, P.-F. 2009. Comparison of Multipotent Differentiation Potentials of Murine Primary Bone Marrow Stromal Cells and Mesenchymal Stem Cell Line C3H10T1/2. Calcif. Tissue Int. 84: 56-64. Zhang, Q., Ramlee, M. K., Brunmeir, R., Villanueva, C. J., Halperin, D., and Xu, F. 2012. Dynamic and Distinct Histone Modifications Modulate the Expression of Key Adipogenesis Regulatory Genes. Cell Cycle 11: 4310-4322. Zhang, G., Liang, Y. 2013. Improvement of Fruiting Body Production in Cordyceps militaris by Molecular Assessment. Arch. Microbiol. 195: 579-585. Zhang, Y., Yu, L., Cai, W., Fan, S., Feng, L., Ji, G., and Huang, C. 2014. Protopanaxatriol, a Novel PPARγ Antagonist from Panax ginseng, Alleviates Steatosis in Mice. Sci. Rep. 4: 7375 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57984 | - |
| dc.description.abstract | 肥胖為脂肪組織不正常增生、肥大而形成的疾病,且其與許多慢性疾病的發生具有高度相關。蟲草富含多種二次代謝物。近年來,有研究指出蟲草能降低成熟脂肪細胞中脂肪的累積以及脂肪細胞的肥大,蟲草具有調節脂肪細胞代謝的能力。台灣蟲草(Ophiocordyceps formosana)已被研究證實具有抗腫瘤以及改善小鼠高血糖的能力,因此本論文進一步探討台灣蟲草萃取液調控脂肪細胞代謝的能力。首先實驗使用熱水進行台灣蟲草菌絲體萃取,之後進行高效能液相層析(HPLC)以測定蟲草的兩個重要化合物,蟲草素(cordycepin)及腺苷(adenosine)的含量。與不同蟲草樣本進行比較,台灣蟲草的菌絲體萃取液具有高含量的蟲草素及腺苷,每克台灣蟲草具有5.22毫克蟲草素與1.81毫克腺苷,相當於北蟲草菌絲的蟲草素(5.97毫克)及腺苷(0.77毫克)含量。接下來使用C3H10T1/2多功能幹細胞進行脂肪細胞分化實驗,在脂肪細胞分化階段加入台灣蟲草萃取液以模擬台灣蟲草萃取液對脂肪細胞增生以及肥大的預防以及治療效果,並在脂肪細胞分化後使用Oil red O染劑對脂肪細胞中的脂肪酸進行染色並定量,結果顯示在施加2.5 μg/ml的台灣蟲草萃取液後,脂肪細胞的脂肪酸累積量顯著下降,重要的脂肪細胞分化基因PPARγ、C/EBPα以及FAS的表現量也有降低的趨勢。本研究發現台灣蟲草具有藉由減少脂肪酸於脂肪細胞中累積,以及影響脂肪細胞形成基因而調節脂肪細胞代謝的能力,未來可藉由研究相關路徑,進一步探討台灣蟲草於代謝調節上的成效。 | zh_TW |
| dc.description.abstract | Abstract Obesity is a disease because of abnormal or excessive fat accumulation that presents a risk to health, and it is highly related to a number of chronic diseases. The Cordyceps are fungi rich in several secondary metabolites. Previous studies provide evidences that the Cordyceps can decrease accumulation of lipid and hypertrophy in mature adipocytes, that is the ability to regulate adipocyte metabolism. O. formosana was proved to improve hyperglycemia behavior in vivo, thus further investigation of O. formosana on adipogenesis regulation was done in this thesis. First, the mycelium of O. formosana was extracted by hot water and went through high performance liquid chromatography (HPLC) to determine the quantities of two major pharmacological compounds, adenosine and cordycepin. Comparing the HPLC data from different Cordyceps spp., every gram of O. formosana mycelium possessed 1.81 mg adenosine and 5.22 mg cordycepin, and that was comparable to the adenosine (0.52 mg) and cordycpein (1.05 mg) contents in Cordyceps militaris mycelium. Next, the differentiation of C3H10T1/2 pluripotent stem cells into adipocytes was performed. O. formosana extract (OFE) was added in different adipocyte differentiation period to imitate the therapy and prevention effect of OFE, and the effects of OFE on cell differentiation and metabolism were observed. Measuring triglyceride accumulation by Oil Red O staining indicated that the addition of 2.5 μg/ml OFE in therapy and prevention groups could decrease triglyceride accumulation in adipocyte, and the expression of important adipogenic gene, PPARγ, C/EBPα, and FAS had trends to down-regulated as well. This thesis found O. formosana could reduce lipid accumulation and affect adipogenic gene expression in adipocytes. In the future, we could further explore the effect of O. formosana on metabolic regulation by studying related pathways. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:04:10Z (GMT). No. of bitstreams: 1 U0001-1507202017423200.pdf: 3797149 bytes, checksum: db6d07628072c85acdfe1676dfa37c70 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Contents 中文摘要 I Abstract II Contents III List of Figures IV Table of Contents V Introduction 1 World development, obesity and adipocyte 1 Transcriptional regulation in adipogenesis and browning 2 C3H10T1/2 pluripotent stem cells 4 Cordyceps 4 Pharmaceutical activities of Cordyceps 5 Experimental design 7 Materials and Methods 9 Cordyceps sources, cultivation and maintenance 9 O. formosana extract (OFE) preparation and HPLC analysis 10 Cell culture and adipogenic differentiation 11 Cell viability assay 11 Oil red O and hematoxylin staining 12 RNA extraction and gene expression analysis 12 Results 14 Bioactive ingredients in O. formosana extract 14 Cell viability test 14 Adipogenesis in C3H10T1/2 cells 15 Effect of OFE on lipid accumulation 15 Effect of OFE on adipogenesis and browning related gene expression 17 Discussion 18 Cultivation of Cordyceps and parameters affect growth and contents of Cordyceps 18 Prevention and therapy effects of OFE on adipogenesis 20 Conclusion 22 Figures and Tables 23 Supplementary data 32 References 41 List of Figures Fig. 1 Cordycepin and adenosine contents in Cordyceps 25 Fig. 2 Cell viability test 26 Fig. 3 Differentiation of C3H10T1/2 pluripotent stem cell 27 Fig. 4 Oil accumulation in C3H10T1/2 differentiated cells with different OFE treatment 29 Fig. 5 Expression of adipogenic and browning genes in C3H10T1/2 differentiated cells with different OFE treatment 30 Fig. 6 Heatmap graph of gene expression data 31 Fig. S 1 Graph of adenosine and cordycepin standard and raw data oof HPLC 33 Fig. S 2 Preliminary test of OFE treatment 35 Fig. S 3 Raw data of cell viability experiments (Fig. 2A and B) 36 Fig. S 4 Raw data of Oil red staining (Fig. 3 A, C) 37 Fig. S 5 Raw data of Oil red staining (Fig. 4 B) 37 Fig. S 6 RQ value of gene expression (Fig. 5) 38 Fig. S 7 Raw data of PCR array (Fig. 6) 40 Table of Contents Table. 1 The primers for amplification and sequences for qRT-PCR. 23 Table. 2 Abbreviation list. 23 | |
| dc.language.iso | en | |
| dc.subject | 基因調控 | zh_TW |
| dc.subject | 台灣蟲草 | zh_TW |
| dc.subject | C3H10T1/2細胞 | zh_TW |
| dc.subject | 蟲草素 | zh_TW |
| dc.subject | 脂肪細胞分化 | zh_TW |
| dc.subject | Ophiocordycpes formosana | en |
| dc.subject | gene regulation | en |
| dc.subject | adipogenesis | en |
| dc.subject | cordycepin | en |
| dc.subject | C3H10T1/2 | en |
| dc.title | 台灣蟲草(Ophiocprdyceps formosana)對脂肪細胞分化基因調控影響 | zh_TW |
| dc.title | Effects of Ophiocordyceps formosana on Adipocyte-Differentiation Gene Regulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張芳榮(Fang-Rong Chang),曾顯雄(Shean-Shun Tzean),丁詩同(Shih-Torng Ding),徐泰浩(Tai-Hao Hsu) | |
| dc.subject.keyword | 台灣蟲草,C3H10T1/2細胞,蟲草素,脂肪細胞分化,基因調控, | zh_TW |
| dc.subject.keyword | Ophiocordycpes formosana,C3H10T1/2,cordycepin,adipogenesis,gene regulation, | en |
| dc.relation.page | 50 | |
| dc.identifier.doi | 10.6342/NTU202001554 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1507202017423200.pdf 未授權公開取用 | 3.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
