Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57957
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張震東(Geen-Dong Chang)
dc.contributor.authorBo-En Hongen
dc.contributor.author洪柏恩zh_TW
dc.date.accessioned2021-06-16T07:14:07Z-
dc.date.available2015-07-16
dc.date.copyright2014-07-16
dc.date.issued2014
dc.date.submitted2014-07-02
dc.identifier.citation1.Sen, R. and D. Baltimore, Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell, 1986. 47(6): p. 921-8.
2.Oeckinghaus, A., M.S. Hayden, and S. Ghosh, Crosstalk in NF-kappaB signaling pathways. Nat Immunol, 2011. 12(8): p. 695-708.
3.Pahl, H.L., Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 1999. 18(49): p. 6853-66.
4.Hayden, M.S. and S. Ghosh, Signaling to NF-kappaB. Genes Dev, 2004. 18(18): p. 2195-224.
5.O'Shea, J.M. and N.D. Perkins, Regulation of the RelA (p65) transactivation domain. Biochem Soc Trans, 2008. 36(Pt 4): p. 603-8.
6.Xiao, G., E.W. Harhaj, and S.C. Sun, NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell, 2001. 7(2): p. 401-9.
7.Senftleben, U., et al., Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science, 2001. 293(5534): p. 1495-9.
8.Popa, C., et al., The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res, 2007. 48(4): p. 751-62.
9.Chang, H.Y. and X. Yang, Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev, 2000. 64(4): p. 821-46.
10.Yeh, W.C., et al., Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity, 1997. 7(5): p. 715-25.
11.Devin, A., et al., The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity, 2000. 12(4): p. 419-29.
12.Huynh, Q.K., et al., Characterization of the recombinant IKK1/IKK2 heterodimer. Mechanisms regulating kinase activity. J Biol Chem, 2000. 275(34): p. 25883-91.
13.Zandi, E., Y. Chen, and M. Karin, Direct phosphorylation of IkappaB by IKKalpha and IKKbeta: discrimination between free and NF-kappaB-bound substrate. Science, 1998. 281(5381): p. 1360-3.
14.Zandi, E., et al., The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell, 1997. 91(2): p. 243-52.
15.Rothwarf, D.M., et al., IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature, 1998. 395(6699): p. 297-300.
16.Ling, L., Z. Cao, and D.V. Goeddel, NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc Natl Acad Sci U S A, 1998. 95(7): p. 3792-7.
17.Hoffmann, A., et al., The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science, 2002. 298(5596): p. 1241-5.
18.Natoli, G. and S. Chiocca, Nuclear ubiquitin ligases, NF-kappaB degradation, and the control of inflammation. Sci Signal, 2008. 1(1): p. pe1.
19.Hoesel, B. and J.A. Schmid, The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer, 2013. 12: p. 86.
20.Coussens, L.M. and Z. Werb, Inflammation and cancer. Nature, 2002. 420(6917): p. 860-7.
21.Ben-Neriah, Y. and M. Karin, Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol, 2011. 12(8): p. 715-23.
22.Carballo, E., W.S. Lai, and P.J. Blackshear, Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science, 1998. 281(5379): p. 1001-5.
23.Guttridge, D.C., et al., NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol, 1999. 19(8): p. 5785-99.
24.La Rosa, F.A., J.W. Pierce, and G.E. Sonenshein, Differential regulation of the c-myc oncogene promoter by the NF-kappa B rel family of transcription factors. Mol Cell Biol, 1994. 14(2): p. 1039-44.
25.Kuper, H., H.O. Adami, and D. Trichopoulos, Infections as a major preventable cause of human cancer. J Intern Med, 2000. 248(3): p. 171-83.
26.Rayet, B. and C. Gelinas, Aberrant rel/nfkb genes and activity in human cancer. Oncogene, 1999. 18(49): p. 6938-47.
27.Jiao, X., et al., Somatic mutations in the Notch, NF-KB, PIK3CA, and Hedgehog pathways in human breast cancers. Genes Chromosomes Cancer, 2012. 51(5): p. 480-9.
28.Ziegler, S., et al., Target identification for small bioactive molecules: finding the needle in the haystack. Angew Chem Int Ed Engl, 2013. 52(10): p. 2744-92.
29.Pucheault, M., Natural products: chemical instruments to apprehend biological symphony. Org Biomol Chem, 2008. 6(3): p. 424-32.
30.Swinney, D.C. and J. Anthony, How were new medicines discovered? Nat Rev Drug Discov, 2011. 10(7): p. 507-19.
31.Sato, S., et al., Biochemical target isolation for novices: affinity-based strategies. Chem Biol, 2010. 17(6): p. 616-23.
32.Verhelst, S.H., M. Fonovic, and M. Bogyo, A mild chemically cleavable linker system for functional proteomic applications. Angew Chem Int Ed Engl, 2007. 46(8): p. 1284-6.
33.Krysiak, J. and R. Breinbauer, Activity-based protein profiling for natural product target discovery. Top Curr Chem, 2012. 324: p. 43-84.
34.Speers, A.E., G.C. Adam, and B.F. Cravatt, Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc, 2003. 125(16): p. 4686-7.
35.Abuelyaman, A.S., et al., Fluorescent derivatives of diphenyl [1-(N-peptidylamino)alkyl]phosphonate esters: synthesis and use in the inhibition and cellular localization of serine proteases. Bioconjug Chem, 1994. 5(5): p. 400-5.
36.Kam, C.M., et al., Biotinylated isocoumarins, new inhibitors and reagents for detection, localization, and isolation of serine proteases. Bioconjug Chem, 1993. 4(6): p. 560-7.
37.Green, N.M., Avidin. 1. The Use of (14-C)Biotin for Kinetic Studies and for Assay. Biochem J, 1963. 89: p. 585-91.
38.Marttila, A.T., et al., Recombinant NeutraLite avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties. FEBS Lett, 2000. 467(1): p. 31-6.
39.Frei, A.P., et al., Direct identification of ligand-receptor interactions on living cells and tissues. Nat Biotechnol, 2012. 30(10): p. 997-1001.
40.Kolb, H.C., M.G. Finn, and K.B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl, 2001. 40(11): p. 2004-2021.
41.Wu, P., et al., Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(i)-catalyzed ligation of azides and alkynes. Angew Chem Int Ed Engl, 2004. 43(30): p. 3928-32.
42.Boren, B.C., et al., Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism. J Am Chem Soc, 2008. 130(28): p. 8923-30.
43.Gersch, M., J. Kreuzer, and S.A. Sieber, Electrophilic natural products and their biological targets. Nat Prod Rep, 2012. 29(6): p. 659-82.
44.Lomenick, B., et al., Target identification using drug affinity responsive target stability (DARTS). Curr Protoc Chem Biol, 2011. 3(4): p. 163-180.
45.Lomenick, B., R.W. Olsen, and J. Huang, Identification of direct protein targets of small molecules. ACS Chem Biol, 2011. 6(1): p. 34-46.
46.Carmi, C., et al., Clinical perspectives for irreversible tyrosine kinase inhibitors in cancer. Biochem Pharmacol, 2012. 84(11): p. 1388-99.
47.Singh, J., et al., The resurgence of covalent drugs. Nat Rev Drug Discov, 2011. 10(4): p. 307-17.
48.Toth, L., L. Muszbek, and I. Komaromi, Mechanism of the irreversible inhibition of human cyclooxygenase-1 by aspirin as predicted by QM/MM calculations. J Mol Graph Model, 2013. 40: p. 99-109.
49.Taldone, T., et al., Heat shock protein 70 inhibitors. 2. 2,5'-thiodipyrimidines, 5-(phenylthio)pyrimidines, 2-(pyridin-3-ylthio)pyrimidines, and 3-(phenylthio)pyridines as reversible binders to an allosteric site on heat shock protein 70. J Med Chem, 2014. 57(4): p. 1208-24.
50.Serafimova, I.M., et al., Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat Chem Biol, 2012. 8(5): p. 471-6.
51.Kwak, E.L., et al., Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci U S A, 2005. 102(21): p. 7665-70.
52.Xu, Y., et al., Acquired resistance of lung adenocarcinoma to EGFR-tyrosine kinase inhibitors gefitinib and erlotinib. Cancer Biol Ther, 2010. 9(8): p. 572-82.
53.Pao, W., et al., Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med, 2005. 2(3): p. e73.
54.Carter, T.A., et al., Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc Natl Acad Sci U S A, 2005. 102(31): p. 11011-6.
55.Erve, J.C., Chemical toxicology: reactive intermediates and their role in pharmacology and toxicology. Expert Opin Drug Metab Toxicol, 2006. 2(6): p. 923-46.
56.Uetrecht, J., Immune-mediated adverse drug reactions. Chem Res Toxicol, 2009. 22(1): p. 24-34.
57.Adams, D.H., et al., Mechanisms of immune-mediated liver injury. Toxicol Sci, 2010. 115(2): p. 307-21.
58.Roberts, D.W., et al., Immunohistochemical localization and quantification of the 3-(cystein-S-yl)-acetaminophen protein adduct in acetaminophen hepatotoxicity. Am J Pathol, 1991. 138(2): p. 359-71.
59.James, L.P., P.R. Mayeux, and J.A. Hinson, Acetaminophen-induced hepatotoxicity. Drug Metab Dispos, 2003. 31(12): p. 1499-506.
60.Mather, B.D., et al., Michael addition reactions in macromolecular design for emerging technologies. Progress in Polymer Science, 2006. 31(5): p. 487-531.
61.Phillipson, J.D., Phytochemistry and medicinal plants. Phytochemistry, 2001. 56(3): p. 237-43.
62.Basmadjian, C., et al., Cancer wars: natural products strike back. Front Chem, 2014. 2: p. 20.
63.Newman, D.J. and G.M. Cragg, Natural products as sources of new drugs over the last 25 years. J Nat Prod, 2007. 70(3): p. 461-77.
64.Carlson, E.E., Natural products as chemical probes. ACS Chem Biol, 2010. 5(7): p. 639-53.
65.Min, K.R., et al., Piperlonguminine from Piper longum with inhibitory effects on alpha-melanocyte-stimulating hormone-induced melanogenesis in melanoma B16 cells. Planta Med, 2004. 70(12): p. 1115-8.
66.Kim, K.S., et al., Inhibitory effect of piperlonguminine on melanin production in melanoma B16 cell line by downregulation of tyrosinase expression. Pigment Cell Res, 2006. 19(1): p. 90-8.
67.Shrivastava, S., et al., Piperlongumine, an alkaloid causes inhibition of PI3 K/Akt/mTOR signaling axis to induce caspase-dependent apoptosis in human triple-negative breast cancer cells. Apoptosis, 2014.
68.Makhov, P., et al., Piperlongumine promotes autophagy via inhibition of Akt/mTOR signalling and mediates cancer cell death. Br J Cancer, 2014. 110(4): p. 899-907.
69.Bharadwaj, U., et al., Drug-repositioning screening identified piperlongumine as a direct STAT3 inhibitor with potent activity against breast cancer. Oncogene, 2014. 0.
70.Adams, D.J., et al., Discovery of small-molecule enhancers of reactive oxygen species that are nontoxic or cause genotype-selective cell death. ACS Chem Biol, 2013. 8(5): p. 923-9.
71.Parkinson, E.I. and P.J. Hergenrother, Runaway ROS as a selective anticancer strategy. ChemMedChem, 2011. 6(11): p. 1957-9.
72.Raj, L., et al., Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature, 2011. 475(7355): p. 231-4.
73.Liu, J.M., et al., Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation. Biochem Biophys Res Commun, 2013. 437(1): p. 87-93.
74.Randhawa, H., et al., Activation of ERK signaling and induction of colon cancer cell death by piperlongumine. Toxicol In Vitro, 2013. 27(6): p. 1626-33.
75.Pei, S., et al., Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J Biol Chem, 2013. 288(47): p. 33542-58.
76.Han, S.S., et al., Piperlongumine inhibits LMP1/MYC-dependent mouse B-lymphoma cells. Biochem Biophys Res Commun, 2013. 436(4): p. 660-5.
77.Han, S.S., et al., Piperlongumine inhibits proliferation and survival of Burkitt lymphoma in vitro. Leuk Res, 2013. 37(2): p. 146-54.
78.Golovine, K.V., et al., Piperlongumine induces rapid depletion of the androgen receptor in human prostate cancer cells. Prostate, 2013. 73(1): p. 23-30.
79.Park, B.S., et al., Antiplatelet effects of acidamides isolated from the fruits of Piper longum L. Phytomedicine, 2007. 14(12): p. 853-5.
80.Park, B.S., et al., Antiplatelet activities of newly synthesized derivatives of piperlongumine. Phytother Res, 2008. 22(9): p. 1195-9.
81.Iwashita, M., et al., Inhibitory effect of ethanol extract of Piper longum L. on rabbit platelet aggregation through antagonizing thromboxane A2 receptor. Biol Pharm Bull, 2007. 30(7): p. 1221-5.
82.Iwashita, M., et al., Piperlongumine, a constituent of Piper longum L., inhibits rabbit platelet aggregation as a thromboxane A(2) receptor antagonist. Eur J Pharmacol, 2007. 570(1-3): p. 38-42.
83.Lee, W., et al., Barrier protective effects of piperlonguminine in LPS-induced inflammation in vitro and in vivo. Food Chem Toxicol, 2013. 58: p. 149-57.
84.Rodrigues Silva, D., et al., Anti-inflammatory activity of the extract, fractions and amides from the leaves of Piper ovatum Vahl (Piperaceae). J Ethnopharmacol, 2008. 116(3): p. 569-73.
85.Garcia-Pineres, A.J., et al., Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem, 2001. 276(43): p. 39713-20.
86.Li, N., H.S. Overkleeft, and B.I. Florea, Activity-based protein profiling: an enabling technology in chemical biology research. Curr Opin Chem Biol, 2012. 16(1-2): p. 227-33.
87.Gharbi, S.I., et al., Exploring the specificity of the PI3K family inhibitor LY294002. Biochem J, 2007. 404(1): p. 15-21.
88.Basak, S. and A. Hoffmann, Crosstalk via the NF-kappaB signaling system. Cytokine Growth Factor Rev, 2008. 19(3-4): p. 187-97.
89.Michael A., On the addition of sodium acetacetic ether and analogous sodium compounds to unsaturated organic ethers. Am Chem J 1887.9:115.
90.L.G. Wade, Jr., Organic Chemistry 7th Edition
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57957-
dc.description.abstract天然物是一類從生物體內製造並且被純化出來的小分子。許多從中草藥萃取出來的天然物,都有抗發炎和抗癌的功效,而且從結構上看,其中有許多可能是共價藥物。天然物piperlongumine是從胡椒屬的植物長胡椒(Piper longum)中,所萃取出來的一種小分子。目前研究發現,piperlongumine可以殺死某些癌細胞,但是不影響正常細胞;除此之外,還有抑制血小板活化的功效。另外,長胡椒的萃取物可以抗發炎,而piperlongumine也是萃取物的成分之一;但它在抗發炎的機制依舊不明。NF-κB是一種轉錄因子,可活化許多和細胞生長相關的基因表現,包括使白血球分泌細胞激素去促進細胞增生,因此NF-κB為影響細胞生長的關鍵調控者。在NF-κB過度活化的情況下,會造成慢性發炎,進而造成其他疾病,包括提高癌症風險。Piperlongumine從結構上分析,我們預測它可能是一種共價藥物。藉由麥可加成反應的方式,piperlongumine可以被半胱胺酸殘基攻擊可進行麥可加成反應的位置,進而和蛋白質形成共價鍵,對蛋白質進行修飾。我們的研究,以新的方法學:抗piperlongumine多株抗體的方式,發現以piperlongumine處理細胞之後,NF-κB會被piperlongumine所修飾。在子宮頸癌細胞,以腫瘤壞死因子-α (tumor necrosis factor-α) 去誘導NF-κB的活化的模式中,我們發現先以piperlongumine處理的細胞,NF-κB從細胞質到細胞核的移動會被抑制。因此,我們推測NF-κB上的某些半胱胺酸殘基被piperlongumine修飾後,可能會影響NF-κB移動至細胞核和NF-κB的活化;甚至有其他piperlongumine的目標蛋白也可能一起影響NF-κB的活化。zh_TW
dc.description.abstractNatural compounds are small molecules extracted from organisms. Many natural compounds from herbals have the properties of anti-inflammation and anti-cancer and they may be covalent drugs according to their structures. The natural compound, piperlongumine, is a small molecule from the Piper species plant, Piper longum. Piperlongumine has been shown to kill certain cancer cells but not the normal cells; furthermore, piperlongumine has the activities for anti-platelet. The extracts of Piper longum also have the ability for anti-inflammation, and piperlongumine is a component of the extracts. However, the anti-inflammatory mechanism of piperlongumine is still unknown. NF-κB is a transcription factor that can activate many genes required for the cell proliferation including inducing secretion of interleukins from leukocytes to increase the activities of cell growth. Therefore, NF-κB is a key regulator of the cell proliferation. The NF-κB hyper-activation can lead to chronic inflammation and diseases such as the cancers. We analyzed the structure of piperlongumine and predicted that piperlongumine may be a covalent drug. Piperlongumine can be attacked by the cysteine residues of some proteins through Michael addition to form the covalent bonds. We used a new methodology to generate anti-piperlongumine polyclonal antibody for target identification, and found that the NF-κB can be modified by piperlongumine after piperlongumine treatment in the cells. In the TNF-α (tumor necrosis factor-α) induced NF-κB activation model, we found that the NF-κB translocation from the cytoplasm to the nucleus can be inhibited in cervical cancer cells. Therefore, we predicted that modifications of some cysteine residues on NF-κB can affect the NF-κB translocation and activation.en
dc.description.provenanceMade available in DSpace on 2021-06-16T07:14:07Z (GMT). No. of bitstreams: 1
ntu-103-R99b46022-1.pdf: 1942816 bytes, checksum: c8f7d6f0f1406950d56b737bb435ea95 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝...ii
中文摘要...iii
英文摘要...iv
縮寫表...vi
目錄...viii
第一章 緒論...1
1.1 NF-κB訊號傳遞路徑...1
1.1.1 NF-κB轉錄因子...1
1.1.2 TNF-α誘導NF-κB活化的模型...2
1.1.3 NF-κB訊號的終止...3
1.1.4 NF-κB與發炎反應和癌症的關係...4
1.2 小分子藥物的目標鑑定...4
1.2.1 小分子藥物的發展...4
1.2.2 藥物目標鑑定方法...5
1.3 共價藥物...8
1.4 半胱胺酸...10
1.5 麥可加成反應...11
1.6 天然物...12
1.6.1 天然物的歷史...12
1.6.2 天然物的發展...12
1.7 天然物Piperlongumine...13
1.8 研究動機...14
第二章 材料與實驗方法...15
2.1 細胞實驗方法...15
2.1.1 細胞培養...15
2.1.2 細胞繼代...15
2.1.3 藥物處理細胞...15
2.1.4 TNF-α 處理細胞...16
2.1.5 藥物...16
2.2 蛋白質實驗方法...17
2.2.1 細胞蛋白質樣本製備...17
2.2.2 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳...17
2.2.3 蛋白質轉印...19
2.2.4 西方墨點法...19
2.2.5 免疫沉澱...20
2.2.6 細胞核質分離....20
2.2.7 抗體...21
2.2.8 藥物抗原製備...21
2.3 質譜儀分析Piperlongumine反應產物...21
2.3.1 質譜儀分析Piperlongumine與合成胜肽反應的產物...21
2.3.2 質譜儀分析Piperlongumine與半胱胺酸在不同pH值的反應產物...22
2.4 人類介白素-6酵素免疫分析...22
第三章 結果...23
3.1 Piperlongumine於HeLa細胞中修飾蛋白質的訊號模式...23
3.2 Piperlongumine對蛋白質的修飾訊號會隨pH值變動...23
3.3 Piperlongumine可以對p65進行修飾...24
3.4 Piperlongumine對TNF-α誘發NF-κB進細胞核之現象的影響.....24
3.5 Piperlongumine抑制p65的目標基因蛋白IL-6的分泌...25
3.6 Piperlongumine和Parthenolide的競爭性試驗...25
3.7 質譜儀分析piperlongumine反應後的產物...26
第四章 討論...28
4.1 藥物的專一性...28
4.2 以抗體尋找藥物的目標蛋白...29
4.3 Piperlongumine抑制NF-κB 訊號傳遞路徑的機制... 29
4.4 Piperlongumine反應後的產物...30
第五章 結語...32
第六章 實驗結果圖表...33
圖 1 HeLa細胞處理不同時間與濃度piperlongumine的訊號模式...33
圖 2 Piperlongumine修飾蛋白的訊號會隨pH升高而增加...36
圖 3 p65會被piperlongumine所修飾...37
圖 4 Piperlongumine處理細胞15分鐘即可明顯抑制p65進入細胞核...38
圖 5 10 μM piperlongumine處理細胞1小時就可抑制TNF-α誘導IL-6的表現...41
圖 6 Piperlongumine和parthenolide同時處理細胞做競爭性試驗...42
圖 7 質譜儀分析piperlongumine和合成胜肽或半胱胺酸反應產物....44
第七章 參考文獻...47
第八章 附錄...56
附圖 1 Piperlongumine在有血清和無血清培養液中處理細胞的差別56
附圖 2 Piperlongumine可以進入細胞核對蛋白質作修飾...57
附圖 3 NF-κB 家族的5個成員及其所含的domain...58
附圖 4 兩種主要NF-κB訊號傳遞路徑...59
附圖 5 NF-κB可以活化許多不同的基因...60
附圖 6 Activity-based protein profiling (ABPP) 鑑定小分子藥物目標的一般流程...61
附圖 7 小分子藥物目標鑑定方法:正向選擇和負向選擇的差別...62
附圖 8 麥可加成反應的反應機制...63
附圖 9 Piperlongumine結構和可被親和基攻擊的位置...64
dc.language.isozh-TW
dc.subject麥可加成反應zh_TW
dc.subjectpiperlonguminezh_TW
dc.subject共價藥物zh_TW
dc.subjectNF-κBzh_TW
dc.subjectpiperlongumineen
dc.subjectcovalent drugen
dc.subjectMichael additionen
dc.subjectNF-κBen
dc.title探討天然物Piperlongumine對TNF-α誘導HeLa細胞的發炎反應中NF-κB p65的影響zh_TW
dc.titleThe Effects of Piperlongumine on NF-κB p65 in TNF-α Induced Inflammatory Response in HeLa Cellsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李明亭(Ming-Ting Lee),陳宏文(Hung-Wen Chen),張茂山(Mau-Sun Chang)
dc.subject.keywordpiperlongumine,共價藥物,麥可加成反應,NF-κB,zh_TW
dc.subject.keywordpiperlongumine,covalent drug,Michael addition,NF-κB,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2014-07-03
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved