Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57951
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐善慧
dc.contributor.authorMeng-Chao Tsaien
dc.contributor.author蔡孟釗zh_TW
dc.date.accessioned2021-06-16T07:13:44Z-
dc.date.available2016-07-09
dc.date.copyright2014-07-09
dc.date.issued2014
dc.date.submitted2014-07-03
dc.identifier.citation[1] Goering H, Krüger H, Bauer M. Multimodal polymer networks: design and characterisation of nanoheterogeneous PU elastomers. Macromol Mater Eng 2000;278:23–35.
[2] Santerre JP, Woodhouse K, Laroche G, Labow RS. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials 2005;26: 7457–7470.
[3] Wiggins MJ, MacEwan M, Anderson J M, Hiltner A. Effect of soft‐segment chemistry on polyurethane biostability during in vitro fatigue loading. J Biomed Mater Res A 2004;68: 668–683.
[4] Guelcher SA. Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng: Part B 2008;14:3–17.
[5] Rao JP, Geckeler KE. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci 2011;36:887–913.
[6] Förster S, Konrad M. From self-organizing polymers to nano-and biomaterials. J Mater Chem 2003;13:2671–2688.
[7] Noble KL. Waterborne polyurethanes. Prog Org Coat 1997;32:131–136.
[8] Kro´l P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers,copolymers and ionomers. Prog Mater Sci 2007;52:915–1015.
[9] Ding M, Li J, Tan H, Fu Q. Self-assembly of biodegradable polyurethanes for controlled delivery applications. Soft Matter 2012;8:5414–5428.
[10] Zhu Q, Wang Y, Zhou M, Mao C, Huang X, Bao J, Shen J. Preparation of anionic polyurethane nanoparticles and blood compatible behaviors. J Nanosci Nanotechno 2012;12:4051–4056.
[11] Mao C, Jiang LC, Luo WP, Liu HK, Bao JC, Huang XH, Shen J. Novel blood-compatible polyurethane ionomer nanoparticles. Macromolecules 2009;42:9366–9368.
[12] Liu HL, Dai SA, Fu KY, Hsu Sh. Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane. Int J Nanomed 2010;5:1017–1028.
[13] Hsu Sh, Tseng HJ, Lin YC. The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials 2010;31:6796–6808.
[14] Jaudouin O, Robin JJ, Lopez-Cuesta JM, Perrin D, Imbert C. Ionomer-based polyurethanes: a comparative study of properties and applications. Polym Int 2012;61: 495–510.
[15] Zhou Z, Zhou Y, Chen Y, Nie H, Wang Y, Li F, Zheng Y. Bilayer porous scaffold based on poly-(ɛ-caprolactone) nanofibrous membrane and gelatin sponge for favoring cell proliferation. Appl Surf Sci 2011;258:1670–1676.
[16] Hsu Sh, Sun SH, Chen DC. Improved retention of endothelial cells seeded on polyurethane small-diameter vascular grafts modified by a recombinant RGD-containing protein. Artif Organs 2003;27:1068–1078.
[17] Hsu Sh, Chuang SC, Chen CH, Chen DC. Endothelial cell attachment to the gamma irradiated small diameter polyurethane vascular grafts. Bio-Med Mater Eng 2006;16:397–404.
[18] Jiang X, Wang K, Ding M, Li J, Tan H, Wang Z, Fu Q. Quantitative grafting of peptide onto the nontoxic biodegradable waterborne polyurethanes to fabricate peptide modified scaffold for soft tissue engineering. J Mater Sci: Mater Med 2011; 22:819–827.
[19] Hsu Sh, Tsai CL, Tang CM. Evaluation of cellular affinity and compatibility to biodegradable polyesters and type-II collagen-modified scaffolds using immortalized rat chondrocytes. Artif Organs 2002;26:647–658.
[20] Whu SW, Hung KC, Hsieh KH, Chen CH, Tsai CL, Hsu Sh. Neocartilage formation in chitosan-gelatin scaffolds: in vitro and in vivo studies. Mater Sci Eng C. 2013;33:2855–2863.
[21] Howard GT. Biodegradation of polyurethane: a review. Int Biodeter Biodeger. 2002;49: 245–252
[22] Skarja GA, Woodhouse KA. Synthesis and charac-terization of degradable polyurethane elastomers containingan amino-acid based chain extender. J Biomat Sci- Polym E 1998;9:271–295.
[23] Chen SH, Tsao CT, Chou HC, Chang CH, Hsu CT, Chuang CN, Wang CK, Hsieh KH. Synthesis of poly(lactic acid)-based polyurethanes. Polym Int 2012.
[24] Iwata T, Doi Y. Morphology and enzymatic degradation of poly(L-lactic acid) single crystals. Macromolecules 1998;31:2461–2467.
[25] Li Y, Thouas GA, Shi H, Chen Q. Enzymatic and oxidative degradation of poly (polyol sebacate). J Biomater Appl 2013.
[26] Jiang X, Li J, Ding M, Tan H, Ling Q, Zhong Y, Fu Q. Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly (ε-caprolactone) and poly (ethylene glycol) as soft segment. Eur Polym J 2007;43: 1838–1846.
[27] Pierre TS, Chiellini E. Biodegradability of synthetic polymers used for medical and pharmaceutical applications: Part 1—principles of hydrolysis mechanisms. J Bioact Compat Polym 1986;1:467–97.
[28] Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I, Gunatillake P A. Thermoplastic biodegradable polyurethanes: The effect of chain extender structure on properties and in-vitro degradation. Biomaterials 2007;28:5407–5417.
[29] Gorna K, Gogolewski S. In-vitro degradation of novel medical biodegradable aliphatic polyurethanes based on ɛ-caprolactone and Pluronics® with various hydrophilicities. Polym Deg Stab 2002;75:113–122.
[30] Zhang C, Zhang N, Wen X. Improving the elasticity and cytophilicity of biodegradable polyurethane by changing chain extender. J Biomed Mater Res B 2006;79:335–344.
[31] Gorna K, Gogolewski S. Biodegradable polyure-thanes for implants. II. In vitro degradation and calcification ofmaterials from poly(epsilon-caprolactone)- poly(ethylene oxide) diols and various chain extenders. J Biomed Mater Res 2002:60:592–606.
[32] Szycher M, Siciliano A. An assessment of 2,4-TDA formation from Surgitek polyurethane foam under stimulated physiological conditions. J Biomater Appl 1991;5: 323–336.
[33] Liljensten E, Gisselfaelt K, Edberg B, Bertilsson H, Flodin P, Nilsson A, Lindahl A, Peterson L. Studies of polyurethane urea bands for ACL reconstruction. J Mater Sci Mater Med 2002;13:351–359.
[34] Tokiwa Y, Calabia BP , Ugwu CU, Aiba S. Biodegradability of Plastics. Int J Mol Sci 2009;10:3722–3742.
[35] Tokiwa Y, Suzuki T. Hydrolysis of polyesters by lipases. Nature 1977;270: 76–78.
[36] Seretoudi G, Bikiaris D, Panayiotou C. Synthesis, characterization and biodegradability of poly(ethylene succinate) / poly(ε-caprolactone) block copolymers. Polymer 2002;43:5405–5415.
[37] Pranamuda H, Tsuchii A, Tokiwa Y. Poly(L-lactide degrading enzyme produced by Amycolatopsis sp. Macromol Biosci 2001;1:25–29.
[38] Grizzi I, Garreau H, Li S, Vert M. Hydrolytic degradation of devices based on poly (DL-lactic acid) size-dependence. Biomaterials 1995;16:305–311.
[39] Fujimoto KL, Guan J, Oshima H, Sakai T, Wagner WR. In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures. Ann Thorac Surg 2007;83:648–654.
[40] Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920–926.
[41] Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomat Sci-Polym E 2001;12:107–124.
[42] Lu T, Li Y, Chen T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomed 2013;8:337–350.
[43] Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 2003;63:2223–2253.
[44] Levorson EJ, Sreerekha PR, Chennazhi KP, Kasper FK, Nair SV, Mikos AG. Fabrication and characterization of multiscale electrospun scaffolds for cartilage regeneration. Biomed Mater 2013;8:014103.
[45] Hsu Sh, Huang S, Wang YC, Kuo YC. Novel nanostructured biodegradable polymer matrices fabricated by phase separation techniques for tissue regeneration. Acta Biomater 2013;9:6915–6927.
[46] Lu H, Ko YG, Kawazoe N, Chen G. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges. Biomed Mater 2011;6:045011.
[47] Hsu SH, Linand CH, Tseng CS. Air plasma treated chitosan fibers-stacked scaffolds. Biofabrication 2012;4:015002.
[48] Chen CH, Shyu VBH, Chen JP, Lee MY. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Biofabrication 2014;6,015004.
[49] Matsen MW, Bates FS. Unifying weak-and strong-segregation block copolymer theories. Macromolecules 1996;29:1091–1098.
[50] Sai H, Tan KW, Hur K, Asenath-Smith E, Hovden R, Jiang Y, Riccio M, Muller DA, Elser V, Estroff LA, Gruner SM, Wiesner U. Hierarchical Porous Polymer Scaffolds from Block Copolymers. Science 2013;341:530–534.
[51] Martínez-Pérez CA, Olivas-Armendariz I, Castro-Carmona JS, García-Casillas PE. Scaffolds for tissue engineering via thermally induced phase separation. In: Dr Sabine Wislet-Gendebien, editors. Advances in Regenerative Medicine 2011, p. 275–294.
[52] Jiang X, Yu F, Wang Z, Li J, Tan H, Ding M, Fu Q. Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimensional porous scaffolds for vascular tissue engineering. J Biomat Sci 2010;21:1637–1652.
[53] Hsu Sh, Karnbic H. On matching compliance between canine carotid arteries and polyurethane grafts. Artif Organs 1997;21:1247–1254.
[54] Hsu SH, Tseng Hj, Wu Ms. Comparative in vitro evaluation of two different preparations of small diameter polyurethane vascular grafts. Artif Organs 2000;24:119–128.
[55] Uchida N, Kambic H, Emoto H, Chen JF, Hsu Sh, Murabayshi S, Harasaki H, Nosé Y. Compliance effects on small diameter polyurethane graft patency. J Biomed Mater Res 1993;27:1269–1279.
[56] Mano JF, Koniarova D, Reis RL. Thermal properties of thermo-plastic starch/synthetic polymer blends with potential biomedical applicability. J Mater Sci – Mater Med 2003;14:127–35.
[57] Ghosh S, Gutierrez V, Fernández C, Rodriguez-Perez MA, Viana JC, Reis RL, Mano J F. Dynamic mechanical behavior of starch-based scaffolds in dry and physiologically simulated conditions: Effect of porosity and pore size. Acta Biomater 2008;4:950–959.
[58] Xu F, Seffen K A, Lu TJ. Temperature-dependent mechanical behaviors of skin tissue. IAENG Int J Comp Sci 2008;35:92–101.
[59] Olivares AL, Marsal E, Planell JA, Lacroix D. Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 2009;30:6142–6149.
[60] Grayson WL, Chao PHG, Marolt D, Kaplan DL, Vunjak-Novakovic G. Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol 2008;26:181–189.
[61] Ahmed N, Dreier R, Göpferich A, Grifka J, Grässel S. Soluble signalling factors derived from differentiated cartilage tissue affect chondrogenic differentiation of rat adult marrow stromal cells. Cell Physiol and Biochem 2008;20: 665–678.
[62] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–147.
[63] Chao PHG, Grayson W, Vunjak-Novakovic G. Engineering cartilage and bone using human mesenchymal stem cells. J Orthop Sci 2007;12:398–404.
[64] Levorson EJ, Sreerekha PR, Chennazhi KP, Kasper FK, Nair SV, Mikos AG. Fabrication and characterization of multiscale electrospun scaffolds for cartilage regeneration. Biomed Mater 2013;8:014103.
[65] Olivares AL, Lacroix D. Computational methods in the modeling of scaffolds for tissue engineering. Stud Mechanobiol Tissue Eng Biomater 2013;10:107–126.
[66] Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005;4:518–524.
[67] Grad S, Kupcsik L, Gorna K, Gogolewski S, Alini M. The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations. Biomaterials 2003;24:5163–5171.
[68] 徐善慧等人,組織工程實驗,中興大學,民99。
[69] Li Z, Kupcsik L, Yao SJ, Alini M, Stoddart MJ. Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin–polyurethane composites. Tissue Eng PT A 2008;15:1729–1737.
[70] Kupcsik L, Stoddart MJ, Li Z, Benneker LM, Alini M. Improving chondrogenesis: potential and limitations of SOX9 gene transfer and mechanical stimulation for cartilage tissue engineering. Tissue Eng PT A 2010;16:1845–1855.
[71] Rauh J, Milan F, Günther KP, Stiehler M. Bioreactor systems for bone tissue engineering. Tissue Eng PT B-Rev 2011;17:263–280.
[72] Schätti O, Grad S, Goldhahn J, Salzmann G, Li Z, Alini M, Stoddart MJ. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur Cells Mater 2011;22:214–225.
[73] Oh SH, Kim TH, Im GI, Lee JH. Investigation of pore size effect on chondrogenic differentiation of adipose stem cells using a pore size gradient scaffold. Biomacromolecules 2010;11:1948–1955.
[74] Lee CR, Grad S, Gorna K, Gogolewski S, Goessl A, Alini M. Fibrin-polyurethane composites for articular cartilage tissue engineering: a preliminary analysis. Tissue eng 2005;11:1562–1573.
[75] Hsu Sh, Kuo CC, Yen HJ, Whu SW, Tsai CL. The effect of two different bioreactors on the neocartilage formation in type II collagen modified polyester scaffolds seeded with chondrocytes. Artif Organs 2005;29:467–474.
[76] Hsu Sh, Kuo CC, Whu SW, Lin CH, Tsai CL. The effect of ultrasound stimulation versus bioreactors on neocartilage formation in tissue engineering scaffolds seeded with human chondrocytes in vitro. Biomol Eng 2006;23: 259–264.
[77] Lin CH, Hsu Sh, Huang CE, Cheng WT, Su JM. A scaffold-bioreactor system for a tissue-engineered trachea. Biomaterials 2009;30:4117–4126.
[78] Lin CH, Su JM, Hsu Sh. Evaluation of type II collagen scaffolds reinforced by poly(ε-caprolactone) as tissue-engineered trachea. Tissue Eng PT C-Meth 2008;14: 69–77.
[79] Yen HJ, Hsu Sh, Tseng CS, Huang JP, Tsai CL. Fabrication of precision scaffolds using liquid-frozen deposition manufacturing for cartilage tissue engineering. Tissue Eng PT A 2008;15:965–975.
[80] Hsu Sh, Huang TB, Cheng SJ, Weng SY, Tsai CL, Tseng CS, Chen DC, Liu TY, Fu KY, Yen BL. Chondrogenesis from human placenta-derived mesenchymal stem cells in three-dimensional scaffolds for cartilage tissue engineering. Tissue Eng PT A 2011;17:1549–1560.
[81] Whu SW, Tsai CL, Hsu Sh. Evaluation of human bone marrow mesenchymal stem cells seeded into composite scaffolds and cultured in a dynamic culture system for neocartilage regeneration in vitro. J Med Biol Eng 2009;29:52–59.
[82] 李小琴、陳沛智、秦昌華、廖壽賢,磷鎢酸在核殼型乳液TEM表徵技術中的應用研究,高分子材料科學與工程,1999;15:129-131。
[82] Kim YJ, Sah RY, Doong JY, Grodzinsky AJ. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 1988;174:168–176.
[84] Daniel H, Josette B, Jean-Claude B. Biochemical and physicochemical characterization of pepsin-solubilized type II collagen from bovinearticular cartilage. Biochem J 1977;161:303–312.
[85] Enobakhare BO, Bader DL, Lee DA. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate culture, by use of 1,9-dimethylmethylene blue. Anal Biochem 1996;243:189–9.
[86] Zhang S, Cheng L, Hu J. NMR studies of water‐borne polyurethanes. J Appl Polym Sci 2003;90:257–260.
[87] Yu P. Detect Structural Features of Asymmetric and Symmetric CH2 and CH3 Functional Groups and Their Ratio of Biopolymers Within Intact Tissue in Complex Plant System Using Synchrotron FTIRM and DRIFT Molecular Spectroscopy. Biopolymers 2010;535–546.
[88] Hercule KM, Yan Z, Christophe MM. Preparation and Characterization of Waterborne Polyurethane Crosslinked by Urea Bridges. Int J Chem 2011;3:88–96.
[89] Kincal D, Özkar S. Kinetic study of the reaction between hydroxyl‐terminated polybutadiene and isophorone diisocyanate in bulk by quantitative FTIR spectroscopy. J Appl Polym Sci 1997;66:1979–1983.
[90] Weitl FL, Raymond KN, Durbin PW. Synthetic enterobactin analogs. Carboxamido-2, 3-dihydroxyterephthalate conjugates of spermine and spermidine. J Med Chem 1981;24:203–206.
[91] Xiang SL, Liu CM, Chen XY. Preparation of biodegradable aqueous polyurethane emulsion. Packing Engineering 2007;28:4–6.
[92] Chao GT, Qian ZY, Huang MJ, Kan B, Gu YC, Gong CY, Yang JL, Wang K, Dai M, Li XY, Gou ML, Tu MJ, Wei YQ. Synthesis, characterization, and hydrolytic degradation behavior of a novel biodegradable pH‐sensitive hydrogel based on polycaprolactone, methacrylic acid, and poly (ethylene glycol). J Biomed Mater Res A 2008;85:36–46.
[93] Lue SJ, Chen CH, Shih CM. Tuning of lower critical solution temperature (LCST) of poly (N-isopropylacrylamide-co-acrylic acid) hydrogels. J Macromol Sci B 2011;50:563–579.
[94] Holland SJ, Jolly AM, Yasin M, Tighe BJ. Polymers for biodegradable medical devices: II. Hydroxybutyrate-hydroxyvalerate copolymers: hydrolytic degradation studies. Biomaterials 1987;8:289–295.
[95] Ma Z, Hong Y, Nelson DM, Pichamuthu JE, Leeson CE, Wagner WR. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromolecules 2011;12:3265–3274.
[96] Xue C, Wang J, Tu B, Zhao D. Hierarchically porous silica with ordered mesostructure from confinement self-assembly in skeleton scaffolds. Chem Mater 2009;22:494–503.
[97] De Vasconcelos CL, Bezerril DP, Dos Santos DES, Dantas DT, Pereira MR, Fonseca JLC. Effect of molecular weight and ionic strength on the formation of polyelectrolyte complexes based on poly (methacrylic acid) and chitosan. Biomacromolecules 2006;7:1245–1252.
[98] 呂俊逸,新穎水相合成可分解彈性體之生醫應用研究,台灣大學(碩論),民101。
[99] Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem 2006;97:33–44.
[100] Kawakami Y, Rodriguez-Leon J, Belmonte JC. The role of TGFbetas and Sox9 during limb chondrogenesis. Curr Opin Cell Biol 2006;18:723–729.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57951-
dc.description.abstract近期高分子產業趨勢之一為發展環保綠色製程或是可降解產品,而綠色製程之生物可降解高分子作為生醫材料或組織工程支架其需求更甚。本研究以水性製程合成生物可降解聚胺酯(polyurethane, PU),並形成奈米分散液,成分中的軟鏈段使用兩種聚酯二元醇,分別為poly(ɛ-caprolactone) diol和poly(ethylene-co-butylene adipate) diol,再以冷凍乾燥製備成三維海綿狀多孔支架。PU支架製備後進行其結構鑑定、潤濕性、機械性質、降解行為與降解產物分析,並探討支架孔洞結構對機械性質之影響與不同體外降解環境之降解機制分析。將軟骨細胞植入支架,並置於靜態或動態條件下培養,進行軟骨細胞外基質分泌與人類骨髓幹細胞(MSCs)基因表現分析。得本研究合成之PU奈米粒粒徑為約於40 nm,獲得的PU支架不僅具有良孔洞連通性,且其孔洞結構為螺旋形態。支架之親水性佳,且具有高的孔隙率和吸水率。在機械性質方面,除PU之固有彈性外,其螺旋型孔洞結構亦是支架拉伸與壓縮性質佳之主因。PU支架之動態機械性質無論是於乾燥或是濕潤之狀態下,其儲存模數值皆隨頻率增加而上升,顯現其彈性特質。PU支架在37℃磷酸鹽緩衝液中之降解速率較在木瓜蛋白酶消化液和去離子水顯著。由支架降解產物分析推測降解過程先進行膨潤,再進一步酯基水解,且細胞毒性不顯著。而PU支架之收縮情形可由二次冷乾的方法改善。在體外軟骨細胞生長測試中,軟骨細胞於靜態中PU支架較PLA支架內分布均勻,PLA細胞大部分分布於表層中;細胞在動態環境下培養7日之生長較靜態佳。於動態環境培養下,細胞外基質會部分流失至培養液中,而PU支架較PLA支架內細胞外基質分泌量稍高,且細胞於PU支架分布均勻,可能為其GAG保留於細胞中含量較高之原因之一。而支架MSCs以軟骨分化液培養七日,PU支架軟骨基因表現較PLA支架佳。綜合以上之優勢,PU支架有應用於軟骨組織工程發展之潛力。zh_TW
dc.description.abstractBiodegradable polyurethane (PU) was synthesized by a green and sustainable water-based process. The process rendered homogenous PU nanoparticles (NPs). Spongy PU scaffolds in large dimension were obtained by freeze-drying the PU NP dispersion. The spongy scaffolds were examined in terms of the porous structure, wettability, mechanical properties, degradation behavior, and degradation products. The capacity as cartilage tissue engineering scaffolds was evaluated by growing chondrocytes and mesenchymal stem cells (MSCs) in the scaffolds. Scaffolds made from PU dispersion had excellent hydrophilicity. The scaffolds had high porosity and water absorption. Examination by micro-computed tomography confirmed that PU scaffolds had good pore interconnectivity. The degradation rate of the scaffolds immersed in phosphate buffered saline was much faster than that in papain solution or in deionized water at 37 oC. The biodegradable PU appeared to be degraded via the cleavage of ester linkage, judging from the degradation products. The intrinsic elastic property of PU and the gyroid-shape porous structure of the scaffolds may have accounted for the outstanding strain recovery (87 %) and elongation behavior (257 %) of the PU scaffolds, compared to conventional poly(D,L-lactide) (PLA) scaffolds. Chondrocytes were effectively seeded in PU scaffolds without pre-wetting. They grew better and secreted more glycosaminoglycan in PU scaffolds vs. PLA scaffolds. Human MSCs showed greater chondrogenic gene expression in PU scaffolds than in PLA scaffolds after induction. Based on the favorable hydrophilicity, elasticity, and regeneration capacities, the novel biodegradable PU scaffolds may be superior to the conventional biodegradable scaffolds in cartilage tissue engineering applications.en
dc.description.provenanceMade available in DSpace on 2021-06-16T07:13:44Z (GMT). No. of bitstreams: 1
ntu-103-R01549009-1.pdf: 6669562 bytes, checksum: 5725daa3aa3aac4f44e5ba70d3883d50 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT III
目錄 V
圖目錄 IX
表目錄 XII
第一章、文獻回顧 1
1.1. 組織工程支架構築原料發展統整 1
1.1.1.聚胺酯 1
1.1.2. Polyurethanes (PU)與生醫材料發展 3
1.1.3. 高分子奈米、微米顆粒製備與應用 6
1.1.4. 水性生物可降解聚胺酯(waterborne biodegradable polyurethane, WDPU)乳液 6
1.1.5. WDPU離子體(ionomer)於生醫領域之應用 7
1.1.6. 應用於組織工程支架之天然與合成生物可降解高分子 7
1.2. 生物可分解PU彈性體與PLA塑膠 8
1.2.1. 生物可降解PU彈性體簡介 8
1.2.2. 生物可降解PU彈性體降解機制 8
1.2.3. PU降解速率影響因素 9
1.2.4. 生物可降解PU彈性體降解產物體內實驗毒性概述 10
1.2.5. 生物可降解塑膠與降解機制簡介 11
1.2.6. 生物可降解與不可降解材料體內實驗比較 12
1.3. 組織工程支架與加工技術 13
1.3.1. 組織工程 13
1.3.2. 高分子材料工程與組織工程 14
1.3.3. 組織工程支架加工技術概念 15
1.3.4. 溫度相轉換技術原理與支架加工之應用 16
1.3.5. 組織工程支架機械性質 17
1.4. 軟骨組織工程 18
1.4.1. 不同孔洞特性組織工程支架細胞生長微環境之研究 19
1.4.2. 生物反應器與組織工程 20
1.4.3. 不同團隊間軟骨組織工程之發展 21
1.5. 研究動機 24
第二章 研究方法 25
2.1. 研究架構 25
2.2. 水性生物可降解聚胺酯(waterborne biodegradable polyurethane, WDPU) 27
2.2.1. WDPU基本原料與配方設計 27
2.2.2. WDPU乳液製備 29
2.3. WDPU乳液基本物性鑑定 31
2.3.1. WDPU乳液粒徑分析 31
2.3.2. 穿透式電子顯微鏡(transmission electron microscope, TEM)觀測 31
2.4. WDPU與Polylactide (PLA)膜基本材料物性鑑定 32
2.4.1. WDPU與PLA膜製備 32
2.4.2. 親疏水性與膨潤行為分析 32
2.4.3. 拉伸試驗 33
2.4.4. 絕對密度(absolute density)分析 33
2.4.5. 膠體滲透層析儀(gel permeation chromatography, GPC) 36
2.4.6. 衰減全反射傅立葉紅外光譜儀 36
2.5. 多孔支架加工 37
2.5.1. 製程一:直接冷凍乾燥法 37
2.5.2. 製程二:粒子粒濾法(particle-leaching method) 37
2.6. 多孔支架之物性分析 40
2.6.1. 支架孔隙率、吸水率與潤濕能力(wetability)分析 40
2.6.2. 支架孔洞結構與尺寸分析 40
2.6.3. 動態彈性機械分析儀 (dynamic mechanical analyzer, DMA)檢測 41
2.6.4. 支架拉升與壓縮回復力 41
2.7. 體外降解實驗 41
2.7.1. WDPU與PLA支架降解 41
2.7.2. 一維質子核磁共振與傅立葉紅外光譜儀檢測 42
2.7.3. 降解產物毒性測試 42
2.8. 組織工程實驗 47
2.8.1. WDPU支架之UV-vis與PL 光譜背景值 47
2.8.2. 支架滅菌、空白支架培養與細胞培養 47
2.8.3. 細胞增生與細胞植覆 50
2.8.4. 生物反應器培養 52
2.8.5. 葡萄糖胺聚糖(glycosaminoglycans, GAG)定量分析 52
2.8.6. 人類骨髓間葉幹細胞軟骨化基因表現分析 52
2.9. 統計分析 53
第三章 實驗結果 57
3.1. 水性生物可降解聚胺酯合成 57
3.2. WDPU乳液基本物性鑑定 57
3.3. WDPU膜基本材料物性鑑定 57
3.4. 多孔支架之物性分析 58
3.4.1. 不同固含量WDPU支架孔洞結構分析 58
3.4.2. 直接冷凍乾燥法與粒子瀝濾法WDPU與PLA支架加工與孔洞分析 58
3.4.3. 支架孔隙率、吸水率與潤濕能力(wettability)分析 59
3.4.4. 支架機械性質分析 59
3.5. 支架體外降解實驗 61
3.5.1. WDPU與PLA支架於不同溶液下之降解結果 61
3.5.2. WDPU支架於磷酸緩衝溶液與鹽類溶液降解機制分析 61
3.5.3. PU、PLA膜與支架於木瓜分解酵素溶液體外降解實驗 62
3.6. 支架降解產物分析 63
3.6.1. 一維質子核磁共振檢測 63
3.6.2. 傅立葉紅外光譜儀分析 63
3.6.3. 降解產物細胞毒性 64
3.7. 支架中之三度空間細胞培養 65
3.7.1. 細胞增生與細胞植覆 65
3.7.3. PU與PLA支架於靜態、動態環境下培養軟骨細胞與GAG定量分析 65
3.7.4. PU與PLA支架之切片與細胞基質觀察 66
3.7.5. PU與PLA支架MSCs軟骨誘導分化基因表現(由實驗室學長協助完成) 66
第四章 討論 67
4.1. 水性生物可降解聚胺酯合成 67
4.2. PU乳液基本物性鑑定 67
4.3. PU與Polylactide (PLA)膜基本材料物性鑑定 68
4.4. 多孔支架之物性分析 68
4.4.1. PU與PLA支架加工 68
4.4.2. 支架孔隙率、吸水率與潤濕能力(wetability)分析 69
4.4.3. 支架機械性質分析 69
4.5. 支架體外降解實驗 70
4.6. 支架降解產物分析 72
4.7. 支架中之三度空間細胞培養 72
第五章 結論與未來展望 74
參考文獻 103
dc.language.isozh-TW
dc.title生物可降解水性製程之聚胺酯組織工程支架之評估zh_TW
dc.titleEvaluation of biodegradable elastic scaffolds made of ionomer-based waterborne polyurethane for tissue engineeringen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王鐘毅,董崇民,劉澤英,洪慧珊
dc.subject.keyword水性生物可降解聚胺酯,支架,降解,彈性,軟骨,zh_TW
dc.subject.keywordBiodegradable polyurethane,scaffold,elasticity,degradation,cartilage,en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2014-07-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
6.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved