請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57962完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李綱(Kang Li) | |
| dc.contributor.author | Yu-Jun Huang | en |
| dc.contributor.author | 黃郁鈞 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:03:57Z | - |
| dc.date.available | 2023-06-23 | |
| dc.date.copyright | 2020-07-23 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-15 | |
| dc.identifier.citation | [1]. U.S. Department of Transportation, Bureau of Transportation Statistics, Transportation Statistics Annual Report 2018 (Washington, DC: 2018). https://doi.org/10.21949/1502596 [2]. K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, 'Development of autonomous car—Part I: Distributed system architecture and development process,' IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 7131-7140, 2014 [3]. I. Skog and P. Handel, 'In-car positioning and navigation technologies—A survey,' IEEE Transactions on Intelligent Transportation Systems, vol. 10, no. 1, pp. 4-21, 2009. [4]. S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough and A. Mouzakitis, 'A Survey of the State-of-the-Art Localization Techniques and Their Potentials for Autonomous Vehicle Applications,' in IEEE Internet of Things Journal, vol. 5, no. 2, pp. 829-846, April 2018. [5]. H.-S. Tan and J. Huang, 'DGPS-based vehicle-to-vehicle cooperative collision warning: Engineering feasibility viewpoints,' IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 4, pp. 415-428, 2006. [6]. J. Levinson, M. Montemerlo, and S. Thrun, 'Map-based precision vehicle localization in urban environments,' in Robotics: science and systems, vol. 4: Citeseer, p. 1, 2007. [7]. G. M. Djuknic and R. E. Richton, 'Geolocation and assisted GPS,' Computer, vol. 34, no. 2, pp. 123-125, 2001. [8]. R. E. Kalman, 'A new approach to linear filtering and prediction problems,' 1960. [9]. H. Qi and J. B. Moore, 'Direct Kalman filtering approach for GPS/INS integration,' IEEE Transactions on Aerospace and Electronic Systems, vol. 38, no. 2, pp. 687-693, 2002. [10]. A. Werries and J. Dolan, 'Adaptive Kalman filtering methods for low-cost GPS/INS localization for autonomous vehicles,' Carnegie-Mellon University, 2016. [11]. G. Hu, W. Wang, Y. Zhong, B. Gao, and C. Gu, 'A new direct filtering approach to INS/GNSS integration,' Aerospace Science and Technology, vol. 77, pp. 755-764, 2018. [12]. K. Li, H.-S. Tan, and J. K. Hedrick, 'Map-aided GPS/INS localization using a low-order constrained unscented Kalman filter,' in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pp. 4607-4612, 2009. [13]. 吳柏富, 結合無損式卡爾曼濾波器及交互式多模型車輛動態偵測技術之自駕系統三維圖資融合即時精準定位, in 國立臺灣大學機械工程研究所,2016. [14]. D. Kim, B. Kim, T. Chung, and K. Yi, 'Lane-level localization using an AVM camera for an automated driving vehicle in urban environments,' IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 280-290, 2016. [15]. L. Wang, Y. Zhang, and J. Wang, 'Map-based localization method for autonomous vehicles using 3D-LIDAR,' IFAC-PapersOnLine, vol. 50, no. 1, pp. 276-281, 2017. [16]. A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, 'MonoSLAM: Real-time single camera SLAM,' IEEE transactions on pattern analysis and machine intelligence, vol. 29, no. 6, pp. 1052-1067, 2007. [17]. E. Jose and M. D. Adams, 'Millimetre wave radar spectra simulation and interpretation for outdoor slam,' in IEEE International Conference on Robotics and Automation, vol. 2: IEEE, pp. 1321-1326 , 2004. [18]. F. Dellaert, D. Fox, W. Burgard, and S. Thrun, 'Monte carlo localization for mobile robots,' IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C) , vol. 2: IEEE, pp. 1322-1328, 1999. [19]. R. E. Kalman and R. S. Bucy, 'New results in linear filtering and prediction theory,' 1961. [20]. R. C. Smith and P. Cheeseman, 'On the representation and estimation of spatial uncertainty,' The international journal of Robotics Research, vol. 5, no. 4, pp. 56-68, 1986. [21]. M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, 'FastSLAM: A factored solution to the simultaneous localization and mapping problem,' Aaai/iaai, vol. 593598, 2002. [22]. G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, 'A tutorial on graph-based SLAM,' IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31-43, 2010. [23]. G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard, 'Efficient estimation of accurate maximum likelihood maps in 3D,' in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3472-3478, 2007. [24]. G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg, 'Hierarchical optimization on manifolds for online 2D and 3D mapping,' in 2010 IEEE International Conference on Robotics and Automation, pp. 273-278, 2010. [25]. M. Kaess, A. Ranganathan, and F. Dellaert, 'iSAM: Incremental smoothing and mapping,' IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1365-1378, 2008. [26]. R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, 'g 2 o: A general framework for graph optimization,' in 2011 IEEE International Conference on Robotics and Automation, pp. 3607-3613, 2011. [27]. J. J. Moré, 'The Levenberg-Marquardt algorithm: implementation and theory,' in Numerical analysis: Springer, pp. 105-116, 1978. [28]. H. Fu, L. Ye, R. Yu and T. Wu, 'An efficient scan-to-map matching approach for autonomous driving,' 2016 IEEE International Conference on Mechatronics and Automation, Harbin, pp. 1649-1654, 2016. [29]. E. Javanmardi, Y. Gu, M. Javanmardi, and S. Kamijo, 'Autonomous vehicle self-localization based on abstract map and multi-channel LiDAR in urban area,' IATSS research, vol. 43, no. 1, pp. 1-13, 2019. [30]. J. Hohenthal, P. Alho, J. Hyyppä, and H. Hyyppä, 'Laser scanning applications in fluvial studies,' Progress in Physical Geography, vol. 35, no. 6, pp. 782-809, 2011. [31]. G. Petrie, 'An introduction to the technology: mobile mapping systems,' Geoinformatics, vol. 13, no. 1, p. 32, 2010. [32]. N. Ripperda and C. Brenner, 'Marker-free registration of terrestrial laser scans using the normal distribution transform,' Proceedings of the ISPRS working group, vol. 4, 2005. [33]. I. Klein and S. Filin, 'LiDAR and INS fusion in periods of GPS outages for mobile laser scanning mapping systems,' International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 38, no. 5, p. W12, 2011. [34]. A. Gressin, B. Cannelle, C. Mallet, and J.-P. Papelard, 'Trajectory-based registration of 3d lidar point clouds acquired with a mobile mapping system,' ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 1, pp. 117-122, 2012. [35]. K. Gajdamowicz, D. Öhman, and M. Horemuz, 'Mapping and 3D Modelling of Urban Environment Based On LiDAR GPS IMU and Image Data,' in International Symposium on Mobile Mapping Technology, 2007. [36]. J. Saarinen, H. Andreasson, T. Stoyanov, J. Ala-Luhtala, and A. J. Lilienthal, 'Normal distributions transform occupancy maps: Application to large-scale online 3D mapping,' in 2013 IEEE International Conference on Robotics and Automation, pp. 2233-2238, 2013. [37]. O. D. Faugeras and M. Hebert, 'The representation, recognition, and locating of 3-D objects,' The international journal of robotics research, vol. 5, no. 3, pp. 27-52, 1986. [38]. L. Cheng et al., 'Registration of laser scanning point clouds: A review,' Sensors, vol. 18, no. 5, p. 1641, 2018. [39]. K. S. Arun, T. S. Huang, and S. D. Blostein, 'Least-squares fitting of two 3-D point sets,' IEEE Transactions on pattern analysis and machine intelligence, no. 5, pp. 698-700, 1987. [40]. M. W. Walker, L. Shao, and R. A. Volz, 'Estimating 3-D location parameters using dual number quaternions,' CVGIP: image understanding, vol. 54, no. 3, pp. 358-367, 1991. [41]. P. J. Besl and N. D. McKay, 'Method for registration of 3-D shapes,' in Sensor fusion IV: control paradigms and data structures, International Society for Optics and Photonics, vol. 1611, pp. 586-606, 1992. [42]. A. Censi, 'An ICP variant using a point-to-line metric,' in 2008 IEEE International Conference on Robotics and Automation, pp. 19-25, 2008. [43]. Y. Chen and G. G. Medioni, 'Object modeling by registration of multiple range images,' Image Vision Comput., vol. 10, no. 3, pp. 145-155, 1992. [44]. A. Segal, D. Haehnel, and S. Thrun, 'Generalized-icp,' in Robotics: science and systems, vol. 2, no. 4: Seattle, WA, p. 435, 2009. [45]. P. Biber and W. Straßer, 'The normal distributions transform: A new approach to laser scan matching,' in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453) , vol. 3: IEEE, pp. 2743-2748, 2003. [46]. E. Takeuchi and T. Tsubouchi, 'A 3-D scan matching using improved 3-D normal distributions transform for mobile robotic mapping,' in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3068-3073, 2006. [47]. J. Zhang and S. Singh, 'LOAM: Lidar Odometry and Mapping in Real-time,' in Robotics: Science and Systems, pp. 3068-3073, 2014. [48]. H. Fu, R. Yu, L. Ye, T. Wu, and X. Xu, 'An Efficient Scan-to-Map Matching Approach Based on Multi-channel Lidar,' Journal of Intelligent Robotic Systems, vol. 91, no. 3-4, pp. 501-513, 2018. [49]. B. Nagy and C. Benedek, 'Real-time point cloud alignment for vehicle localization in a high resolution 3D map,' in Proceedings of the European Conference on Computer Vision (ECCV) , pp. 0-0, 2018. [50]. M. Magnusson, 'The three-dimensional normal-distributions transform: an efficient representation for registration, surface analysis, and loop detection,' Örebro universitet, 2009. [51]. C. Ulaş and H. Temeltaş, '3D multi-layered normal distribution transform for fast and long range scan matching,' Journal of Intelligent Robotic Systems, vol. 71, no. 1, pp. 85-108, 2013. [52]. H. Hong and B. Lee, 'Key-layered normal distributions transform for point cloud registration,' Electronics Letters, vol. 51, no. 24, pp. 1986-1988, 2015. [53]. J. W. Kim and B. H. Lee, 'Robust and fast 3-D scan registration using normal distributions transform with supervoxel segmentation,' Robotica, vol. 34, no. 7, pp. 1630-1658, 2016. [54]. A. Das and S. L. Waslander, 'Scan registration with multi-scale k-means normal distributions transform,' 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, pp. 2705-2710, 2012. [55]. A. Ahmad and L. Dey, 'A k-mean clustering algorithm for mixed numeric and categorical data,' Data Knowledge Engineering, vol. 63, no. 2, pp. 503-527, 2007. [56]. A. Das and S. L. Waslander, 'Scan registration using segmented region growing NDT,' The International Journal of Robotics Research, vol. 33, no. 13, pp. 1645-1663, 2014. [57]. H. Zou, T. Hastie, and R. Tibshirani, 'Sparse principal component analysis,' Journal of computational and graphical statistics, vol. 15, no. 2, pp. 265-286, 2006. [58]. T. Stoyanov, M. Magnusson, H. Andreasson, and A. J. Lilienthal, 'Fast and accurate scan registration through minimization of the distance between compact 3D NDT representations,' The International Journal of Robotics Research, vol. 31, no. 12, pp. 1377-1393, 2012. [59]. H. Hong and B. H. Lee, 'Probabilistic normal distributions transform representation for accurate 3D point cloud registration,' 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, pp. 3333-3338, 2017. [60]. T. Shan and B. Englot, 'LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain,' 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, pp. 4758-4765 2018. [61]. R. B. Rusu, 'Semantic 3d object maps for everyday manipulation in human living environments,' KI-Künstliche Intelligenz, vol. 24, no. 4, pp. 345-348, 2010 [62]. J. Redmon and A. Farhadi, 'YOLO9000: better, faster, stronger,' in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263-7271, 2017. [63]. H. Darweesh et al., 'Open source integrated planner for autonomous navigation in highly dynamic environments,' Journal of Robotics and Mechatronics, vol. 29, no. 4, pp. 668-684, 2017. [64]. Huang, J., H.-S. Tan, and F. Bu. Preliminary steps in understanding a target control based driversteering model. in American Control Conference (ACC), 2011. [65]. Tan, H.-S. and J. Huang, Experimental development of a new target and control driver steering model based on DLC test data.IEEE Transactions on Intelligent Transportation Systems, p. 375-384, 2012. [66]. 袁鼎, 以駕駛者轉向及車輛動態模型為基礎之道路追隨控制系統研發in 國立臺灣大學機械工程研究所. 2015. [67]. I. Bogoslavskyi and C. Stachniss, 'Fast range image-based segmentation of sparse 3D laser scans for online operation,' in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) , pp. 163-169, 2016. [68]. M. Himmelsbach, F. V. Hundelshausen, and H.-J. Wuensche, 'Fast segmentation of 3D point clouds for ground vehicles,' in 2010 IEEE Intelligent Vehicles Symposium, pp. 560-565, 2010. [69]. X.-F. Han, J. S. Jin, M.-J. Wang, W. Jiang, L. Gao, and L. Xiao, 'A review of algorithms for filtering the 3D point cloud,' Signal Processing: Image Communication, vol. 57, pp. 103-112, 2017. [70]. S. P. Drake, 'Converting GPS coordinates [phi, lambda, h] to navigation coordinates (ENU),' 2002. [71]. A. Geiger, P. Lenz and R. Urtasun, 'Are we ready for autonomous driving? The KITTI vision benchmark suite,' 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, pp. 3354-3361, 2012. [72]. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, 'CARLA: An open urban driving simulator,' arXiv preprint arXiv:1711.03938, 2017. [73]. 林舜友, 融合影像與圖資之自駕運具定位系統性能提升研究, in 國立臺灣大學機械工程研究所. 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57962 | - |
| dc.description.abstract | 在自動駕駛車輛的定位系統中,全球導航衛星系統(Global Navigation Satellite System, GNSS)的定位方式在城市或高遮蔽的環境中,無法達到自動駕駛車輛所需高準確的定位結果;相反的,光學雷達的定位方式相比於GNSS,在這樣的場域下能提供高準確度且高強健性的定位結果。然而,光學雷達硬體的高昂成本與即時化處理點雲資訊所需的高運算量問題,成為眾多人所詬病的缺點。為了能有效降低即時化定位所需要的高運算量問題,本研究提出一套適用於固定場域下的光學雷達車輛定位系統。此定位系統主要是透過點雲資訊的前處理,以及改良定位核心技術「點雲匹配演算法」的計算方式,使定位結果在保有(高)準確度的情況下,提升系統的運算效率。 本研究的定位系統包含諸多功能演算法,主要部分為點雲分割(Point Cloud Segmentation)與地面優化之常態分佈轉換演算法(Ground-Optimized Normal Distribution Transform, GO-NDT)。首先利用點雲分割進行點雲的分類,並從分類結果中,濾除雜訊點雲和提取顯著的物體點雲,接用GO-NDT利用地面點雲資料和物體點雲資料,進行兩步驟的參數最佳化並估得定位結果。最後,本研究將GO-NDT的和常態分佈轉換(Normal Distributions Transform, NDT)延伸應用至車輛定位系統之上,並採用以市區街景為主的CARLA模擬環境進行定位結果的性能比較與分析,由實驗結果得知定位準確度上NDT(平均誤差5.72公分和0.11度)與GO-NDT(平均誤差7.16公分和0.21度)兩者誤差結果相似,但GO-NDT定位系統運行上以約30%快的速度優於NDT定位系統。 | zh_TW |
| dc.description.abstract | In the localization system of autonomous vehicle, the localization system based on Global Navigation Satellite System (GNSS) cannot achieve the required accuracy of autonomous vehicle in the city or the highly shaded environment. In contrast, the LIDAR-based localization system can achieve highly accuracy and robust than the GNSS-based localization system in the scenario of city and the highly shaded environment. However, the high-cost hardware and the high computation of processing the point cloud in real-time make it criticized by people. In order to effectively reduce the high computational problem required for real-time localization. This study proposes a LIDAR-based localization system which can use in the fixed field. This proposed system mainly uses the point cloud pre-processing and improvement of the core localization method named “point cloud matching algorithm”, in that the proposed system more efficient than original when maintaining high accuracy. The localization system in this study contains many functional algorithms which mainly includes point cloud segmentation and Ground-Optimized Normal Distributions Transform (GO-NDT). Firstly, apply point cloud segmentation to classify the point cloud into clusters, filter out the noise and extract significant features from the clusters. Secondly, GO-NDT uses ground cluster and feature cluster to perform two-step parameter optimization and estimates the localization results. Finally, this study extends GO-NDT and Normal Distributions Transform (NDT) to the localization system, and uses the CARLA simulator mainly based on urban scenario to compare and analysis the performance of the system. The experimental results show the localization accuracy of NDT mean error is 5.72 cm and 0.11 degree, and GO-NDT mean error is 7.16 cm and 0.21 degree are similar, but the GO-NDT system is faster about 30% computation speed than the NDT. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:03:57Z (GMT). No. of bitstreams: 1 U0001-1507202017533800.pdf: 2660128 bytes, checksum: 14a12a5683b4c0176420a35f20b4bb15 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 I 摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 VIII Chapter 1 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究貢獻 3 Chapter 2 文獻回顧 4 2.1 車輛定位系統 4 2.1.1 基於GNSS的定位系統 4 2.1.2 基於LIDAR的定位系統 5 2.2 點雲匹配演算法 7 Chapter 3 系統架構與定位系統介紹 11 3.1 系統架構 11 3.2 系統座標系 14 3.3 GNSS座標轉換 15 3.4 點雲分割 17 3.4.1 點雲距離圖像化 18 3.4.2 地面點雲分割 19 3.4.3 物體點雲分割 21 3.4.4 點雲分割之應用與實際成果 22 3.5 點雲濾波 23 3.6 地面優化之常態分佈轉換演算法 25 3.6.1 常態分佈模型 26 3.6.2 常態分佈轉換 28 3.6.3 地面優化之常態分佈轉換 36 Chapter 4 實驗與討論 42 4.1 實驗設備與模擬環境介紹 42 4.1.1 實驗設備 42 4.1.2 CARLA模擬環境介紹 43 4.2 點雲匹配演算法實驗結果與分析 43 4.2.1 實驗方法 43 4.2.2 實驗結果與分析 44 4.2.3 實驗結論 52 4.3 定位系統實驗結果與分析 52 4.3.1 實驗路線與場域環境 53 4.3.2 定位準確度之量化定義 54 4.3.3 實驗結果與分析 55 4.3.4 實驗結論 61 Chapter 5 結論與未來建議 62 5.1 結論 62 5.2 未來建議 62 參考文獻 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光學雷達 | zh_TW |
| dc.subject | 光學雷達定位系統 | zh_TW |
| dc.subject | 點雲匹配演算法 | zh_TW |
| dc.subject | 常態分佈轉換 | zh_TW |
| dc.subject | LIDAR-Based Localization System | en |
| dc.subject | Light Detection and Ranging | en |
| dc.subject | Point Cloud Matching | en |
| dc.subject | Normal Distributions Transform | en |
| dc.title | 基於地面優化之常態分佈轉換演算法的自主駕駛光學雷達定位系統 | zh_TW |
| dc.title | LIDAR-Based Localization System For Autonomous Vehicle Based On Ground-Optimized Normal Distributions Transform | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭榮和(Jung-Ho Cheng),江中詳(Chung-Hsiang Jiang) | |
| dc.subject.keyword | 光學雷達定位系統,光學雷達,點雲匹配演算法,常態分佈轉換, | zh_TW |
| dc.subject.keyword | LIDAR-Based Localization System,Light Detection and Ranging,Point Cloud Matching,Normal Distributions Transform, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU202001556 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1507202017533800.pdf 未授權公開取用 | 2.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
