請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57929完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余佳慧(Linda Chia-Hui Yu) | |
| dc.contributor.author | Li-Ling Wu | en |
| dc.contributor.author | 吳莉玲 | zh_TW |
| dc.date.accessioned | 2021-06-16T07:12:18Z | - |
| dc.date.available | 2015-10-09 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-04 | |
| dc.identifier.citation | Al-Sadi, R., D. Ye, K. Dokladny, and T. Y. Ma. 2008. Mechanism of IL-1 beta-induced increase in intestinal epithelial tight junction permeability. J Immunol 180 (8):5653-5661.
Badizadegan, K., B. L. Dickinson, H. E. Wheeler, R. S. Blumberg, R. K. Holmes, and W. I. Lencer. 2000. Heterogeneity of detergent-insoluble membranes from human intestine containing caveolin-1 and ganglioside G (M1). Am J Physiol Gastrointest Liver Physiol 278 (6):G895-904. Banerjee, A., M. Yasseri, and M. Munson. 2002. A method for the detection and quantification of bacteria in human carious dentine using fluorescent in situ hybridisation. J Dent 30 (7):359-363. Barakat, F. M., V. McDonald, J. P. Di Santo, and D. S. Korbel. 2009. Roles for NK Cells and an NK Cell-independent source of intestinal gamma interferon for innate immunity to Cryptosporidium parvum infection. Infection and Immunity 77 (11):5044-5049. Baumgart, D. C., and W. J. Sandborn. 2007. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369 (9573):1641-1657. Boivin, M. A., P. K. Roy, A. Bradley, J. C. Kennedy, T. Rihani, and T. Y. Ma. 2009. Mechanism of interferon-gamma-induced increase in T84 intestinal epithelial tight junction. J Interferon Cytokine Res 29 (1):45-54. Bruewer, M., M. Utech, A. I. Ivanov, A. M. Hopkins, C. A. Parkos, and A. Nusrat. 2005. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J 19 (8):923-933. Cecile, C., S. Despina, and L. Julian. 2006. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nature Reviews Genetics 7:349-359. Canny, G. O., and B. A. McCormick. 2008. Bacteria in the Intestine, Helpful Residents or Enemies from Within? Infection and Immunity 76 (8):3360-3373. Cappell, M. S., and M. Batke. 2008. Mechanical Obstruction of the Small Bowel and Colon. Medical Clinics of North America 92 (3):575-597. Carrithers, M., S. Tandon, S. Canosa, M. Michaud, D. Graesser, and J. A. Madri. 2005. Enhanced susceptibility to endotoxic shock and impaired STAT3 signaling in CD31-deficient mice. Am J Pathol 166 (1):185-196. Cetin, S., C. L. Leaphart, J. Li, I. Ischenko, M. Hayman, J. Upperman, R. Zamora, S. Watkins, H. R. Ford, J. Wang, and D. J. Hackam. 2007. Nitric oxide inhibits enterocyte migration through activation of RhoA-GTPase in a SHP-2-dependent manner. Am J Physiol Gastrointest Liver Physiol 292 (5):G1347-1358. Chatterjee, M., R. Saluja, S. Tewari, M. K. Barthwal, S. K. Goel, and M. Dikshit. 2009. Augmented nitric oxide generation in neutrophils: Oxidative and pro-inflammatory implications in hypertension. Free Radic Res 43 (12):1195-1204. Chen, T. L., S. Chen, H. W. Wu, T. C. Lee, Y. Z. Lu, L. L. Wu, Y. H. Ni, C. H. Sun, W. H. Yu, A. G. Buret, and L. C. Yu. 2013. Persistent gut barrier damage and commensal bacterial influx following eradication of Giardia infection in mice. Gut Pathog 5 (1):26. Cıtak, A., O. Yilmaz, C. Pekcetin, S. Ozbal, and F. Y. Lambrecht. 2013. Influence of uracil on bacterial translocation in an intestinal obstruction model in rats. Int J Surg 11 (1):27-30. Clark, E., C. Hoare, J. Tanianis-Hughes, G. L. Carlson, and G. Warhurst. 2005. Interferon-gamma induces translocation of commensal Escherichia coli across gut epithelial cells via a lipid raft-mediated process. Gastroenterology 128 (5):1258-1267. Clayburgh, D. R., T. A. Barrett, Y. Tang, J. B. Meddings, L. J. Van Eldik, D. M. Watterson, L. L. Clarke, R. J. Mrsny, and J. R. Turner. 2005. Epithelial myosin light chain kinase–dependent barrier dysfunction mediates T cell activation–induced diarrhea in vivo. J Clin Invest 115 (10):2702-2715. Clayburgh, D. R., S. Rosen, E. D. Witkowski, F. Wang, S. Blair, S. Dudek, J. G. Garcia, J. C. Alverdy, and J. R. Turner. 2004. A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability. J Biol.Chem. 279 (53):55506-55513. Conlin, V. S., X. Wu, C. Nguyen, C. Dai, B. A. Vallance, A. M. J. Buchan, L. Boyer, and K. Jacobson. 2009. Vasoactive intestinal peptide ameliorates intestinal barrier disruption associated with Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol 297 (4):G735-G750. Diez, I., S. Calatayud, C. Hernandez, E. Quintana, J. E. O'Connor, J. V. Esplugues, and M. D. Barrachina. 2010. Nitric oxide, derived from inducible nitric oxide synthase, decreases hypoxia inducible factor-1α in macrophages during aspirin-induced mesenteric inflammation. Br J Pharmacol 159 (8):1636-1645. Danielsen, E. M., and G. H. Hansen. 2003. Lipid rafts in epithelial brush borders: atypical membrane microdomains with specialized functions. Biochim Biophys Acta 1617 (1-2):1-9. Darfeuille-Michaud, A., C. Neut, N. Barnich, E. Lederman, P. Di Martino, P. Desreumaux, L. Gambiez, B. Joly, A. Cortot, and J. F. Colombel. 1998. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease. Gastroenterology 115 (6):1405-1413. De Vuyst, L., and F. Leroy. 2007. Bacteriocins from Lactic Acid Bacteria: Production, Purification, and Food Applications. J Mol Microbiol Biotechnol 13 (4):194-199. Deitch, E. A. 1989. Simple intestinal obstruction causes bacterial translocation in man. Arch Surg 124 (6):699-701. Deitch, E. A., W. M. Bridges, J. W. Ma, L. Ma, R. D. Berg, and R. D. Specian. 1990. Obstructed intestine as a reservoir for systemic infection. Am J Surg 159 (4):394-401. Demaude, J., C. Salvador-Cartier, J. Fioramonti, L. Ferrier, and L. Bueno. 2006. Phenotypic changes in colonocytes following acute stress or activation of mast cells in mice: implications for delayed epithelial barrier dysfunction. Gut 55 (5):655-661. Deplancke, B., and H. R. Gaskins. 2001. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr 73 (6):1131S-1141S. Di Paolo, M. C., M. N. Merrett, B. Crotty, and D. P. Jewell. 1996. 5-Aminosalicylic acid inhibits the impaired epithelial barrier function induced by gamma interferon. Gut 38 (1):115-119. Diaz, J. J. J., F. Bokhari, N. T. Mowery, J. A. Acosta, E. F. J. Block, W. J. Bromberg, B. R. Collier, D. C. Cullinane, K. M. Dwyer, M. M. Griffen, J. C. Mayberry, and R. Jerome. 2008. Guidelines for Management of Small Bowel Obstruction. J Trauma. 64 (6):1651-1664 Dijkstra, G., S. Yuvaraj, H.-Q. Jiang, J. C. A. M. Bun, H. Moshage, N. Kushnir, M. P. Peppelenbosch, J. J. Cebra, and N. A. Bos. 2007. Early bacterial dependent induction of inducible nitric oxide synthase (iNOS) in epithelial cells upon transfer of CD45RBhigh CD4+ T cells in a model for experimental colitis. Inflamm Bowel Dis 13 (12):1467-1474 Dodane, V., and B. Kachar. 1996. Identification of isoforms of G proteins and PKC that colocalize with tight junctions. J Membr Biol 149 (3):199-209. Eckburg, P. B., E. M. Bik, C. N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S. R. Gill, K. E. Nelson, and D. A. Relman. 2005. Diversity of the human intestinal microbial flora. Science 308 (5728):1635-1638. Eckmann, L., F. Laurent, T. D. Langford, M. L. Hetsko, J. R. Smith, M. F. Kagnoff, and F. D. Gillin. 2000. Nitric oxide production by human intestinal epithelial cells and competition for arginine as potential determinants of host defense against the lumen-dwelling pathogen Giardia lamblia. J Immunol 164 (3):1478-1487. El-Awady, S. I., M. El-Nagar, M. El-Dakar, M. Ragab, and G. Elnady. 2009. Bacterial translocation in an experimental intestinal obstruction model: C-reactive protein reliability? Acta Cir Bras 24:98-106. Engel, D. R., A. Koscielny, S. Wehner, J. Maurer, M. Schiwon, L. Franken, B. Schumak, A. Limmer, T. Sparwasser, A. Hirner, P. A. Knolle, J. C. Kalff, and C. Kurts. 2010 T helper type 1 memory cells disseminate postoperative ileus over the entire intestinal tract. Nat Med 16 (12):1407-1413. Eun, C. S., Y. S. Kim, D. S. Han, J. H. Choi, A. R. Lee, and Y. K. Park. 2011. Lactobacillus casei prevents impaired barrier function in intestinal epithelial cells. APMIS 119 (1):49-56. Ferrier, L., L. Mazelin, N. Cenac, P. Desreumaux, A. Janin, D. Emilie, J.-F. Colombel, R. Garcia-Villar, J. Fioramonti, and L. Bueno. 2003. Stress-induced disruption of colonic epithelial barrier: role of interferon-gamma and myosin light chain kinase in mice. Gastroenterology 125 (3):795-804. Forsberg, G., A. Fahlgren, P. Horstedt, S. Hammarstrom, O. Hernell, and M. L. Hammarstrom. 2004. Presence of bacteria and innate immunity of intestinal epithelium in childhood celiac disease. Am J Gastroenterol 99 (5):894-904. Forsythe, R. M., D.-Z. Xu, Q. Lu, and E. A. Deitch. 2002. Lipopolysaccharide-Induced Enterocyte-Derived Nitric Oxide Induces Intestinal Monolayer Permeability in an Autocrine Fashion. Shock 17 (3):180-184. Gareau, M. G., J. Jury, G. MacQueen, P. M. Sherman, and M. H. Perdue. 2007. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56 (11):1522-1528. Generoso, S. V., M. L. Viana, R. G. Santos, R. M. Arantes, F. S. Martins, J. R. Nicoli, J. A. Machado, M. I. Correia, and V. N. Cardoso. 2011. Protection against increased intestinal permeability and bacterial translocation induced by intestinal obstruction in mice treated with viable and heat-killed Saccharomyces boulardii. Eur J Nutr 50 (4):261-269. Green, L. C., D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126 (1):131-138. Grossmann, J., K. Walther, M. Artinger, S. Kiessling, M. Steinkamp, W.-K. Schmautz, F. Stadler, F. Bataille, M. Schultz, J. Scholmerich, and G. Rogler. 2003. Progress on isolation and short-term ex-vivo culture of highly purified non-apoptotic human intestinal epithelial cells (IEC). Eur J Cell Biol 82 (5):262-270. Gutt, C. N., T. Oniu, P. Schemmer, A. Mehrabi, and M. W. Buchler. 2004. Fewer adhesions induced by laparoscopic surgery? Surgical Endoscopy And Other Interventional Techniques 18 (6):898-906. Han, X., M. P. Fink, and R. L. Delude. 2003. Proinflammatory cytokines cause No*-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock 19 (3):229-237. Han, X., M. P. Fink, R. Yang, and R. L. Delude. 2004. Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock 21 (3):261-270. Hansom, D., M. G. Littlejohn, and M. J. Clancy. 2012. Pyogenic ventriculitis following enteral bacterial translocation in a patient with small bowel obstruction. Scott Med J 57 (1):60. Hermiston, M. L., and J. I. Gordon. 1995. Organization of the crypt-villus axis and evolution of its stem cell hierarchy during intestinal development. Am J Physiol 268 (5 Pt 1):G813-822. Hirai, T., and K. Chida. 2003. Protein Kinase C zeta: Activation Mechanisms and Cellular Functions. J Biochem 133 (1):1-7. Hooper, L. V., T. Midtvedt, and J. I. Gordon. 2002. How host-microbial interactions shape the nutrient environment of the Mammalian intestine. Annu Rev Nutr 22 (1):283-307. Hooper, L. V., J. Xu, P. G. Falk, T. Midtvedt, and J. I. Gordon. 1999. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci U S A 96 (17):9833-9838. Hsiao, J. K., C. Y. Huang, Y. Z. Lu, C. Y. Yang, and L. C. Yu. 2009. Magnetic resonance imaging detects intestinal barrier dysfunction in a rat model of acute mesenteric ischemia/reperfusion injury. Invest Radiol 44 (6):329-335. Hua, T. C., and S. M. Moochhala. 2000. Role of nitric oxide in hemorrhagic shock-induced bacterial translocation. J Surg Res 93 (2):247-256. Huang, C. Y., J. K. Hsiao, Y. Z. Lu, T. C. Lee, and L. C. Yu. 2011. Anti-apoptotic PI3K/Akt signaling by sodium/glucose transporter 1 reduces epithelial barrier damage and bacterial translocation in intestinal ischemia. Lab Invest 91 (2):294-309. Huang, C. Y., W. T. Kuo, Y. C. Huang, T. C. Lee, and L. C. H. Yu. 2013. Resistance to hypoxia-induced necroptosis is conferred by glycolytic pyruvate scavenging of mitochondrial superoxide in colorectal cancer cells. Cell Death Dis 2 (4):e622. Ivanov, A. I., A. Nusrat, and C. A. Parkos. 2005. Endocytosis of the apical junctional complex: mechanisms and possible roles in regulation of epithelial barriers. BioEssays 27 (4):356-365. Ivanov, A. I., C. A. Parkos, and A. Nusrat. 2010. Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol 177 (2):512-524. Ivanov, A. I., S. N. Samarin, M. Bachar, C. A. Parkos, and A. Nusrat. 2009. Protein kinase C activation disrupts epithelial apical junctions via ROCK-II dependent stimulation of actomyosin contractility. BMC Cell Biol 10 (1):36. Kabaroudis, A., B. Papaziogas, I. Koutelidakis, M. Kyparissi-Kanellaki, K. Kouzi-Koliakou, and T. Papaziogas. 2003. Disruption of the small-intestine mucosal barrier after intestinal occlusion: a study with light and electron microscopy. J Invest Surg 16 (1):23-28. Kalischuk, L., G. D. Inglis, and A. Buret. 2009. Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts. Gut Pathog 1 (1):2. Keller, T. C., K. A. Conzelman, R. Chasan, and M. S. Mooseker. 1985. Role of myosin in terminal web contraction in isolated intestinal epithelial brush borders. J Cell Biol 100 (5):1647-1655. Keller, T. C., and M. S. Mooseker. 1982. Ca++-calmodulin-dependent phosphorylation of myosin, and its role in brush border contraction in vitro. J Cell Biol 95 (3):943-959. Kleessen, B., A. J. Kroesen, H. J. Buhr, and M. Blaut. 2002. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol 37 (9):10034-10041. Kraehenbuhl, J.-P., and M. Corbett. 2004. Keeping the gut microflora at bay. Science 303 (5664):1624-1625. Leaphart, C. L., and J. J. Tepas Iii. 2007. The gut is a motor of organ system dysfunction. Surgery 141 (5):563-569. Lewis, K., F. Lutgendorff, V. Phan, J. D. Soderholm, P. M. Sherman, and D. M. McKay. 2010. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm Bowel Dis 16 (7):1138-1148 Li, X., C. N. Hahn, M. Parsons, J. Drew, M. A. Vadas, and J. R. Gamble. 2004. Role of protein kinase C zeta in thrombin-induced endothelial permeability changes: inhibition by angiopoietin-1. Blood 104 (6):1716-1724. Liu, X. F., X. Xie, and T. Miki. 2006. Inhibition of protein kinase C zeta blocks the attachment of stable microtubules to kinetochores leading to abnormal chromosome alignment. Cell Signal 18 (12):2314-2323. Lupp, C., M. L. Robertson, M. E. Wickham, I. Sekirov, O. L. Champion, E. C. Gaynor, and B. B. Finlay. 2007. Host-Mediated Inflammation Disrupts the Intestinal Microbiota and Promotes the Overgrowth of Enterobacteriaceae. Cell Host & Microbe 2 (2):119-129. MacFie, J. 2004. Current status of bacterial translocation as a cause of surgical sepsis. Br Med Bull 71 (1):1-11. Madara, J. L., and J. Stafford. 1989. Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest 83 (2):724-727. Malladi, V., M. Puthenedam, P. H. Williams, and A. Balakrishnan. 2004. Enteropathogenic Escherichia coli outer membrane proteins induce iNOS by activation of NF-kappaB and MAP kinases. Inflammation 28 (6):345-353. Martinez-Medina, M., X. Aldeguer, M. Lopez-Siles, F. Gonzalez-Huix, C. Lopez-Oliu, G. Dahbi, J. E. Blanco, J. Blanco, J. L. Garcia-Gil, and A. Darfeuille-Michaud. 2009. Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-nonvasive E. coli (AIEC) in Crohn's disease. Inflamm Bowel Dis 15 (6):872-882 McKay, D. M., J. L. Watson, A. Wang, J. Caldwell, D. Prescott, P. M. J. Ceponis, V. Di Leo, and J. Lu. 2007. Phosphatidylinositol 3 kinase is a critical dediator of interferon-gamma-induced increases in enteric epithelial permeability. J Pharmacol Exp Ther 320 (3):1013-1022. Moriez, R., C. Salvador-Cartier, V. Theodorou, J. Fioramonti, H. Eutamene, and L. Bueno. 2005. Myosin light chain kinase is involved in lipopolysaccharide-induced disruption of colonic epithelial barrier and bacterial translocation in rats. Am J Pathol 167 (4):1071-1079. Musch, M. W., L. L. Clarke, D. Mamah, L. R. Gawenis, Z. Zhang, W. Ellsworth, D. Shalowitz, N. Mittal, P. Efthimiou, Z. Alnadjim, S. D. Hurst, E. B. Chang, and T. A. Barrett. 2002. T cell activation causes diarrhea by increasing intestinal permeability and inhibiting epithelial Na+/K+-ATPase. J Clin Invest 110 (11):1739-1747. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59 (3):695-700. Palasthy, Z., J. Kaszaki, G. Lazar, S. Nagy, and M. Boros. 2006. Intestinal nitric oxide synthase activity changes during experimental colon obstruction. Scand J Gastroenterol 41 (8):910-918. Penders, J., C. Thijs, C. Vink, F. F. Stelma, B. Snijders, I. Kummeling, P. A. van den Brandt, and E. E. Stobberingh. 2006. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118 (2):511-521. Peterson, M. D., and M. S. Mooseker. 1992. Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J Cell Sci 102 (3):581-600. Reddy, B. S., J. MacFie, M. Gatt, L. Macfarlane-Smith, K. Bitzopoulou, and A. M. Snelling. 2007. Commensal bacteria do translocate across the intestinal barrier in surgical patients. Clin Nutr 26 (2):208-215. Sagar, P. M., J. MacFie, P. Sedman, J. May, B. Mancey-Jones, and D. Johnstone. 1995. Intestinal obstruction promotes gut translocation of bacteria. Dis Colon Rectum 38 (6):640-644. Salim, S. Y., M. A. Silva, A. V. Keita, M. Larsson, P. Andersson, K. E. Magnusson, M. H. Perdue, and J. D. Soderholm. 2009. CD83+CCR7- dendritic cells accumulate in the subepithelial dome and internalize translocated Escherichia coli HB101 in the peyer's patches of ileal Crohn's disease. Am J Pathol 174 (1):82-90. Salzman, A. L., M. J. Menconi, N. Unno, R. M. Ezzell, D. M. Casey, P. K. Gonzalez, and M. P. Fink. 1995. Nitric oxide dilates tight junctions and depletes ATP in cultured Caco-2BBe intestinal epithelial monolayers. Am J Physiol 268 (2 Pt 1):G361-373. Samel, S., M. Keese, M. Kleczka, S. Lanig, N. Gretz, M. Hafner, J. Sturm, and S. Post. 2002. Microscopy of bacterial translocation during small bowel obstruction and ischemia in vivo - a new animal model. BMC Surg 2 (1):6. Samel, S., M. Keese, S. Lanig, M. Kleczka, N. Gretz, M. Hafner, J. Sturm, and S. Post. 2003. Supplementation and Inhibition of Nitric Oxide Synthesis Influences Bacterial Transit Time During Bacterial Translocation in Rats. Shock 19 (4):378-382. Scaldaferri, F., M. Pizzoferrato, V. Gerardi, L. Lopetuso, and A. Gasbarrini. 2012. The gut barrier: new acquisitions and therapeutic approaches. J Clin Gastroenterol 46:S12-17 Schroder, K., P. J. Hertzog, T. Ravasi, and D. A. Hume. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75 (2):163-189. Scott, K. G., J. B. Meddings, D. R. Kirk, S. P. Lees-Miller, and A. G. Buret. 2002. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion. Gastroenterology 123 (4):1179-1190. Shifrin, D. A., Jr., R. E. McConnell, R. Nambiar, J. N. Higginbotham, R. J. Coffey, and M. J. Tyska. 2012. Enterocyte Microvillus-Derived Vesicles Detoxify Bacterial Products and Regulate Epithelial-Microbial Interactions. Curr Biol 22 (7):627-631. Shima, Y., S. Kumasaka, K. Yashiro, M. Nakajima, and M. Migita. 2012. Intussusception in an extremely premature infant following bacterial sepsis. Eur J Pediatr 171 (4):725-727. Sjoberg, V., O. Sandstrom, M. Hedberg, S. Hammarstrom, O. Hernell, and M. L. Hammarstrom. 2013. Intestinal T-cell responses in celiac disease - impact of celiac disease associated bacteria. PLoS One 8 (1):e53414. Smyth, D., C. M. McKay, B. D. Gulbransen, V. C. Phan, A. Wang, and D. M. McKay. 2012. Interferon-gamma signals via an ERK1/2-ARF6 pathway to promote bacterial internalization by gut epithelia. Cell Microbiol 14 (8):1257-1270. Sobieszczanska, B. M., J. Osek, D. Wasko-Czopnik, E. Dworniczek, and K. Jermakow. 2007. Association of enteroaggregative Escherichia coli with irritable bowel syndrome. Clin Microbiol Infect 13 (4):404-407. Sokol, H., P. Seksik, J. P. Furet, O. Firmesse, I. Nion-Larmurier, L. Beaugerie, J. Cosnes, G. Corthier, P. Marteau, and J. Dore. 2009. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15 (8):1183-1189 Stamatovic, S. M., O. B. Dimitrijevic, R. F. Keep, and A. V. Andjelkovic. 2006. Protein kinase calpha-RhoA cross-talk in CCL2-induced alterations in brain endothelial permeability. J Biol Chem 281 (13):8379-8388. Stuart, R. O., and S. K. Nigam. 1995. Regulated assembly of tight junctions by protein kinase C. Proc Natl Acad Sci U S A 92 (13):6072-6076. Su, L., S. C. Nalle, L. Shen, E. S. Turner, G. Singh, L. A. Breskin, E. A. Khramtsova, G. Khramtsova, P. Y. Tsai, Y. X. Fu, C. Abraham, and J. Turner. 2013. TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology 145 (2):407-415. Su, L., L. Shen, D. R. Clayburgh, S. C. Nalle, E. A. Sullivan, J. B. Meddings, C. Abraham, and J. R. Turner. 2009. Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology 136 (2):551-563. Suzuki, T., B. C. Elias, A. Seth, L. Shen, J. R. Turner, F. Giorgianni, D. Desiderio, R. Guntaka, and R. Rao. 2009. PKC zeta regulates occludin phosphorylation and epithelial tight junction integrity. Proc Natl Acad Sci U S A 106 (1):61-66. Suzuki, Y., E. A. Deitch, S. Mishima, Q. Lu, and D. Xu. 2000. Inducible nitric oxide synthase gene knockout mice have increased resistance to gut injury and bacterial translocation after an intestinal ischemia-reperfusion injury. Crit Care Med 28 (11):3692-3696. Swiatczak, B., and M. Rescigno. 2012. How the interplay between antigen presenting cells and microbiota tunes host immune responses in the gut. Semin Immunol 24 (1):43-49. Swidsinski, A., A. Ladhoff, A. Pernthaler, S. Swidsinski, V. Loening-Baucke, M. Ortner, J. Weber, U. Hoffmann, S. Schreiber, M. Dietel, and H. Lochs. 2002. Mucosal flora in inflammatory bowel disease. Gastroenterology 122 (1):44-54. Takahashi, T. 2003. Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract. J Gastroenterol 38 (5):421-430. Tomson, F. L., A. Koutsouris, V. K. Viswanathan, J. R. Turner, S. D. Savkovic, and G. Hecht. 2004. Differing roles of protein kinase C zeta in disruption of tight junction barrier by enteropathogenic and enterohemorrhagic Escherichia coli. Gastroenterology 127 (3):859-869. Tsukita, S., and M. Furuse. 1999. Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol 9 (7):268-273. Turner, J. R. 2006. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am J Pathol 169 (6):1901-1909. Tyska, M. J., A. T. Mackey, J.-D. Huang, N. G. Copeland, N. A. Jenkins, and M. S. Mooseker. 2005. Myosin-1a is critical for normal brush border structure and composition. Mol Biol Cell 16 (5):2443-2457. Unno, N., M. J. Menconi, M. Smith, D. E. Aguirre, and M. P. Fink. 1997a. Hyperpermeability of intestinal epithelial monolayers is induced by NO: effect of low extracellular pH. Am J Physiol 272 (5 Pt 1):G923-934. Unno, N., H. Wang, M. J. Menconi, S. H. Tytgat, V. Larkin, M. Smith, M. J. Morin, A. Chavez, R. A. Hodin, and M. P. Fink. 1997b. Inhibition of inducible nitric oxide synthase ameliorates endotoxin- induced gut mucosal barrier dysfunction in rats. Gastroenterology 113 (4):1246-1257. Utech, M., A. I. Ivanov, S. N. Samarin, M. Bruewer, J. R. Turner, R. J. Mrsny, C. A. Parkos, and A. Nusrat. 2005. Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane. Mol Biol Cell 16 (10):5040-5052. Vallance, B. A., W. Deng, M. De Grado, C. Chan, K. Jacobson, and B. B. Finlay. 2002. Modulation of Inducible Nitric Oxide Synthase Expression by the Attaching and Effacing Bacterial Pathogen Citrobacter rodentium in Infected Mice. Infection and Immunity 70 (11):6424-6435. Vignoli, A. L., R. C. Srivastava, A. Stammati, L. Turco, M. Tanori, and F. Zucco. 2001. Nitric oxide production in Caco-2 cells exposed to different inducers, inhibitors and natural toxins. Toxicol In Vitro 15 (4-5):289-295. Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and Environmental Microbiology 73 (16):5261-5267. Wang, Z.-Q., Y. Watanabe, A. Toki, S. Kohno, S. Hasegawa, and M. Hamazaki. 2000. Involvement of endogenous nitric oxide and c-kit-expressing cells in chronic intestinal pseudo-obstruction, 539-544. Wells, C. L., E. M. VandeWesterlo, R. P. Jechorek, and S. L. Erlandsen. 1996. Effect of hypoxia on enterocyte endocytosis of enteric bacteria. Crit Care Med 24 (6):985-991. Wong, J. M. W., R. de Souza, C. W. C. Kendall, A. Emam, and D. J. A. Jenkins. 2006. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40 (3):235-243. Wu, C. C., Y. Z. Lu, L. L. Wu, and L. C. H. Yu. 2010. Role of myosin light chain kinase in intestinal epithelial barrier defects in a rat model of bowel obstruction. BMC Gastroenterol 10 (1):39. Wu, L. L., H. D. Chiu, W. H. Peng, B. R. Lin, K. S. Lu, Y. Z. Lu, and L. C. H. Yu. 2011. Epithelial inducible nitric oxide synthase causes bacterial translocation by impairment of enterocytic tight junctions via intracellular signals of Rho-associated kinase and protein kinase C zeta. Crit Care Med 39 (9):2087-2098 Yang, J., J. W. Clark, R. M. Bryan, and C. S. Robertson. 2005. Mathematical modeling of the nitric oxide/cGMP pathway in the vascular smooth muscle cell. Am J Physiol Heart Circ Physiol 289 (2):H886-H897. Yu, L. C. H. 2010. Protective mechanism against gut barrier dysfunction in mesenteric ischemia/reperfusion. Adaptive medicine 2:11-22. Yu, L. C. H., A. N. Flynn, J. R. Turner, and A. G. Buret. 2005. SGLT-1-mediated glucose uptake protects intestinal epithelial cells against LPS-induced apoptosis and barrier defects: a novel cellular rescue mechanism? FASEB J 19 (13):1822-1835. Yu, L. C. H., G. Montagnac, P.-C. Yang, D. H. Conrad, A. Benmerah, and M. H. Perdue. 2003. Intestinal epithelial CD23 mediates enhanced antigen transport in allergy: evidence for novel splice forms. Am J Physiol Gastrointest Liver Physiol 285 (1):G223-G234. Yu, L. C. H., and M. H. Perdue. 2000. Immunologically mediated transport of ions and macromolecules. Ann N Y Acad Sci 915 (1):247-259. Yu, L. C. H., P. C. Yang, M. C. Berin, V. Di Leo, D. H. Conrad, D. M. McKay, A. R. Satoskar, and M. Perdue. 2001. Enhanced transepithelial antigen transport in intestine of allergic mice is mediated by IgE/CD23 and regulated by interleukin-4. Gastroenterology 121 (2):370-381. Zolotarevsky, Y., G. Hecht, A. Koutsouris, D. E. Gonzalez, C. Quan, J. Tom, R. J. Mrsny, and J. R. Turner. 2002. A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology 123 (1):163-172. Zyrek, A. A., C. Cichon, S. Helms, C. Enders, U. Sonnenborn, and M. A. Schmidt. 2007. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCζ redistribution resulting in tight junction and epithelial barrier repair. Cellular Microbiology 9 (3):804-816. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57929 | - |
| dc.description.abstract | 背景介紹:單層腸道上皮細胞透過緊密連接 (Tight junction, TJs) 作為物理性屏障來防衛細菌入侵。腸屏障功能失常導致異常細菌轉移和引發敗血倂發症的病理現象,可見於腸道疾病如腸阻塞(intestinal obstruction, IO)。目前腸阻塞導致異常細菌轉移經由穿細胞和間細胞機制尚不明瞭。過去研究指出腸道上皮細胞內吞細菌之現象可見於腸阻塞,且此病理現象與干擾素-γ(IFNγ)的產生有密切相關性。目前還不清楚共生細菌如何通過緻密的微絨毛根部的終末端網絡(terminal web, TW)而被內吞入腸道上皮細胞,而其分子機制是否依賴肌凝蛋白輕鏈激酶 (myosin light chain kinase, MLCK)活化刷狀緣扇形展開亦不明。另一方面,上皮細胞間通透性是藉由緊密連結蛋白重組和肌凝蛋白輕鏈 (myosin light chain, MLC)磷酸化的調節。誘導型一氧化氮合成酶 (inducible nitric oxide synthase, iNOS)大量表現是細菌轉移的病理變化之一,然而其分子機制並不清楚。研究目的: 利用腸阻塞模式來進一步探討共生細菌侵入腸道上皮細胞經由穿細胞(探討細菌內吞之分子和超微結構機制,著重於IFNγ依賴性MLCK的調控作用)與間細胞(本研究主要探討ROCK及PKCzeta在腸道上皮iNOS所造成的屏障損傷中所扮演的角色)途徑之分子機制。方法:在活體小鼠末端進行10公分結紮形成腸阻塞,由腸管腔注射入vehicle,ML-7 (MLCK抑制劑)或L-Nil (iNOS抑制劑)或Y27632 (ROCK抑制劑)。腸阻塞6或24小時後,將腸組織嵌在Ussing chamber上來測量大分子物質通通性。肝及脾組織用來評估細菌數量。Caco-2細胞給予100 IU/ml IFNγ之和1mM SNAP(NO供體)刺激後,進行跨上皮電阻和通通性評估。結果:我們的研究顯示將小鼠腸阻塞6小時後,腸道上皮細胞內吞細菌但無緊密連結蛋白的破壞。而終末端網絡處MLC磷酸化增加,拱形作用及刷狀緣扇形展開的現象,皆與細菌穿過微絨毛內空隙有相關性;此現象會被ML-7 和anti-IFNγ抑制, 但無法被Y27632抑制。此外,長型MLCK-210或IFNγ基因缺陷的小鼠腸阻塞6小時並未出現該現象。人類Caco-2BBe細胞受IFNγ刺激後,會先造成MLCK依賴性終末端網絡的拱形作用和刷狀緣扇形展開,之後才伴隨細菌經由caveolin-1所媒介富含胆固醇的脂筏被內吞至細胞。另一方面,小鼠腸阻塞24小時後,會造成腸道上皮緊密連結損害和上皮通透性增加的現象;若腸管腔注射給予L-Nil (iNOS抑制劑)或Y27632 (ROCK抑制劑) 則可減緩。L-Nil降低腸阻塞所造成MLC,MYPT1及PKCzeta磷酸化表現量,推測iNOS是ROCK及PKCzeta訊息的上游。在體外實驗顯示SNAP (一氧化碳供體) 造成跨上皮細胞電阻降低及探針通透性增加, 主要透過ROCK依賴性造成MLC磷酸化及PKCzeta依賴性活化造成緊密連結蛋白破壞。結論: 我們研究顯示腸阻塞6小時會造成細菌經由MLCK依賴性穿細胞途徑侵入腸道上皮細胞,而24小時則可見ROCK依賴性緊密連結損害和細菌經由間細胞進入黏膜。腸道上皮屏障功能失常會造成共生細菌經由穿細胞及間細胞途徑進入黏膜,而可能導致慢性腸道炎症和敗血症的誘發或復發。 | zh_TW |
| dc.description.abstract | Background: The single-layer epithelial cells linked by tight junctions (TJs) act as physical barriers to separate the microbiota from the lamina propria. Bacterial translocation (BT) and septic complications are documented in intestinal obstruction (IO). Whether bacterial crosses the epithelial layer through transcellular or intercellular routes in IO is poorly understood. Bacterial internalization to epithelial cells has been documented in IO, and is associated with interferon-gamma (IFNγ) production. It remains unclear how bacteria gain access to epithelial soma through densely packed microvilli rooted on terminal web (TW) and if myosin light chain kinase (MLCK)-dependent brush border (BB) fanning plays a role. On the other hand, intercellular epithelial permeability is regulated by TJ reorganization and myosin light chain (MLC) phosphorylation. Overexpression of inducible nitric oxide synthase (iNOS) is implicated in the pathogenesis of BT, of which the mechanism remains unclear. Aim: Our research objectives were to investigate the molecular mechanism of transcellular bacterial endocytosis (focusing on regulatory roles of IFNγ and MLCK) and intercellular tight junctional impairment (focusing on the roles of ROCK and PKCzeta in epithelial iNOS-mediated permeability increase) using a mouse model with IO. Methods: Mouse distal small intestines were obstructed by loop ligation in which vehicle, ML-7 (a MLCK inhibitor) or L-Nil (an iNOS inhibitor), or Y27632 (a ROCK inhibitor) was luminally administered. After obstruction for 6 or 24 hours, intestinal tissues were mounted on Ussing chambers for macromolecular flux. Liver and spleen tissues were assessed for bacterial counts. Caco-2 cells were exposed to 100 IU/ml IFNγ and 1 mM SNAP (a NO donor), and transepithelial resistance (TER) and permeability were evaluated. Results: Our results showed that following IO for 6 hrs, epithelial endocytosis was observed in the absence of TJ damage. Enhanced TW MLC phosphorylation, arc formation and BB fanning coincided with intermicrovillous bacterial penetration, which were inhibited by ML-7 (a MLCK inhibitor) and neutralizing anti-IFNγ, but not Y27632. The phenomena were not seen in mice deficient of long MLCK-210 or IFNγ. Stimulation of human Caco-2BBe cells with IFNγ caused MLCK-dependent BB fanning, which preceded caveolin-mediated bacterial internalization through cholesterol-rich lipid rafts. On the other hand, mice with IO for 24 hrs displayed epithelial permeability rise and BT, associated with TJ disruption and MLC phosphorylation. Enteric instillation of L-Nil (an iNOS inhibitor) and Y27632 (a ROCK inhibitor) attenuated the IO-induced barrier damage. L-Nil decreased IO-induced MLC, MYPT1 and PKCzeta phosphorylation, suggesting that iNOS is upstream of ROCK and PKCzeta signaling. In vitro studies showed that SNAP (a NO donor) induced transepithelial electrical resistance drop and permeability rise via ROCK-dependent MLC phosphorylation and PKCzeta-dependent TJ reorganization. In summary, we showed that epithelial iNOS activates two distinct signals, PKCzeta and ROCK, to disrupt TJs leading to bacterial influx. Conclusion: MLCK-dependent BB fanning and bacterial endocytosis were seen after 6 hrs of IO and ROCK-dependent TJ disruption in enterocytes and intercellular permeability increase were noted after 24 hrs of IO. Impaired epithelial barrier allowing intercellular and transcytotic penetration of bacteria may contribute to initiation or relapse of chronic gut inflammation and septic complications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T07:12:18Z (GMT). No. of bitstreams: 1 ntu-103-D95441004-1.pdf: 6665031 bytes, checksum: 7d7f5ef1083d541e8f3fbb0bbcb4662f (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Table of Contents
國立臺灣大學博士學位論文口試委員會審定書---------------------I ACKNOWLEDGEMENT--------------------------------------II 中文摘要-----------------------------------------------III ABSTRACT----------------------------------------------V LIST OF ABBREVIATIONS---------------------------------VII CHAPTER 1: INTRODUCTION-------------------------------1 1.1 Intestinal epithelium and crypt-villus axis-------1 1.2 Intestinal microflora-----------------------------1 1.3 Intestinal barrier function-----------------------2 1.4 Clinical diseases with changes in bacterial microflora and epithelial barrier--------------------------------3 1.5 Regulation of epithelial barrier function---------5 1.5.1 Transcellular pathways--------------------------5 1.5.2 Intercellular pathways--------------------------7 1.6 Roles of myosin light chain kinase (MLCK) and Rho-associated kinase (ROCK) in epithelial barrier functions ------------------------------------------------------8 1.7 Bacterial translocation (BT)----------------------9 1.7.1 Inducible nitric oxide synthase (iNOS)----------9 1.7.2 Interferon-gamma (IFNγ)-------------------------12 1.8 Aims of thesis research---------------------------14 CHAPTER 2: MATERIAL AND METHODS-----------------------15 2.1 Experimental design-------------------------------15 2.2 Morphology analysis-------------------------------20 2.3 Barrier function----------------------------------25 2.4 Bacteria analysis---------------------------------28 2.5 Biology analysis----------------------------------33 2.6 Statistical analysis------------------------------41 CHAPTER 3: RESULTS------------------------------------42 3.1 Routes of bacterial influx following IO-----------42 3.2 IFNγ-induced bacterial transcytosis: role of MLCK-44 3.3 iNOS-induced intercellular permeability: role of ROCK-49 CHATER 4: DISCUSSIONS---------------------------------56 CHAPTER 5: CONCLUDING REMARKS-------------------------64 CHATER 6: TABLE, FIGURE AND VIDEO---------------------66 6.1 List of table-------------------------------------66 6.2 List of figures and video-------------------------67 REFERENCE---------------------------------------------104 LIST OF PUBLICATIONS----------------------------------115 | |
| dc.language.iso | en | |
| dc.subject | 腸阻塞 | zh_TW |
| dc.subject | 訊息傳遞 | zh_TW |
| dc.subject | 肌凝蛋白輕鏈 | zh_TW |
| dc.subject | 上皮通透性 | zh_TW |
| dc.subject | 細菌轉移 | zh_TW |
| dc.subject | 一氧化氮 | zh_TW |
| dc.subject | 微生物穿細胞 | zh_TW |
| dc.subject | 緊密連結 | zh_TW |
| dc.subject | 上皮屏障 | zh_TW |
| dc.subject | Myosin light chain | en |
| dc.subject | Tight junctions | en |
| dc.subject | Microbial transcytosis | en |
| dc.subject | Nitric oxide | en |
| dc.subject | Bacterial translocation | en |
| dc.subject | Epithelial permeability | en |
| dc.subject | Epithelial barrier | en |
| dc.subject | Bowel obstruction | en |
| dc.subject | Signal transduction | en |
| dc.title | 肌凝蛋白輕鏈激酶和Rho相關激酶參與細菌入侵腸道經由穿細胞與間細胞途徑所扮演的角色 | zh_TW |
| dc.title | Roles of myosin light chain kinase and Rho-associated kinase in transcellular and intercellular influx of bacteria in intestine | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 盧國賢(Kuo-Shyan Lu),周綠蘋(Lu-Ping Chow),王錦堂(Jin-Town Wang),倪衍玄(Yen-Hsuan Ni) | |
| dc.subject.keyword | 上皮屏障,緊密連結,微生物穿細胞,一氧化氮,細菌轉移,上皮通透性,肌凝蛋白輕鏈,腸阻塞,訊息傳遞, | zh_TW |
| dc.subject.keyword | Epithelial barrier,Tight junctions,Microbial transcytosis,Nitric oxide,Bacterial translocation,Epithelial permeability,Myosin light chain,Bowel obstruction,Signal transduction, | en |
| dc.relation.page | 115 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-04 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 6.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
